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Abstract 

Purpose 

Although a novel deep learning software was proposed using post-processed images obtained by the 

fusion between X-ray images of normal post-operative radiography and surgical sponge, the 

association of the retained surgical item detectability with human visual evaluation has not been 

sufficiently examined. In this study, we investigated the association of retained surgical item 

detectability between deep learning and human subjective evaluation. 

Methods 

A deep learning model was constructed from 2987 training images and 1298 validation images, which 

were obtained from post-processing of the image fusion between X-ray images of normal 

postoperative radiography and surgical sponge. Then, another 800 images were used, i.e., 400 with 

and 400 without surgical sponge. The detection characteristics of retained sponges between the model 

and a general observer with 10-year clinical experience were analyzed using the receiver operator 

characteristics. 

Results 

The following values from the deep learning model and observer were, respectively, derived: cutoff 

values of probability were 0.37 and 0.45; areas under the curves were 0.87 and 0.76; sensitivity values 

were 85 % and 61 %; and specificity values were 73 % and 92 %. 

Conclusion 

For the detection of surgical sponges, we concluded that the deep learning model has higher 

sensitivity while the human observer has higher specificity. These characteristics indicate that the 

deep learning system that is complementary to humans could support the clinical workflow in 

operation rooms for prevention of retained surgical items. 

 

Keywords 
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Introduction 

Retained surgical items (RSIs), also called “gossypiboma,” can cause infection or damage to internal 

organs. To resolve such complications, operations are often required [1-5]. So far, the healthcare cost 

of RSIs has been reported to be more than $200,000 per incident [6]. Although the frequency of 

residual foreign body is approximately 1 in 10,000, some patient deaths due to RSI have been 

reported. Thus, it should be prevented because it is caused by serious human error in the background 

of risk factors such as higher amount of blood loss, participation of other medical teams in operations, 

and incorrect surgical count [7]. To prevent human error caused by such unusual crisis situations, 

counts of surgical materials by operating room staff and visual evaluation with post-operative 

radiography are standard procedures in operating rooms [8]. Despite these precautions, RSIs still 

occur at least once per year in major hospitals [9]. This indicates the limit of the RSI detection 

procedure that depends on human subjective factors. Therefore, the precautions for RSI are required 

in the operating room independently of human subjective detection.  

 A computer-aided diagnosis (CAD) system for counting sponges using barcodes has also 

been reported [7]. Further, over the last 10 years, artificial intelligence-based image recognition 

technology has been applied rapidly to the medical field. In particular, deep learning-based models in 

chest radiography are reported for detection and stratification of pneumonia, as well as for detection 

of peripherally inserted central venous catheters [10, 11]. Moreover, Yamaguchi et al. recently 

proposed a novel CAD software for prevention of RSI with the use of deep learning [12]. In this 

study, a deep learning model was constructed using post-processed images obtained by the fusion 

between X-ray images of normal post-operative radiography and surgical sponge; the model showed 

97.7% sensitivity and 83.8% specificity in the detection of retained surgical sponges. This result is 

considered to make a significant contribution to the development of an objective RSI detection 

system, but the association of RSI detectability with human visual evaluation has not been sufficiently 

examined. Therefore, the purpose of the present research study is to construct a deep learning-based 

RSI detection model using post-processed fusion images between standard chest radiography and 
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surgical sponge, and clarify the association between their RSI detectability and subjective evaluation 

by humans. 

Methods 

Training and validation data for deep learning 

The training and validation data for deep learning was set by the fusion of images between standard 

chest radiography and surgical sponge X-ray (Fig. 1).  

51 patients were enrolled for standard chest radiography. All cases were imaged posterior to anterior 

in a standing position, and any artificial objects such as cardiac devices or spinal instruments were 

removed. The imaging parameters were as follows: (1)source to detector distance = 200 cm; (2) tube 

voltage = 120 kVp; and (3) tube current = 160 mA. The exposure time was automatically controlled to 

keep the dose constant on the X-ray detector. The bit depth for all datasets was converted from 16 to 8 

bits of portable network graphic files. The window level and width were rescaled to 256 gradients 

with the minimum and maximum values for each image intensity. The matrix size of all images was 

downsampled from 2816 × 2373 to 1024 × 1024 pixels through nearest neighbor interpolation. 

Further, the image was cropped into a 128 × 128 area with a 64-pixel overlap. However, the 

peripheral part of the chest radiograph was excluded because it is unlikely to be the chest surgical 

field. Consequently, the total number of cropped images was 8619 with 169 images per case (Fig. 1a). 

