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Abstract
Purpose Intracranial aneurysms (IAs) are pathological changes of the intracranial vessel wall, although clinical image data
can only show the vessel lumen. Histology can provide wall information but is typically restricted to ex vivo 2D slices where
the shape of the tissue is altered.
Methods We developed a visual exploration pipeline for a comprehensive view of an IA. We extract multimodal information
(like stain classification and segmentation of histologic images) and combine themvia 2D to 3Dmapping andvirtual inflation of
deformed tissue. Histological data, including four stains, micro-CT data and segmented calcifications as well as hemodynamic
information like wall shear stress (WSS), are combined with the 3D model of the resected aneurysm.
Results Calcifications were mostly present in the tissue part with increased WSS. In the 3D model, an area of increased wall
thickness was identified and correlated to histology, where the Oil red O (ORO) stained images showed a lipid accumulation
and the alpha-smooth muscle actin (aSMA) stained images showed a slight loss of muscle cells.
Conclusion Our visual exploration pipeline combines multimodal information about the aneurysm wall to improve the
understanding of wall changes and IA development. The user can identify regions and correlate how hemodynamic forces,
e.g. WSS, are reflected by histological structures of the vessel wall, wall thickness and calcifications.

Keywords Intracranial aneurysm · Multimodal visualization · Histology

Introduction

Intracranial aneurysms (IA) are pathological vessel wall dila-
tions that could rupture with fatal consequences for the
patient. Asymptomatic IAs might not rupture and treatment
would induce unnecessary risks for the patient [1]. There-
fore, a therapeutic decision must be made carefully, which is
complicated as the hemodynamic and biomechanic mecha-
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nisms leading to aneurysm formation and aneurysm rupture
are not fully understood yet. IA rupture risk assessment based
on clinically available data, such as medical images as well
as morphological and hemodynamic analysis, is an active
research area. However, imaging of the vessel wall and the
adjacent flow fields, where the pathology is manifested, is
missing.

The combined analysis of histology and hemodynamics
can reveal important insights into thewall composition and its
transformation from healthy to pathological tissue. However,
this can only be applied to resected tissue. Due to changes
during the fixation and preparation process, in combination
with the original shape and other image modalities is cum-
bersome and a fully automated solution is not yet available.

In this study, we provide a visual exploration approach
for histologic image data with four different stains of a
resected IA dome, combined with micro-CT and hemody-
namic parameters extracted from the in vivo 3D IA model.
Due to the differences in stainings, no landmarks inside the
tissue could be used for registration to micro-CT. A fur-
ther challenge for registration was the non-compact tissue
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shape, yielding arbitrary deformations. Additionally, large
gaps between the images may occur with drastic differences
between consecutive slices.

As current imaging modalities are unable to image the
IA wall using non-invasive techniques, there is no ground
truth available before collection. At the moment, clinical
researchers have to mentally combine histologic and pre-
operative images.

To overcome this unsatisfactory situation, we make the
following contributions:

• A user interface to guide the alignment of histologic
images with micro-CT images with respect to technical
limitations of histologic sectioning.

• A virtual inflation to restore the shape of the tissue col-
lected during surgery based on preoperative imaging.

• A mapping approach to combine information of images
with insufficient similarity for registration.

• A pipeline for multimodal visual exploration of the IA
wall.

Related work

In addition to the introduction section, related work is sum-
marized in the following. Specifically, the acquisition of
relevant hemodynamic parameters, the subsequent multi-
modal wall analysis, as well as studies regarding tissue
deformation and histology, are addressed.

Near-wall hemodynamics. Since hemodynamic forces
on the lumen of IAs are very difficult to acquire, image-based
blood flow simulations demonstrate an important technique
to allow a quantitative assessment of the individual patholog-
ical state. Several sophisticated review articles demonstrated
already the importance of the central hemodynamic param-
eter wall shear stress (WSS), as a result of tangential
shear forces, concerning aneurysm initiation, remodeling and
rupture, respectively [2–5]. Furthermore, numerous inter-
national research challenges focused on relevant modeling
aspects such as reliable reconstruction and segmentation
[6,7], profound simulation [8–10] and independent valida-
tion [11]. Therefore, individualized blood flow simulations
in combination with wall-related imaging can contribute
valuable information w.r.t. the presented multimodal visual
exploration pipeline. Particularly, the interaction between
wall thickness and WSS is subject to research, reportedly
with thin vessel walls possibly correlating to very low or
very high WSS [12].

