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Abstract

Purpose: Surgery scene understanding with tool-tissue interaction
recognition and automatic report generation can play an impor-
tant role in intra-operative guidance, decision-making and postop-
erative analysis in robotic surgery. However, domain shifts between
different surgeries with inter and intra-patient variation and novel
instruments’ appearance degrade the performance of model pre-
diction. Moreover, it requires output from multiple models, which
can be computationally expensive and affect real-time performance.
Methodology: A multi-task learning (MTL) model is proposed for
surgical report generation and tool-tissue interaction prediction that
deals with domain shift problems. The model forms of shared feature
extractor, mesh-transformer branch for captioning and graph attention
branch for tool-tissue interaction prediction. The shared feature extrac-
tor employs class incremental contrastive learning (CICL) to tackle
intensity shift and novel class appearance in the target domain. We
design Laplacian of Gaussian (LoG) based curriculum learning into
both shared and task-specific branches to enhance model learning. We
incorporate a task-aware asynchronous MTL optimization technique
to fine-tune the shared weights and converge both tasks optimally.
Results: The proposed MTL model trained using task-aware opti-
mization and fine-tuning techniques reported a balanced performance
(BLEU score of 0.4049 for scene captioning and accuracy of 0.3508
for interaction detection) for both tasks on the target domain and
performed on-par with single-task models in domain adaptation.
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Conclusion: The proposed multi-task model was able to
adapt to domain shifts, incorporate novel instruments in the
target domain, and perform tool-tissue interaction detection
and report generation on par with single-task models.

Keywords: Surgical scene understanding, Domain generalization, Scene
graph, curriculum learning

1 Introduction

Surgical scene understanding is of great significance to image-guided robot-
assisted surgery [1–3]. The computer-assisted robotic system integrated with
scene understanding ability allows semi-automated or fully automated real-
time supervision of robotic surgery and automated surgical report generation
in the future. Given a surgical scene, inferring its surgical phase and related
instrument-tissue interaction [2, 4], and automated caption generation [5, 6]
will enable the development of intra-operative surgical supervision, post-
operative analysis and report generation. However, recognizing the surgical
phase and understanding the surgical activities in a complex surgery environ-
ment filled with blood, smoke, reflection and occlusion are challenging tasks.
This task is further complicated when the model is presented with domain-
shifted data. Theoretically, the model extracted features of a surgical tool
used across various surgery should have the same feature descriptor. How-
ever, intensity shifts (tissue appearance, lighting and color contrast) between
different surgeries cause the feature descriptor to differ. Inter-patient and intra-
patient surgical domain shifts can also not be ignored. Furthermore, using
surgery-specific instruments requires the model to be flexible to include new
instruments. Varying surgical scenes with domain shifts and the use of surgery-
specific instruments lead to the task of surgical domain adaptation (DA). A
surgical scene understanding model equipped with the ability to deal with
the DA can achieve better generalization and improve the surgical activity
recognition outcome.

Works on scene graph for tool-tissue interaction detection and report gen-
eration has been recently reported. Graph-based models have been proposed
to construct surgical scene graphs to detect tool-tissue interactions [2, 4].
Works on recognizing surgical action triplets [7] have also been reported to
detect tool-tissue interaction without the need to construct the scene graph.
SGT [8] presented a scene graph-guided transformer to address the issue of
surgical report generation. Richard et al. [9] proposed a keyword-augmented
next sequence prediction approach that generates surgical reports based on
keywords stated during panendoscopic procedures. While progress on indepen-
dent tasks has been reported, an automated surgical analysis system warrants
multiple single-task learning (STL) models to output multiple parameters
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for integrated analysis. Compared to multiple STL models, a single multi-
task learning (MTL) model can save computation, storage and maintenance
costs [10, 11]. Additionally, MTL alleviates the problem of over-fitting in the
model, improving the generalization of its shared sub-modules and utilizing
the relationship between tasks to improve model prediction, enabling mutual
assistance [4, 12]. However, training an MTL model is often challenging due
to an imbalance in its task-specific performance convergence. To address DA
in the surgical scene and reap the benefits of the MTL model, we propose an
MTL model that provides competitive performance in both tool-tissue interac-
tion detection and scene captioning tasks on both the source domain (SD) and
the target domain (TD). To train the MTL model, we adopt the asynchronous
task-aware optimization technique [11] that computes task-oriented gradients
and trains the task-specific decoders independently. Our main contributions
are summarized as follows:

• Propose a novel multi-task model that can be domain adapted for surgical
report generation and tool-tissue interaction.