The sponge image was the X-ray image of three surgical sponges soaked in water that were 

rolled/stretched and sandwiched between acrylic phantoms with a thickness of 10 cm. The imaging 

parameters were as follows: (1) source to detector distance = 100 cm; (2) tube voltage = 66 kVp; (3) 

tube current-time product = 1.6 mAs; (4) matrix size = 2832 × 2836 pixels. The matrix size of all 

images was downsampled to 1024 × 1024 pixels through nearest neighbor interpolation. Further, 

images of 128 × 128 pixels centered on the 150 points that were manually determined near the high 

X-ray absorption fibers of the surgical sponge were created. The 128 × 128 pixel area of only the 

acrylic phantom was used as background image. Consequently, 150 surgical sponge images for deep 

learning were obtained by subtracting the background image from the images of high X-ray 

absorption fibers (Fig. 1b). With and without surgical sponge images for deep learning were obtained 
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based on the flowchart shown in Fig. 1c. Randomly selected cropped radiography of 4285 images (out 

of 8619) were used for deep learning as images without surgical sponge. The remaining 4334 cropped 

images were fused with 150 surgical sponge images through image processing. First, one surgical 

sponge image was randomly selected for each cropped image. Next, the surgical sponge image was 

randomly rotated by 0, 90, 180, and 270 degrees. Finally, a cropped chest radiography with surgical 

sponge is obtained by the fusion using the following formula:  

𝐹𝑋 = 𝐶𝑋 + 0.3𝐺𝑋   (1) 

where FX is a cropped chest radiography with surgical sponge, CX is a cropped chest radiography, 

and GX is a surgical sponge image. 

All images were randomly assigned to groups for training (with sponge: 3046 and without sponge: 

2987) and validation (with sponge: 1288 and without sponge: 1298). To develop an established deep 

learning model, we used a deep learning platform called Neural Network Console (Sony Network 

Communications, Tokyo, Japan) and a specialized graphic processing unit (TITAN RTX 1080; 

Nvidia, Santa Clara, CA, USA) [13]. Consequently, the classification model for detecting surgical 

sponge was generated using the 100-epoch modified LeNet architecture with a batch size of 64, and 

Adam optimizer (shown in Fig. 2). 

 

Detectability evaluation of surgical sponge with deep learning model 

The test data for the deep learning model was obtained from the chest radiography dataset of National 

Institutes of Health (NIH) using the same workflow as the training and validation datasets [14]. First, 

100 cases of chest radiography with no lesions or artifacts in the image were selected from the NIH 

dataset. Then, the matrix size of all images was resized to 1024 × 1024 pixels through nearest 

neighbor interpolation. From each case of chest radiography, images of 128 × 128 pixels centered on 

arbitrarily determined coordinates of each of 8 regions were cropped as shown in Fig. 3.  

A total of 800 images in 100 cases were created. Randomly selected cropped radiography of 400 

images (out of 800) were used for the testing phase of the deep learning model as the images without 

surgical sponge. The remaining 400 (out of 800) images were fused with 150 surgical sponge images 
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that were used for deep learning by the same workflow for creating the training and validation 

datasets. The 800 test images were input to the deep learning model for image classification, and 

output the probability of the presence of surgical sponge; the probability ranged from 0 (without 

sponge) to 1 (with sponge). The deep learning model evaluated the performance of surgical sponge 

detection by the receiver operator characteristic (ROC) analysis, which was performed on the 

detectability of surgical sponge of all 800 images and each of 8 regions of chest radiography. 

 

Visual detectability evaluation of surgical sponge by observer 

Two observers evaluated independently the detection performance of the surgical sponge on chest 

radiography. One of them was experienced with over 30 years experience of clinical scans of post-

operative chest radiography as operating room staff. The other one was the general observer with 

approximately 10 years experience in a similar position. For the observer evaluation, 100 cases of 

chest radiography with the presence of surgical sponges were obtained by the following process; 400 

cropped images for evaluation of the deep learning model were replaced with the same regions of the 

original NIH chest radiography (Fig. 4).  

The continuous probability of the presence or absence of surgical sponges in each of the 8 regions was 

recorded (the probability ranged from 0 (without sponge) to 1 (with sponge)). It was given to the 

observers as prior information for the evaluation that the chest radiography was segmented into 8 

regions and the presence or absence of high X-ray absorbing fibers of surgical sponge should be 

classified in each region. 100 images were displayed one by one for the two observers independently 

under a randomly sorted order with the general image contrast for chest on a general purpose 50-inch 

display. The observation time for each region was less than 30 sec, and no image processing was 

performed (such as windowing, zoom, or frequency processing).  