Multimodal aneurysmwall analysis.Whilemost studies
focus on a single aspect, likemorphological or the lattermen-
tioned hemodynamic parameters, the following approaches

combine multiple modalities. Jiang et al. [13] analyzed
28 middle cerebral artery IAs. They performed hemody-
namic simulations using models based on preoperative CT
angiography (CTA). The simulation results were combined
with information about thin-wall regions manually identified
by intra-operative microscopy. Thin-wall regions correlated
with higher pressure and lower WSS. Cebral et al. [14]
analyzed 65 aneurysms from preoperative imaging. Based
on surgical videos, five different wall types (atherosclerotic
wall, hyperplastic wall, thin wall, rupture site, and normal)
were identified and marked on the extracted 3D models.
In the videos, 28.9%±25.6% of the IAs were not visible,
but the remaining parts were compared with the hemody-
namic simulation results. Slow flow was associated with an
atherosclerotic and hyperplastic wall, while high flow was
associated with wall thinning.

Tissue deformations. The post-mortem ex-vivo analysis
of IAs is challenging, as the shapes of the aneurysms are
altered during the extraction and fixation process. The main
difficulty is the collapsing of the vessel and aneurysm due to
the loss of blood flow inside. The virtual inflation approach
based on optical coherence tomographic and histologic data
of ex-vivo intracranial vessels projects the inner vessel wall
on a circle and transfers the wall tissue accordingly [15].
Athanasiou et al. [16] proposed virtual inflation for histol-
ogy and micro-CT of vessels. Their inflation first requires
manual registration of the images to intravascular ultrasound.
The inflation is then based on the differences in the vessel
contours. As the tissue is deformed during collection, we
perform a virtual inflation based on preoperative imaging.

Histology and 3D information. In the past, several stud-
ies have combined micro-CT and histology, with the latter
used to verify diagnoses based on other image modalities
(without registration) or manually matched to the micro-CT
data. Jessen et al. [17] used micro-CT images and histologic
images to assess the response to elastase-induced aneurysm
treatment in rabbits with coils without carrying out a registra-
tion. During the analysis of the histologic images, the experts
used the micro-CT images as a reference for the original coil
orientation. Griffiths et al. [18] correlated diffraction micro-
CT images with histopathological images of breast tissue
sections. Falk et al. [19] presented an interactive visualization
of 3D histopathology. They used over a hundred consecutive
images to create a volumetric dataset from histologic images.
In previous work, we extracted a 3D IAmodel based on adja-
cent histologic H&E-stained slices, but no in-vivo model of
the IAwas available since it was explanted post-mortem [20].

Neither approach can be used for our data due to the vari-
ation of different histologic stainings. Although they reveal
various aspects of the tissue, they hinder a landmark- or
feature-based registration.
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Fig. 1 Pipeline overview with a histologic and micro-CT data, calcification segmentation and 3D IA surface model (gray) and 3D resected dome
surface model (pink), b the steps to combine this data and c the resulting visual exploration

Materials andmethods

In the following, the medical image data and our pipeline are
described (see Fig. 1). All programming steps were carried
out inMATLAB(VersionR2020a, TheMathWorks Inc.,Nat-
ick, Massachusetts, U.S.). The presented pipeline combines
histologic image data, micro-CT image data, calcification
information from micro-CT image data and a preoperative
aneurysmmesh. The data is combined in amultimodal visual
exploration tool.

Image data

The multimodal data was acquired from a patient with an IA
at the middle cerebral artery. Pre-operative 3D angiography
data was used to extract a 3D surface model of the aneurysm
and its parent vessel. A threshold-based approach was used
to segment the vessels including the IA from the image data
and vessels are truncated perpendicularly to their axes [21].
Image data from clinical routine with an isotropic voxel res-
olution of approximately 0.3mm are sufficient for surface
mesh extraction.

The patient underwent microsurgical clipping, where a
metal clip closes the aneurysm head and separates it from

the parent vessel. During surgical intervention, the aneurysm
dome was resected and scanned afterwards via micro-CT
yielding a stack of micro-CT image data [22]. The high-
resolution Skyscan 1272, 11Mp micro-CT scanner (Bruker
Corporation) was used with the following settings: camera
pixel size of 7.4µm, image pixel size of 10µm, frame aver-
aging of 10 with a rotation step size of 0.4◦, scanned 180◦
around the vertical axis. The reconstructed 3D image data
exhibit 10µm isotropic resolution. From this dataset, calci-
fication masks were generated [22]. Next, histologic images
based on the fixated, stained and sliced aneurysm dome were
scanned. Four histologic stains were used: (1) Hematoxylin
and eosin (H&E), (2) alpha-smooth muscle actin (aSMA),
(3) Oil Red o (ORO) and (4) Masson trichrome (MT), see
Fig. 2. The available data are shown in Fig. 1a.

Requirements

Based on the related studies, the IA wall exploration has to
fulfill several requirements.

1. Account for different stainings: Each stain only shows
specific characteristics of the tissue. To obtain a com-
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Fig. 2 Segmentation of different histologic stainings, a H&E, bMT, c Oro and d aSMA

prehensive understanding of the aneurysm wall, multiple
stains must be combined.

