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Abstract
Purpose Computed tomography (CT) is widely used to identify anomalies in brain tissues because their localization is
important for diagnosis and therapy planning. Due to the insufficient soft tissue contrast of CT, the division of the brain into
anatomical meaningful regions is challenging and is commonly done with magnetic resonance imaging (MRI).
Methods We propose a multi-atlas registration approach to propagate anatomical information from a standard MRI brain
atlas to CT scans. This translation will enable a detailed automated reporting of brain CT exams. We utilize masks of the
lateral ventricles and the brain volume of CT images as adjuvant input to guide the registration process. Besides using manual
annotations to test the registration in a first step, we then verify that convolutional neural networks (CNNs) are a reliable
solution for automatically segmenting structures to enhance the registration process.
Results The registration method obtains mean Dice values of 0.92 and 0.99 in brain ventricles and parenchyma on 22 healthy
test cases when using manually segmented structures as guidance. When guiding with automatically segmented structures,
the mean Dice values are 0.87 and 0.98, respectively.
Conclusion Our registration approach is a fully automated solution to register MRI atlas images to CT scans and thus obtain
detailed anatomical information. The proposed CNN segmentation method can be used to obtain masks of ventricles and
brain volume which guide the registration.
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Introduction

Computed tomography (CT) imaging of the brain is widely
used in radiology as it provides good image contrast to
identify hemorrhages, cerebrovascular lesions and tumors.
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To determine the best treatment, each pathology has to be
detected and localized as precisely as possible. CT is the
modality of choice in acute patient care and is provided
24/7/365 in many hospitals. An emerging shortage of radiol-
ogists could be outweighed by precise automated CT exam
reporting. The diagnosis and subsequent therapy depends
on the anatomical localization, as symptoms and neurolog-
ical disorders correspond with the affected brain area. Due
to the poor soft tissue contrast of CT, precisely determin-
ing anatomical structures and differentiating brain areas is
challenging. Magnetic resonance imaging (MRI) is used to
highlight specific structures thanks to higher soft tissue con-
trast and the possibility of acquiring differentMRI protocols.
MRImainly is themodality of neuroscience and elective clin-
ical work-up. In daily practice, there is limited availability
and there are controversies concerning the feasibility in acute
symptomatic patients. Even with MRI, a precise, individual
segmentation is time consuming and not feasible in clinical
routines.
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A possible solution to obtain masks of anatomical struc-
tures is to use an already existing brain atlas. In atlas-based
approaches, a template intensity image is registered to the
target image, and the resulting deformation is then applied
to the anatomical labels of the template to match the tar-
get space. In this way, the existing information of the atlas
image can be transferred to the image of interest [1]. To bet-
ter address the variability between scans of different subjects,
multi-atlas registration can be used [2]. With this approach,
the target image is registered to multiple atlas images and
the resulting label images are combined via majority voting
algorithms [2–4].

There are multiple MR-based anatomical atlases avail-
able to transfer different labeled regions to new unlabeled
images. To the best of our knowledge, there is no detailed
CT-based anatomical brain atlas, and few registration-based
approaches have been proposed for transferring anatomical
information from an MR image to a CT scan. This is a chal-
lenging task and requires reliable multi-modal, inter-subject,
non-rigid CT-MR registration. In the approaches proposed
by [5–7], the task is reduced to a mono-modal registration
problem by decomposing it into two steps. First, CT images
are synthesized into MRI images, and then the registration
is performed between the synthesized MRI images and the
MRI atlas.

Moreover, in [8] the authors propose a method to create
an average CT atlas. Therefore, they first create an average
CT image and then register multiple MRI atlas images to the
average image. Finally, the anatomical labels from the MRI
atlases are fused completing the final average CT atlas.