 

Results 

The areas under the ROC curves for detection of surgical sponge in all 800 images by the deep 

learning model, experienced, and general observer are shown in Fig. 5. The ROC values from the 
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deep learning model, experienced, and general observer were derived as follows: (1) cutoff values of 

probability were 0.37, 0.60, and 0.45, respectively; (2) areas under the ROC curves were 0.87, 0.89, 

and 0.76, respectively; (3) sensitivity values were 85%, 82%, and 61%, respectively; and (4) 

specificity values were 73%, 88%, and 92%, respectively.  

 Table 1 shows the ROC values at each of the 8 segments of chest radiography from the deep 

learning model, experienced, and general observer. For the lung regions (i.e., segments #1 to #5), the 

areas under the ROC curves and sensitivities of the deep learning model were greater than those of the 

general observer. For the heart (segment #6) and subdiaphragmatic (segments #7 and #8) regions, the 

areas under the ROC curves from the three methods were more than 0.9; thus, they were all equally 

high. For all regions excluding segment #6, the specificities from the deep learning model were 

smaller than those from the human observers.  

 

Discussion 

 In this research study, we compared the detectability of surgical sponge in chest radiography of the 

deep learning model, experienced and general observer with ROC analysis. The areas under the ROC 

curves from the deep learning model and experienced observer were equivalently wider than that from 

the general observer. The deep learning model tended to have higher sensitivity for the detection of 

surgical sponge than the human observers. The human observers tended to have higher specificities 

for the detection of surgical sponge than the deep learning model. These results show that the deep 

learning model has high diagnostic ability in the presence of sponge in an image, whereas humans 

have high diagnostic ability in the absence of sponge in an image. In other words, the deep learning 

model reduces the rate of RSIs missed by human interpretation. Therefore, we believe that this 

research work has revealed that the deep learning model has complementary characteristics to humans 

for the detection of surgical items, and has shown its potential to reduce RSI.  

From the obtained results, the reason for the observers’ low detectability of surgical sponges 

in the lung region (segments #1 to #5) appears to be the different levels of experience. Medical staff 

(such as surgeons and nurses) who assess post-surgery radiographs in the operating room are not 
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always familiar with image interpretation. In contrast, there are cases where post-operative image 

verification is sometimes performed without sufficient experience. For the medical staff in the 

operating room who do not specialize in diagnostic imaging, complexities can occur when evaluating 

lung regions. This is because the lung region is the one where bones with high X-ray absorption and 

lungs with low X-ray absorption coexist. Therefore, to detect lung lesions such as nodules, methods to 

perform X-ray energy subtraction imaging and bone removal processing using deep learning have 

been actively introduced [15-19]. Further, a recent study concluded that to prevent RSI events using a 

proactive multimodal approach that focuses on improving team communication and institutional 

support system, standardizing reports and implementing new technologies are most effective [20]. 

Our proposed method is a different approach from the ones aimed at improving human detection 

sensitivity using image processing. A recent publication reported that 57%, 35%, and <30% of 

surgeons, nurses/technologists, and anesthesiologists continually use X-ray for RSI detection, 

respectively, and that 26–50% of them considered X-ray to have poor effectiveness for RSI detection 

[21]. The results of this study indicate that deep learning has the potential to supplement an observer’s 

experience in detecting surgical sponges. Therefore, the deep learning-based system proposed in this 

study is expected to improve the effectiveness of X-ray images in RSI detection and promote the use 

of X-ray images by medical staff in the operating room, thereby contributing to efficient surgical 

operation. Our proposed system expects to alert by the positive detection to the medical staff in 

operating room to any oversights and encourages them to check the images more carefully for 

detecting RSI. For the future, deploying deep learning system might lead to new clinical workflow 

which to seek the opinions of radiologists. For the heart (segment #6) and subdiaphragmatic 

(segments #7 and #8) regions, the detectability of surgical sponge by the deep learning model and 

observers was more than 0.9 (i.e., equally high for all three cases). This is because the contrast of the 

X-ray images in these areas was relatively simple compared to the lungs. In other words, both humans 

and the deep learning model were able to easily detect the X-ray absorption sponge fibers against 

organs such as the heart and liver, from the background signal in a wide and uniform area. Moreover, 

the results of this research may indicate the potential for automatic detection of surgical items in these 
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areas. The burden on medical staff is increasing due to the increase in the number of operations and 

complexity of surgical procedures. Thus, automatic detection of surgical items by deep learning can 

be expected to reduce that burden and prevent the occurrence of RSI accidents.  