• Address the domain adaptation in the surgical scene by combining the
class incremental learning and supervised contrastive learning to handle
the domain shift between the source and the target domain and novel
instruments exist in the target domain.

• Develop the Laplacian of Gaussian based curriculum by smoothing (CBS-
LoG) to achieve better feature representation learning.

• Study task-aware optimization and distillation-based optimization technique
improving convergence in MTL model.

2 Methodology

We propose an MTL model (Fig. 1) that performs tool-tissue interaction detec-
tion and scene captioning on both the SD and TD. The model consists of
(i) a shared feature extractor, (ii) a transformer-based encoder-decoder net-
work for scene captioning and a scene graph network for tool-tissue interaction
detection. The shared feature extractor incorporates class incremental con-
trastive loss (CICL) to handle domain shifts. Furthermore, curriculum learning
is applied to all three modules to enhance model learning. To train the MTL
model, we adopt the asynchronous task-aware optimization technique [11] that
computes task-oriented gradients and trains the task-specific modules indepen-
dently. Vanilla and distillation-based optimization techniques are also explored
for MTL model training.

2.1 MTL Surgical Scene Understanding

2.1.1 Shared Feature Extractor

A lightweight model ResNet18 [13] is utilized as the feature extractor. To deal
with the domain shift and the novel instruments that appear in the target
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Fig. 1 Task-aware multi-task learning (MTL) model optimization and fine-tuning: The
shared feature extractor is first initialized with weights trained for instrument classification.
The MTL model is first trained by (i) freezing the feature extractor and scene graph and (ii)
training the scene caption model until convergence. Secondly, (i) the feature extractor and
scene graph weights are frozen and (ii) the scene graph model is trained until convergence.
Finally, the complete MTL model is fine-tuned on both task losses.

domain, we design CICL by following[6]. The contrastive learning loss mini-
mizes the distance between the same label inputs across domains and pushes
apart the samples with different labels in the feature embedding space. It can
be formulated as:

Lcontra
i = − log

exp
(
zi · zj(i)/τ

)∑2N
k=1 exp (zi · zk/τ)

(1)

where, temperature τ , the logits of base sample zi, the logits of positive sam-
ples zj(i) which have the same label with zi, the logits of negative samples zk

which have a different label with zi. When the loss is minimized, the numera-
tor is expected to be higher and the denominator is lower, pushing everything
else apart. The training method is designed to allow the model to learn incre-
mentally, allowing new classes to be added. Similar to the KL-divergence
mechanism in [6], the contrastive loss is used in updating the model weights
for new classes. The total loss can be formulated as:

Ltotal = Lcontra + Lincre (2)

2.1.2 Scene Caption

A transformer-based encoder-decoder network is built with inspiration
from [14] for scene captioning. The network takes the regions of interest
features from an input image, predicts the probability of words in the vocab-
ulary, and generates the caption. The encoder consists of three encoder blocks
which include the memory augmented self-attention layers. The decoder con-
sists of three decoder blocks in which self-attention is applied to words and
cross-attention is applied to all the encoder blocks outputs to understand the
relationships among these regions of interest.
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2.1.3 Surgical Scene Graph

Understanding the surgical scene and its interactions warrants a robust model
that can adapt to the varying number of instruments and their interaction with
the tissue. Inspired from VS-GAT [15], we adopt the network for instrument-
tissue interaction detection. Representing a scene as a graph (G) with its nodes
(V) as the instruments and tissue, we use the graph edges (E) for interaction
classification. The scene graph model relies on the common feature extractor
to extract features for the nodes. These (a) nodes features, together with (b)
spatial features obtained based on bounding boxes and (c) semantic features
obtained from word embedding [16] are used by the graph model for interaction
detection. While this model still needs to be adapted for domain shifts in
visual features, the ability of the model to accommodate a varying number of
instruments (V) allows the model to incorporate novel instruments with ease.