2. Account for large gaps and missing data: Due to the
unique image acquisition of histologic images, there
might be large gaps between consecutive slices. Slides
can be missing.

3. Account for tissue deformation: While most of the data
(micro-CT, histology) is based on tissue collected during
surgery, the hemodynamic parameters are based on a pre-
operative IAmodel. During the collection and processing
of the tissue sample, the shape of the tissue is alternated.

4. Combine 2D and 3D data: The 2D histologic images
have to be combined with 3D data.

Methods

Histologic image processing The IA tissue was segmented
in the histologic images. The different staining methods
resulted in different colors and saturations. H&E and MT
were darker and could be easily distinguished from the
light background in contrast to ORO and aSMA stainings.
The size of the images varied, with large image sizes (>
10,000× 10,000 pixels) being common. The program auto-
matically determines the stain with a neural net based on the
GoogleNet architecture [23] trained on 70 RGB images with
a size of 500 × 500 pixels.

For aSMA,H&EandORO-stained images, two thresholds
were determined using Otsu’s method [24]. One threshold
separated the object from the black padding of the scanning
process, and the other roughly segmented the tissue from the
slide background yielding a binary segmentation mask. As
the slides can contain some dissected tissues or other impu-
rities, the mask may falsely contain small objects that were
removed. The final segmentation was refined with geodesic
active contours [25] using the masks as an initial state. These
steps required 2–3 min.

Co-alignment of histology with micro-CT images Co-
registration of micro-CT image data with histologic slices

is challenging due to shape alternation of the tissue sections
(tissue sections may slip away or stainings could fail), fold-
ing artifacts, large gaps between slices and the usage of four
different stainings.

To overcome these limitations, we used a semi-automatic
approach, where a 3D surface model is generated from the
micro-CT data. Next, histologic images were aligned along
the micro-CT 3D model based on the histologic prepara-
tion protocol, see Fig. 3. The number of slices (including
placeholder slices for removed sections) and slice thickness
values were set. These are shown on the left side as a stack.
Based on the provided information, the micro-CT 3D model
is shown with the estimated slide positions. The user can set
the estimated length of the tissue sample, for example, based
on measures of the CT model, and compare this to the sum
of the histologic slides. Due to the user input, no automatic
assessment of the required time was possible but usually,
these steps required approximately 3–4 min.

Virtual inflation of the aneurysm sac The resected
aneurysm dome acquired with micro-CT data is deflated due
to explantation and does not correspond well to the origi-
nal in-vivo shape, see Fig. 4. We therefore virtually inflated
the resected dome for a future co-alignment with the other
modalities. First, the resected dome mesh vertices are split
into inner and outer points. The inner points of the bowl-
shaped dome sample are the points that build the outline of
the aneurysm lumen and should follow the shape of the pre-
operative aneurysm mesh (recall in “Image data” section). A
rough split can be achieved by calculating which vertices are
visible from the center C of the resected dome mesh, where
C is extracted as the mean of the points of the surface mesh.
The line li is defined between surface model vertex vi and
C :

li = vi − C (1)

Let M be the set of points inside the mesh. For each vertex
i the initial label (0 for inner points, 1 for outer points) is
assigned by the function f:
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Fig. 3 User interface for
alignment of the histologic
slides. The sections (colored:
available, gray: removed tissue
or unavailable slides) are shown
left. On the right, a 3D model
extracted from micro-CT is
shown together with the
estimated slide positions. The
mesh is colored with the mesh
thickness (color bar)

Fig. 4 In (a), the 3D aneurysm mesh (grey) and resected, deflated dome mesh (pink) is shown. In (b), the virtual inflation was applied to the dome
surface mesh

f (i) =
{
0 ∀x ∈ li �x ∈ M ∩ li
1 else

(2)

Afterwards, this classification is refined by assigning each
vertex vi the label of the majority of its neighbors, i.e., all
vertices that share an edge with vi .

Next, the inner vertices are iteratively moved to the center
of the closest aneurysm mesh vertices. The outer vertices are
moved accordingly to the average movement of the closest
inner points to maintain the local wall thickness.

For thepresented approach, the 3Dsurfacemesh, extracted
from preoperative patient data, served the as ground truth for
the amount of the virtual inflation. This step took less than
a minute. For more information about the virtual inflation
approach, please refer to [15].