Furthermore, the authors in [9] investigate an atlas-based
method to segment ventricles in CT images. However, when
it comes to CT images, it would be beneficial to delineate
a larger number of anatomical structures. The authors in
[10] propose a registration-based method to build a CT head
atlas with anatomical structures for the Chinese population.
However, they manually correct the segmentation and do not
useMR atlas images. Direct multi-modal registration usually
is eased by utilizing additional information and correspon-
dence structures in the distance measure computation. Gao
et al. [11] extract the midsagittal plane and use brain surface
matching. Chen et al. [12] propose a combination of land-
marks and mutual information (MI) as similarity measure
to include local and global anatomical structure. Learning-
based approaches, as described in [4], aim to overcome the
disadvantages of multi-modal similarity measures such as
MI. To evaluate the performance of the label propagation
on MRI scans, Dubost et al. [13] introduce the computation
of the overlap from automatically segmented ventricles and
choose the result with the highest Dice score.

In this work, we present a novel enhanced multi-modal,
multi-atlas registration approach to propagate anatomical
labels from an MRI atlas to new unseen CT brain scans.

Our approach builds on deformable registration utilizing cor-
responding structures (brain parenchyma and ventricles) as
extra input to guide the registration process between the CT
image and the MR atlas. On that account, we propose a con-
volutional neural network solution to automatically segment
brain volume and ventricle system in CT images.

Methods andmaterial

Our solution is divided into three steps. Firstly, brain volume
and ventricles of each CT scan are automatically segmented
by convolutional neural network (CNN) approaches. In the
second step, we perform multi-atlas registration using the
segmentation masks as guidance structures for the registra-
tion. We assume that a better alignment of the ventricles also
leads to more precise propagation of all anatomical labels.
Details are described in Section “Atlas Registration.” In our
multi-atlas solution, CT scans are registered to an MRI brain
atlas and with a mono-modal approach to three different pre-
computed CT atlas images, such that we obtain four label
images for eachCT input. Finally, in the third step, we choose
the label image with the highest ventricles Dice values. An
overview of our approach is shown in Fig. 1. Registering a
CT to all of the four atlas images and obtaining the final label
image takes around 90 seconds on a system with NVIDIA
GeForce RTX 2070 Super.

Data

Our experiments are based on the publicly available data
set provided by the Radiological Society of North Amer-
ica (RSNA) in collaboration with members of the American
Society of Neuroradiology and MD.ai in the context of the
RSNA challenge for intracranial hemorrhage detection [14].
The data set includes over 25,000 CT slices of the head,
labeled with the type of hemorrhage, if present. We recon-
structed 3D volumes from the 2D CT scans and selected a
subset of 220 “normal” 3D volumes without hemorrhage.
This corresponds to 220 subjects with one scan per subject.
For this data set, ventricles (right and left lateral and 4th) and
brain volumes were manually segmented by three radiolo-
gists with 3 months, 6, and 12 years of experience annotating
CT images and using SATORI software [15]. All radiolo-
gists were trained by an experienced neuroradiologist, data
sets were randomly distributed among radiologists, and each
data set was segmented by only one radiologist. For final
homogeneous segmentation, all data sets were reviewed by
an experienced neuroradiologist. Additionally, we randomly
selected 10 abnormal CT volumes with hemorrhages to test
our method on disease cases. For the atlas registration, we
use the AAL1 MRI Atlas with added ventricle labels [16].
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Fig. 1 Overview of our atlas registration approach: Step (1): automated segmentation of brain structures with CNNs, (2): multi-atlas registration,
(3): create label image

Segmentation

We propose an automatic method to segment brain ventri-
cles and parenchyma and use it as guidance to register new
CT scans, for which no ground truth is available. CNN solu-
tions already demonstrated to be a valid alternative for CT
segmentation [17]. For this task, we utilize the “no new U-
Net” (nnU-Net) deep learning method [18] that showed to
achieve state of the art results in several medical imaging
segmentation tasks. It is a self-configuring framework that
automatically adapts to the data set used for training. An
advantage of the nnU-Net approach is the automatic pre-
processing depending on the type of training data used. As
described in [18], the training data are globally clipped to
the intensity range of the 0.5 to 99.5 percentile and z-score
normalization is performedbased onmean and standard devi-
ation. For what concerns the architecture, the input patches
size is automatically set to 20 × 376 × 376, with a batch
size equal to 2. The 3D U-Net has a 5 levels depth, with
LeakyRelu and batch normalization applied after every con-
volution operation. During training, the data are augmented
by random rotation and scaling, additive brightness augmen-
tation, gamma scaling and rigid transformation. Moreover,
the loss function is composed of the sum of cross-entropy
and Dice loss. The networks are trained for 1000 epochs,
with an epoch defined on 250 mini-batches.