2.1.4 LoG-CBS

Simulating a child in learning, curriculum by smoothing [17] employs Gaussian
kernel to control the features entering the model at the initial epochs, allowing
the model to learn gradually. The control over features passed to the model is
achieved by controlling the σ. Decaying the σ value every few epoch (epoch
interval 5 by following [17] ) allow for more features to go through the model.
Here, instead of the Gaussian kernel, we employ LOG kernels to control the
features at the initial stages and highlight the instrument contours. LOG ker-
nels are applied to all three sub-modules (i) feature extractor, (ii) scene graph
and (iii) scene caption.

LoG(x, y) = − 1

πσ4

[
1− x2 + y2

2σ2

]
e−

x2+y2

2σ2 (3)

2.2 Model Optimization

2.2.1 MTL Optimization

MTL models are often challenged by the asynchronous performance conver-
gence of its independent tasks. As shown in Fig. 1, we use task-aware MTL
optimization to save the computation cost by sharing common networks and
still achieve independent task model convergence, inspired from [11]. Here, the
model optimization follows steps 1-4 in the algorithm 1. The feature extrac-
tor is initially trained on instrument classification. The weights of the feature
extractor and scene graph module are frozen. The scene caption module is then
trained for scene captioning based on node features extracted using the fea-
ture extractor. Upon scene captioning task convergence, its weights are frozen.
Finally, the scene graph module is trained to detect tool-tissue interactions
based on the node (V) features extracted using the feature extractor.
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Algorithm 1 Task-Aware MTL Optimization and Fine-Tuning

1: Initialize model weights
2: Shared (Wsh), scene graph (Wsg), caption (Wc)
3:

4: [Set gradient accumulators to zero]
5: shared (dWsh), scene graph (dWsg), caption (dWc)
6: dWsh ← 0, dWd ← 0, dWs ← 0
7:

8: [Optimize Caption Network]
9: while caption task not converged do

10: [caption gradients w.r.t caption loss Ls]
11: dWc ← dWc +

∑
i δi∇Wc

Lc(Wsh,Wc)
12: end while
13:

14: [Optimize Scene Graph]
15: while scene graph task not converged do
16: [Scene graph block gradients w.r.t scene graph loss Lsg]
17: dWsg ← dWsg +

∑
i δi∇Wsg

Lsg(Wsh,Wsg)
18: end while
19:

20: [Fine-tuning]
21: while both tasks improving do
22: dWsh ← dWsh +

∑
i δi∇Wsh

L(Wsh,Wsg,Wc)
23: dWsg ← dWsg +

∑
i δi∇Wsg

L(Wsh,Wsg,Wc)
24: dWc ← dWc +

∑
i δi∇Wc

L(Wsh,Wsg,Wc)
25: end while

2.2.2 MTL Optimization and Fine-Tuning (MTL-FT)

The task-aware MTL optimization ensures that the convergence of the inde-
pendent task module’s performance is optimal and on-par with single-task
model performance. However, this forfeits the model generalization advantage
of MTL models. Here, this drawback is addressed by further fine-tuning the
task-aware MTL model on combined task loss (Algorithm 1 step: 1-5). The
combined loss is given by:

Lfine tune = 0.5 ∗ (Lcaption + Lscene graph) (4)

2.2.3 MTL Vanilla (MTL-V) optimization

Under MTL-V optimization, the feature extractor is initially loaded with pre-
trained classification weights. The complete MTL model is then fully trained
based on the scene caption’s and the scene graph’s combined loss.