There are some limitations to this study. First, the surgical sponge images were fused with 

standard chest radiography rather than post-operative chest radiography. The purpose of this study 

was to investigate the characteristics of the detection of surgical sponge through deep learning and 

human observers. We consider that it would be a bias for observer evaluation to use post-operative 

images obtained at the hospital where they work. However, it was not possible to have access to a 

database of post-operative images, and thus, we used the generally accessible NIH chest radiography 

database. Second, this study has been limited to the detection of surgical sponges in the chest area. In 

the future, we should plan to further investigate the detection of several surgical items in post-

operative images. 

 

Conclusions 

 In this research, we constructed a deep learning-based RSI detection model using post-processed 

fusion images between standard chest radiography and surgical sponge. Then, we investigated the 

characteristics of the detection of surgical sponge with the deep learning model and human observers. 

It was clarified from the results that deep learning has complementary characteristics to humans for 

surgical sponge detection, and could support RSI detection by humans. 
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Table captions 

Table 1. Receiver operator characteristic values at each segment of chest radiography 

(AUC: area under the curve). 

 

Figure captions 

Fig. 1 Dataset construction for deep learning by fusion of images between standard chest 

radiography and surgical sponge X-ray 

(a) The image was cropped in a 128 × 128 pixel area with a 64-pixel overlap (magenta and green 

matrices). However, the peripheral part of the chest radiograph was excluded because it is unlikely to 

be the chest surgical field (dark gray matrices). The total number of cropped images was 8619 with 

169 images per case (lower). (b) Images of 128 × 128 pixels centered on the 150 points that are 

manually determined near the high X-ray absorption fibers of the surgical sponge were created 

(magenta areas). The 128 × 128 pixel area of only the acrylic phantom was used as background image 

(green areas). A total of 150 surgical sponge images for deep learning were obtained by subtracting 

the background image from the images of high X-ray absorption fibers (lower). (c) Randomly selected 

cropped radiography of 4285 (out of 8619) were used for deep learning as the images without surgical 

sponge (black flow). The other 4334 (out of 8619) cropped images were fused with 150 surgical 

sponge images by image processing (red flow). 

 

Fig. 2 Modified LeNet architecture for detection model of surgical sponge 

 

Fig. 3 Segments of the chest radiography 

All chest radiographs were segmented into 8 regions. Segments #1 to #5 are lung regions, segment #6 

is heart region, and segments #7 and #8 are subdiaphragmatic regions. 

 

Fig. 4 Radiography of chest and surgical sponge for observer evaluations 
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The area in original chest radiography (white dashed matrix) is replaced by the same area of that with 

sponge image (green matrix). The size of that with sponge image is 128 × 128 pixels. The sponge 

fiber is described by green lines for readability, but the actual color is grayscale. 

 

Fig. 5 Receiver operator characteristics curves for detection of surgical sponges 

The curves in the color of red, blue, and black are indicated as the detectability of surgical sponges in 

all regions by the deep learning model, experienced, and general observer, respectively. 
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TABLE 1 Receiver operator characteristic values at each segment of chest radiography 

Segment 
No. 

Method 
Cut-off 

probability [%] 
AUC Sensitivity [%] Specificity [%] 

 Deep learning model 82 0.87 76 86 

#1 Experienced observer 61 0.88 80 92 

 General observer 59 0.75 58 90 

 Deep learning model 97 0.84 76 82 

#2 Experienced observer 42 0.83 82 80 

 General observer 61 0.61 22 98 

 Deep learning model 18 0.79 82 62 

#3 Experienced observer 53 0.76 58 88 

 General observer 49 0.58 44 84 

 Deep learning model 25 0.73 80 60 

#4 Experienced observer 42 0.84 66 94 

 General observer 60 0.76 52 94 

 Deep learning model 98 0.86 74 84 

#5 Experienced observer 53 0.87 74 96 

 General observer 19 0.71 56 82 

 Deep learning model 99 0.93 86 88 

#6 Experienced observer 67 0.97 94 96 

 General observer 70 0.94 92 98 

Table



 2 

 Deep learning model 62 0.96 90 88 

#7 Experienced observer 74 1.00 98 100 

 General observer 91 1.00 98 100 

 Deep learning model 62 0.96 90 88 

#8 Experienced observer 74 1.00 98 100 

 General observer 91 1.00 98 100 

AUC, area under the curve. 

 