In this work, two distinct nnU-Net models have been
trained to segment the ventricles, and the brain volume as
this led to the best results. In both models, the training and
validation set includes 198 cases, whereas a disjoint test set
of 22 cases is available to test the trained model. The test
and training sets are subsets of the previously described 220
normal scans with manual segmentation (Section “Data”).

Atlas registration

As the robust multi-modal, inter-subject, non-rigid registra-
tion of medical images is an extremely challenging task, we
incorporate multiple structure and landmark guidance into
our solution. In our method, we combine mono-modal with
multi-modal atlas registration. We assumed that the creation
of CT atlas images through CT-MR registration could be
beneficial over the mere use of multi-modal registration, as
a mono-modal approach is known to be less prone to errors,
especially for inter-patient scenarios as discussed here. How-
ever, our starting point is an MRI atlas that consists of an
intensity image and corresponding labels, such that MR(x)
is the intensity andMRLabel(x) is the anatomical label at posi-
tion x . Then, we use multi-modal registration to propagate
the labels to CT. To this end, we register the intensity images
and subsequently warp the labels from MR to CT. That is,
we compute a deformation vector field y such that CT(x) ≈
MR(y(x)) and we define CTLabel(x) := MRLabel(y(x)).

Registration approach

We use a variational registration scheme that builds on nor-
malized gradient fields (NGF) image similarity measure,
second-order curvature and volume regularization of the
deformation vector field. NGF has been proven to be a reli-
able distance measure in multi-modal CT-MR [19] as well
as mono-modal CT-CT registration scenarios [20]. Further-
more, to improve robustness and accuracy we incorporate
additional knowledge by adding penalty terms that enforce
the alignment of the corresponding masks for brain and ven-
tricles and centers of gravity (COG) of the ventricles, similar
to [21,22]. The COG could lie outside of the ventricle vol-
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ume, but we are not searching for an anatomical meaningful
landmark but rather a sensible reference point that can be
extracted out of the ground truth that we have right now.

To be specific, in our setting the CT image is the so-called
fixed or reference image R and the MR is the so-called mov-
ing or template image T that shall be aligned on a domain
� ⊂ R3 modeling the field-of-view of R. Furthermore, we
assume corresponding segmentations for brain parenchyma
(BP), left and right lateral ventricle (LLV, RLV) and fourth
ventricle (FV), that are given as binary masks MR

� , MT
� for

� = BP,LLV,RLV,FV. Moreover, we consider combined
masks for all ventricles, i.e., we set MR

V := ∑
�∈V MR

� for
ventricle labels V := {LLV,RLV,FV} and MT

V accordingly.
Additionally let r�, t� ∈ R3, � ∈ V be the centers of gravity
(COGs) of the different ventricles, i.e., rLLV is the COG of
MR

LLV, tLLV is the COG of MT
LLV, etc.

For the registration,we thenminimize the followingobjec-
tive function w.r.t. to deformation vector field y:

J (R, T (y)) = NGF(R, T (y)) + α

2

3∑

k=1

‖�yk‖2L2(�)

+ β

∫

�

ψ(det∇ y(x))dx

+ γ

2

(
‖MT

BP(y) − MR
BP‖2L2(�)

+ ‖MT
V (y) − MR

V‖2L2(�)

)

+ δ

2

∑

�∈V
‖y(r�) − t�‖22

(1)

with weights α, β, γ, δ > 0, NGF distance measure

NGF(R, T ) = 1

2

∫

�

1 −
( 〈∇R(x),∇T (x)〉εRεT

‖∇T (x)‖εT ‖∇R(x)‖εR

)2

dx(2)

where 〈x, y〉ε := x	y+ ε, ‖x‖ε := √〈x, x〉ε2 and εR, εT >

0 are the so-called edge-parameters controlling influence of
noise in the images. The weights are fixed and were deter-
mined empirically. In addition to penalizing the second-order
(Laplacian) derivatives by the so-called curvature regular-
ization, we add an additional term penalizing the Jacobians
of the deformation, respectively, volume changes with the
function ψ(t) = (t − 1)2/t for t > 0 and ψ(t) := ∞ for
t ≤ 0. Note that ψ(1) = 0 and ψ(t) = ψ(1/t) and thus vol-
ume growth or shrinkage are penalized symmetrically, and
ψ(t) = ∞ for det∇ y ≤ 0 prevents local changes in the
topology and thus unwanted mesh folds.