LMTL V anilla = 0.5 ∗ (Lcaption + Lscene graph) (5)
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Algorithm 2 Knowledge distillation-based MTL Optimization

1: [Initialize model weights]
2: shared (Wsh), scene graph (Wsg), caption (Wc)
3:

4: [Training]
5: while both tasks improving do
6: dWsh ← dWsh +

∑
i δi∇Wsh

L(Wsh,Wsg,Wc)
7: dWsg ← dWsg +

∑
i δi∇Wsg

L(Wsh,Wsg,Wc)
8: dWc ← dWc +

∑
i δi∇Wc

L(Wsh,Wsg,Wc)
9: end while
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Fig. 2 MTL-Knowledge Distillation: The MTL model is trained based on both task predic-
tion vs the grouth truth loss and Kullback-Leibler divergence loss between the MTL model
and single-task models (Teacher model).

2.2.4 MTL Knowledge Distillation (MTL-KD)

A knowledge distillation-based MTL (MTL-KD) optimization technique
(Fig. 2), is also explored. This technique is adopted to reduce the effect of
asynchronous model convergence. During training, the MTL model is trained
based on both (i) the prediction vs. the ground truth loss and (ii) Kullback-
Leibler(KL) divergence loss between the MTL model’s and STL model’s logits
(Algorithm 2). The MTL-KD loss (LMTL−KD) function is given by:

LMTL−KD = 0.35 ∗ (LCE c + LMLS sg) + 0.15 ∗ (LKL c + LKL sg) (6)

where, LCE c is the scene caption model’s cross-entropy loss. LMLS sg is the
scene graph model’s multi-label loss, LKL c is the scene caption model’s KL
divergence loss and LKL sg is the scene graph model’s KL-divergence loss.
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3 Experiment

3.1 Dataset

3.1.1 Source Domain

The SD dataset comes from the training set of the MICCAI robotic instrument
segmentation dataset of the endoscopic vision challenge 2018 [18]. The dataset
contains 8 instruments and 1 organ (kidney). 11 tool-tissue interactions are
used to generate the captions for the scenes. The interaction annotation is
from [2] and the caption annotation is from [6]. The dataset is split into two:
the validation subset with 447 labelled frames (1st, 5th and 16th sequences)
and the training subset with 1560 labelled frames (the remaining 11 sequences)
after removing some frames with no interaction by following the work [2, 5, 6].

3.1.2 Target Domain

The TD dataset is from 23 surgical videos, which contain 22 transoral robotic
surgery operations provided by the hospitals and 1 robotic nephroureterectomy
video1 considering the need to balance the dataset. The TD dataset consists of
4 instruments (two novel instruments) and 1 tissue (Oropharynx). The inter-
action annotation and caption annotation are from [6], based on the 5 kinds of
interactions. The training subset includes sequences 1-13th, 20th and 23rd (77
labelled frames), and the validation subset includes the remaining sequences
(258 labelled frames).

Additional details on these two datasets are provided in the supplemen-
tary file.

3.2 Implementation details

The MTL model and its variants are implemented using the PyTorch frame-
work2. Firstly, the feature extractor is trained on instrument classification
using the incremental learning technique and the supervised contrastive loss.
The MTL model is then trained using different optimization techniques by
employing cross-entropy loss for caption task and multi-label loss for inter-
action detection. For optimization variants that perform task-aware training.
In the MTL combined task fine-tuning stage and other MTL optimization
variants that train both tasks simultaneously. All training hyperparameters
are provided in the supplementary file. For unsupervised domain adapta-
tion (UDA), The model is trained only on the SD, with its feature extractor
loaded with weights trained on classifying instruments present in the SD. For
DA, the model is initially trained on SD and domain adapted to TD using
few-shot learning. Here, the feature extractor is loaded with weights trained
using incremental learning to include new instruments in the TD domain.

1https://youtu.be/bwpEul4KCSc
2https://github.com/lalithjets/Domain-adaptation-in-MTL
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All SOTA benchmarked models34 in the work are re-implemented using its
author’s official Github code and re-trained on our datasets.

4 Results

Table 1 Comparison of our proposed domain adapted MTL model and its variants
against state-of-the-art models for tool-tissue-interaction detection and scene captioning in
source and target domain. UDA and Few refer to unsupervised domain adaptation and
few-shot learning techniques, respectively.