The optimization is done by using a multi-level approach
with L-BFGS.

Multi-modal atlas registration

In general, our approach builds on a single MR atlas that is
transferred to CT as described before. However, to achieve
better performance and coverage of anatomical variations,
we bootstrap the MR atlas to a multi-modal MR-CT multi-
atlas. To this end, all CT images in our data set (220 cases)
were registered with the MR atlas intensity image and labels
were propagated fromMR to CT, so that we obtained a label
image CTLabel for each CT scan. Afterward, we manually
selected three CT images along with the propagated label
images that had the highest ventricular Dice values (≥94%),
so that our multi-modal multi-atlas consisted of one MR and
threeCT atlases. The number of chosenCT images could eas-
ily be adapted to incorporate more variability. We are aware
that typical atlas based approaches consist of a much larger
number of atlases [23].

However, we limit ourselves to three images because first,
the total number of atlases should be balanced with the size
of our data set. Using 10-20 images would mean that we
are actually using 5–10% of the data set as atlases. While
this might lead to a larger anatomical variety and thus bet-
ter registration results, it would still bias the validity of the
evaluation of our methodology. Second, we describe a boot-
strap strategy to improve atlas registration using labels from
a single MR atlas. The accuracy of bootstrapped CT labels is
therefore highly dependent on the initial CT-MR registration
quality, limiting the set of possible CT atlas candidates to
those with very good CT registration quality. For this reason,
we decided to use only the smallest possible number of three
CT images for the evaluation of our approach, which is about
1.5% of the data.

The multi-atlas registration for a new unseen CT image
works as follows. We use the approach from Section “Regis-
tration approach” to independently register a new CT image
to each of the four atlas images, such that we obtain four
registration results. We use the Dice overlap of the ventricles
as a quality criteria, as these labels are available for all atlas
images as well as the new unseen CT image by our automatic
CNN segmentation described in Section “Segmentation.”
Thus, we are globally choosing the warped anatomical label
image of the atlas with the highest ventricle Dice. We are
aware that in multi-atlas scenarios it is common to use a
local label fusion approach, namely majority voting [2–4].
We implemented this during development, but then focused
on the previously described global Dice approach.

Results

To evaluate both the segmentation and registration solutions,
we compute the Dice coefficient for the ventricles and the

123



International Journal of Computer Assisted Radiology and Surgery (2023) 18:483–491 487

Table 1 Segmentation results:
Mean Dice coefficient and mean
Hausdorff Distance (in mm),
with related standard deviation.
The test set consists of 22
volumes

Metric LLV RLV 4thV Brain volume

Dice 0.89 ± 0.04 0.89 ± 0.03 0.89 ± 0.06 0.97 ± 0.01

Hausdorff 15.61 ± 18.08 11.60 ± 21.39 34.65 ± 59.55 15.30 ± 3.04

Fig. 2 Automatic segmentation
results for brain volume (left)
and ventricles (right). The first
and third images show the
ground truth masks, whereas the
second and fourth display the
automatically generated masks

Groundtruth CNN Groundtruth CNN

Fig. 3 Disease cases:
Automatic segmentation results
for brain volume and ventricles.
The brain volume (in orange)
and the left and right later
ventricles (in pink and purple).
The pathological is visible in the
right hemispheres of the slices

CT image CNN CT image CNN

brain volume (mean and std) aswell as theHausdorff distance
(in mm) for the two structures.

Segmentation

The segmentation task was tested on a data set of 22 volumes
that were excluded from the CNN training. The correspond-
ing results are presented inTable 1. The segmentationmethod
for the brain volume achieves the highest Dice coefficient of
0.97, whereas the segmentation of the ventricles leads to a
Dice of 0.89. The high Hausdorff values are especially due
to the fact that parts of other nearby structures are wrongly
assigned. In particular, for the very small 4th ventricle, parts
of the LLV and RLV are misidentified as part of the 4th
ventricle. Figure 2 shows exemplary results for a test case.
Moreover, Fig. 3 displays the qualitative results on two cases
with disease, in which the brain volume and the ventricles
are automatically segmented.

Registration

For the registration task, we use 22 test CT scans with (A)
ground truth segmentation masks, (B) automatically seg-
mented ventricles and brain volume by theCNN.By using set
(A), we evaluate the registration performance without con-
sidering the automatic segmentation results, as we register
with guidance of the ground truth segmentation masks. To
test the entire proposed pipeline, we then used the test set,
where the guidance masks were generated by the CNN. The

results are presented in Table 2. Qualitative results for the
registration are shown in Fig. 4.

It is noticeable that the Hausdorff distance (HD) for both
manual and automatic CNN-based segmentation is quite
large compared to the good Dice values. This is because the
segmentations have different levels of detail. In the ground
truth masks, some sulci or fissures are precisely segmented
with high detail and are not part of the brain volume. In con-
trast, the atlas brain mask is segmented at a coarser level and
does not contain such details. Therefore, the sulci cannot be
accurately mapped by registration, resulting in larger Haus-
dorff values. An example is shown in Fig. 5a. Similarly, the
distances for the ventricles are large when the subhorn of
the lateral ventricles is well segmented in the ground truth,
which is not the case in the atlas. Such a case is shown in
Fig. 5b. It is well known that the Hausdorff distance is very
sensitive to such outliers. For this purpose, we also provide
more robust 95% Hausdorff distance (HD95) and average
surface distance (AVD) [24,25], confirming the good Dice
values, see Table 2.

Robustness

We claim that adding CT images as auxiliary atlas images
makes our overall approach more robust. To evaluate that,
we compared the performance on the whole data set when
using only the MR atlas versus using the multi-atlas with
three CT images. The results are shown graphically in Fig. 6.
We observed that the ventricle Dice is significantly improved
for multiple cases when using the multi-atlas.
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Table 2 Registration results
with manual and automatic
segmentation for the test data set
with 22 cases: Dice coefficient,
Hausdorff distance (HD), 95%
Hausdorff distance (HD95,
=95% quantile of surface
distances) and average surface
distance (AVD) in mm with
mean ± standard deviation,
respectively

Ventricles Brain volume
Metric Manual CNN Manual CNN

Dice 0.92 ± 0.02 0.87 ± 0.03 0.99 ± 0.01 0.98 ± 0.01

HD 15.03 ± 8.66 16.12 ± 7.80 8.68 ± 4.24 11.76 ± 3.41

HD95 2.72 ± 3.21 3.89 ± 2.55 0.54 ± 0.24 3.01 ± 1.30

AVD 0.28 ± 0.21 0.42 ± 0.21 0.07 ± 0.05 0.41 ± 0.25

Fig. 4 Exemplary registration
result: Overlay of only the
ventricle label and all
anatomical labels on MRI atlas
(left) and CT volume (right)

In addition to using a multi-atlas, we also utilize structure
guidance to improve the registration performance. Table 3
shows a comparison of the registration metrics when using
no guidance, only mask alignment and the full proposed
methodwith additional landmark alignment.We conduct this
experiment on our test data set of 22 CT scans with manual
segmentation masks. The ventricle Dice of the registration
without guidance increased from 0.72 to 0.92 when using
landmark and mask alignment.We also applied theWilcoxon
test for dependent samples. The difference between not using
any guidance and guiding with masks is significant with p-
values for Dice andHausdorff distance of 10−5 and 7×10−4,
respectively. The use of additional landmark guidance does
not lead to a significant improvement over using only the
masks (p-value of 0.061).