Model Regime
Caption Interaction

SD TD SD TD

BLEU CIDEr BLEU CIDEr Acc mAP Recall Acc mAP Recall

M2T[14] Caption
UDA 0.5703 2.5385 0.2897 0.2511

- - - - - -

Few 0.331 0.1825 0.6066 3.1188

Xu et al. [5] Caption
UDA 0.5875 2.5930 0.2100 0.2029

- - - - - -

Few 0.2645 0.2029 0.5768 2.8619

GPNN [19] Interaction
UDA

- - - -
0.4957 0.2033 - 0.3057 0.2031 -

Few 0.2916 0.2426 - 0.3399 0.2271 -

Islam et al. [2] Interaction
UDA

- - - -
0.4802 0.2157 - 0.3144 0.1996 -

Few 0.2765 0.1913 - 0.3975 0.2086 -

VS-GAT [15] Interaction
UDA

- - - -
0.6305 0.2658 0.2868 0.3319 0.0777 0.0949

Few 0.3867 0.2219 0.2083 0.3377 0.0812 0.1097

Ours
MTL

UDA 0.5 2.0261 0.2685 0.2043 0.6434 0.3041 0.2956 0.3479 0.0789 0.0975

Few 0.2204 0.1146 0.5232 2.5304 0.4022 0.2269 0.2198 0.3479 0.0920 0.1180

MTL-FT
UDA 0.6049 2.4098 0.1758 0.2084 0.6606 0.2951 0.3033 0.3290 0.0753 0.0826

Few 0.2531 0.0767 0.4049 2.4075 0.3781 0.2120 0.2206 0.3508 0.0968 0.1236

The captioning and interaction detection performance of the domain-
adapted MTL model on both SD and TD is reported quantitatively and
qualitatively. The model’s performance in captioning task is quantified using
the BLEU[20] and CIDEr[21] scores. The interaction detection task perfor-
mance is quantified using accuracy (Acc), mean average precision (mAP) and
Recall. From Table. 1, is it observed that in most cases, MTL models in their
respective best task performances outperform SOTA models. Within MTL
models, the best performance in caption tasks is split between MTL-FT (task-
aware optimization and fine-tuning) for SD and task-aware MTL for TD.
However, the best performance among MTL models on both SD and TD for
interaction detection is observed in MTL-FT. While a diverse performance
in MTL models is expected due to asynchronous convergence in independent
task performance, a balanced performance on both tasks is observed in the
MTL-FT (task-aware MTL optimization and fine-tuning) model. Qualitative
analysis (Fig. 3) comparing the STL model and MTL-FT also shows that
MTL-FT performs on par with STL models in both SD and TD.

3https://github.com/birlrobotics/vs-gats
4https://github.com/aimagelab/meshed-memory-transformer
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Fig. 3 Qualitative analysis: Comparison of our proposed task-aware optimized and fine-
tuned multi-task model performance vs single-task models performance and GT in detecting
tool-tissue interaction and surgical scene captioning.

Table 2 Ablation study on the performance of the proposed multi-task model when
trained using (i) task-aware optimization and fine-tuning, (ii) vanilla optimization, (iii)
distillation based optimization and (iv) distillation based optimization and finetuning. BG
and BC refer to the best graph and best caption weights.