Scans with diseases

As mentioned earlier, our method was developed with nor-
mal CT images only and our training data did not include
CT scans with pathologies. Therefore, we obviously cannot
expect the same performance as with healthy data. Neverthe-
less, we tested our approach on a few selected CT scans with
pathologies to get a first impression of the behavior on scans
with diseases.

Three examples are shown in Fig. 7. Quantitative evalua-
tion is not provided as ground truth segmentation masks for
our data are not available at this time and expert feedback is
expected in the future.

Discussion

We presented a CNN segmentation guided multi atlas regis-
trationmethod showing reasonable results anddemonstrating
robustness and accuracy of our approach.

The segmentation method achieves good results in auto-
matically delineating brain volumes and lateral ventricles
in healthy patients. In particular, qualitative results on vol-
umes with diseases show that the method achieves a good
delineation of the structures even if the lateral ventricles are
compressed in the right hemispheres. Moreover, the brain
volume is also well segmented, as the pathological area is
not included in the automatically segmented brain volumes
(see Fig. 3).

The proposed multi-atlas registration also shows robust
and accurate performance in our experiments. Clearly, the
registration outcome depends on the accuracy of the used
guidance segmentation. However, we have shown that regis-
tration works well with both ground truth and automatically
generatedmaskswith slightly superior numerical resultswith
the manual segmentation (cf. results in Table 2). Our evalua-
tion is limited by the relatively small test set (22 cases), and
evaluation on a larger data set is still ongoing. Admittedly,
the main limitation of our evaluation is the missing ground
truth for other anatomical structures than the ventricles and
brain volume. We have to evaluate our method on the same
structures that are used for guiding the registration which
can be seen as a bias. However, we showed the registration
results to radiology experts and got very positive feedback as
some anatomical structures can be identifiedwith ourmethod
that are very hard to segment on CT for humans. We hope
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Fig. 5 Visualization of cases
with high Hausdorff distance for
a brain volume and b ventricles
with ground truth in red/pink
and atlas result in green. The
arrows indicate the area with
differences

(a) Brain (b) Ventricles

Fig. 6 Dice values for ventricles
and brain volume when using
only the MR atlas or the
multi-atlas. The data set consists
of all of the 217 CT scans

Table 3 Registration results
without guidance vs guided by
masks or masks and landmarks:
Mean Dice coefficient and mean
Hausdorff Distance (in mm),
with related standard deviation.
Data set includes 22 manually
segmented test scans

Guidance by
Metric None Masks Masks & landmarks

Ventricles Dice 0.72 ± 0.05 0.91 ± 0.02 0.92 ± 0.02

Hausdorff 20.37 ± 7.11 16.25 ± 7.87 15.03 ± 8.66

Brain Volumes Dice 0.94 ± 0.02 0.99 ± 0.01 0.993 ± 0.01

Hausdorff 15.36 ± 3.40 8.74 ± 4.23 8.68 ± 4.24

to obtain masks for some structures that can reliably be seg-
mented by experts in the future, to evaluate for example the
results for the thalamus label. So far, assuring the accurate
and consistent segmentation of such structures exceeded our
capacities.

Furthermore, we found in our experiments that leveraging
the single MR atlas with a bootstrapped multi-CT-MR atlas

generally leads to much more robust and accurate results.
However, instead of selecting CT images with the highest
Dice values for our combined MR-CT multi-atlas, other cri-
teria such as anatomical variability could be considered.
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Fig. 7 Three exemplary CT
scans with pathologies and atlas
labels that were propagated with
our approach. First row: all atlas
labels, second row: only label
for lateral ventricles

Conclusion

In this paper, we presented a novel multi-atlas registration
approach to obtain anatomical labels on CT scans using a
standard MRI brain atlas. By using the detailed MRI infor-
mation, we overcome the problem of creating an anatomical
CT atlas. Furthermore, synthesizing MR images from CT,
as found in the literature, is not needed as we directly use
an MR atlas. Our method combines multi- and mono-modal
registration and incorporates structure guidance with auto-
matically segmented brain structures with CNNs. Thus, our
registration guidance requires no manual interaction.

As future work, further improving the CNN segmenta-
tion to simultaneously segment several brain structures will
be investigated. Moreover, we plan to further validate our
approach also on pathological brain scans.
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