Regime
Caption Interaction

SD TD SD TD

BLEU CIDEr BLEU CIDEr Acc mAP RECALL Acc mAP RECALL

MTL-FT

UDA-BG 0.6049 2.4098 0.1758 0.2084 0.6606 0.2951 0.3033 0.3290 0.0753 0.0826

UDA-BC 0.5652 2.5902 0.1715 0.2305 0.6400 0.3052 0.2991 0.3246 0.073 0.0852

Few-BG 0.2128 0.0703 0.3446 2.1511 0.3859 0.2162 0.2226 0.3624 0.0974 0.1227

Few-BC 0.2531 0.0767 0.4049 2.4075 0.3781 0.2120 0.2206 0.3508 0.0968 0.1236

MTL-V

UDA-BG 0.5502 2.2516 0.1375 0.1938 0.6684 0.3132 0.2974 0.3071 0.0768 0.0930

UDA-BC 0.6167 3.0918 0.1052 0.1189 0.5866 0.2723 0.2173 0.3828 0.0802 0.1019

Few-BG 0.4292 1.1167 0.239 0.4769 0.5237 0.2400 0.1993 0.3508 0.0718 0.0857

Few-BC 0.2634 0.5294 0.3236 1.2506 0.3411 0.1939 0.2096 0.2766 0.0765 0.0933

MTL-KD

UDA-BG 0.5429 1.9870 0.1434 0.1531 0.6288 0.2119 0.2178 0.377 0.0862 0.1090

UDA-BC 0.5765 2.6308 0.1452 0.2963 0.6012 0.2311 0.2039 0.2955 0.0832 0.0909

Few-BG 0.5848 2.7290 0.3227 0.7236 0.5874 0.234 0.2011 0.4003 0.0839 0.1085

Few-BC 0.2884 0.0783 0.2839 1.6126 0.4496 0.2091 0.1189 0.3479 0.0856 0.1042

MTL-KD-FT

UDA-BG 0.5605 2.0041 0.2395 0.1302 0.6658 0.2934 0.2860 0.2722 0.0812 0.0794

UDA-BC 0.5455 2.2414 0.1887 0.1087 0.5401 0.2382 0.1948 0.3246 0.0804 0.0907

Few-BG 0.3276 0.1705 0.3429 1.2957 0.4617 0.1962 0.1237 0.3668 0.0912 0.1127

Few-BC 0.3457 0.2059 0.3093 1.5961 0.4539 0.2074 0.1473 0.3071 0.0869 0.1006
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4.1 Ablation Study

Optimization techniques strongly influence the MTL model’s training due
to their asynchronous performance convergence. In Table 2, we also report
an ablation study on performance between (i) MTL-FT, (ii) MTL-V, (iii)
MTL-KD and (iv) MTL-KD-FT models. While distillation-based MTL train-
ing techniques have been proposed to improve MTL performance, based on
Table 2, it is observed that it’s on a case-by-case basis. In our model, MTL-FT
and MTL-V have outperformed distillation-based MTL models in most cases.

5 Discussion

Although our MTL-FT achieved a balanced performance on both caption-
ing and interaction detection tasks in UDA and Few-shot DA (Table 1), as
observed in Table 2, achieving optimal convergence (best performance) of both
tasks remains a challenge to address. Compared between UDA and Few-Shot
DA in Table 1, UDA performance is better on SD compared to Few-shot which
performs better on TD. This is an expected result as the model is further
trained only on TD in a few-shot DA. As this work is trained and validated
on limited datasets, further validations on additional datasets can be done as
future work to test for any bias.

6 Conclusion

This paper proposes an MTL model that can be adapted to domain shift
in surgical scenes for surgical report generation and tool-tissue interaction
detection. To address the intensity shift and include novel instruments in the
new domain, we incorporate supervised contrastive learning and class incre-
mental learning into the feature extractor. We further introduce Laplacian
of Gaussian kernel-based curriculum learning into the MTL model’s shared
and task-specific modules, allowing the model to learn better. The perfor-
mance of the MTL model trained based on task-aware optimization and
fine-tuning is observed to per on-par with SOTA models. This results in MTL
surgical scene understanding model that can adapt to domain shift in perform-
ing instrument-tissue interaction detection and scene captioning. On top of
employing task-aware optimization techniques, we also study vanilla optimiza-
tion and distillation-based MTL optimization and conclude that task-aware
optimization is favorable for balanced performance between the tasks.

7 List of Abbreviations

– Acc: Accuracy
– CBS: Curriculum By Smoothing
– CICL: Class Incremental Contrastive Learning
– DA: Domain Adaptation
– LoG: Laplacian of Gaussian
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– mAP: Mean Average Precision
– MTL : Multi-Task Learning
– MTL-FT: Task-Aware Multi-Task Learning Optimization and Fine-Tuning
– MTL-KD: MTL based on Knowledge Distillation
– MTL-KD-FT: MTL based on Knowledge Distillation and Fine-Tuning
– MTL-V: MTL Vanilla
– SD: Source Domain
– SOTA: State-Of-The-Art
– STL: Single-Task Learning
– TD: Target domain
– UDA: Unsupervised Domain Adaptation
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