Hemodynamic simulation for wall shear stress extrac-
tion The preoperative 3D IA model was used for obtaining
the desired near-wall hemodynamic parameters. The corre-
sponding simulation was carried out in STAR-CCM+ 2020.1

(Siemens PLM Software Inc., Plano, TX, USA). Blood was
modeled as an incompressible and Newtonian fluid with a
density of 1055 kg

m3 and dynamic viscosity of 0.004 Pas.
Boundary conditions of the domainweremodeled as follows:
Time-dependent flow waveform from a healthy volunteer,
rigid vessel walls with no-slip condition, and zero-pressure
assumption at the outlets [26]. Based on the hemodynamic
simulation, a highly-resolved WSS field is extracted. The
time-dependent simulation representing one cardiac cycle
required approximately 4h.

Multimodal exploration After the preprocessing, for each
histologic image, a corresponding position in the micro-CT
data with segmented calcifications is available. Next, co-
alignment is carried out to providemore detailed information,
see Fig. 5. The contour of the histologic and the micro-CT
images are each split up into inner and outer contour points.
Here, the center of the contour is calculated. For each con-
tour point, intersections of the line between the center and
the contour point and the polygon described by the contour
are determined. If no intersections besides the contour point
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Fig. 5 Transferring histologic image information to the shape of micro-CT image with calcification (*); cyan: inner contour point, green: outer
contour point, red line: image values between inner and outer point are mapped to the corresponding position in the micro-CT image

itself are found, the point belongs to the inner contour, oth-
erwise, it belongs to the outer contour.

The information from the histologic images is then trans-
ferred to the segmentation mask of the micro-CT image.
Every image is split up into 5000 overlapping, small sections.
Each of these sections includes one inner contour point and
50 outer contour points. The first and last sections contain the
ends of the u-shaped tissue with minimum distance between
the outer and inner points. The image values from the first
section of the histologic image are mapped to the first section
of the micro-CT image and so on, see Fig. 5. As the sections
overlap, a pixel of the micro-CT image can get several values
from the histologic image. In that case, the average is used.
To avoid blurring, the number of times a pixel value can be
updated is limited to 5.

A section a of the histologic image consists of the inner
contour point Ia and the outer contour points Oai . It is
mapped to the corresponding sectionb in themicro-CT image
consisting of the inner contour point Ib and the outer contour
points Obi . The function fi (x) describes the image values
along the line segment ai between Oai and Ia . The function
gi (x) describes the image values along the corresponding
line segment bi .

gi (x) = ‖bi‖
‖ai‖ ∗ fi (x) (3)

The value at the pixel p in the micro-CT image is calculated
using several functions gn from different, overlapping sec-
tions.

v(p) =
5∑

n=1

gn(p) (4)

For a mapping of numerically acquired hemodynamic
information (e.g., WSS), the values are assigned to each ver-
tex of the 3D IAsurfacemodel. The 3Dsurface of the resected
IA dome is co-registered to the 3D surface extracted from the
micro-CT data via the iterative closest point algorithm [27].

The transformation matrix from this co-registration is then
applied to the 3D IA surface model as well. Finally, each
voxel of the micro-CT is assigned the parameter values of
the closest aneurysm mesh vertex.

Similar to the micro-CT data, the information of the his-
tologic images is mapped to the inflated 2D shapes as well.
Since the interactive exploration relies on preprocessed data,
the co-alignment and update of the GUI require only a few
seconds.

Results

Our prototype allows for the visual exploration of histologic
slices (cut parallel and with a given thickness) arranged in
a 3D model. Furthermore, near-wall hemodynamics can be
assessed and associated with histologic anomalies.

Evaluation of the wall exploration requirements

We integrated an automatic stain classification based on a
neural net. We trained with 70 images, tested on 8 (two
of each staining), and achieved an accuracy of 100%. The
inclusion of stain classification followed by stain-specific
segmentation fulfills requirement 1.

The graphical user interface allows the mapping of the
available slices to a 3D model. Large gaps between slices
(req. 2) and missing slices (req. 2) are supported. The user
interface allows the setting of possible slice thicknesses to
take the technical settings during cutting into account. The
user can compare the length of the current stack of slices to
the expected length (based on the tissue dimension) to detect
missing slices (req. 2).

The connection between micro-CT and histology can be
interactively explored in the developed viewer, see Fig. 6.
Selecting a point in the micro-CT image shows the corre-
sponding area in the histologic image. The program shows
the resected IA dome with WSS information on the left.

123



International Journal of Computer Assisted Radiology and Surgery (2023) 18:2243–2252 2249

Fig. 6 Visual exploration of
combined micro-CT and
histology; left: 3D model with
WSS, the white line indicates
the current slice; middle:
segmented micro-CT image,
right: segmented, corresponding
MT-stained histologic image

Fig. 7 Detail view of mapping into own segmentation mask (left), slightly dilated mask (disk size 15, center) and more dilated mask (disk size 50,
right). Masked regions are shown at the bottom

The micro-CT image is displayed and information on cal-
cification and WSS can be superimposed. On the right, the
histologic image (either the segmented image or the one
mapped to micro-CT, recall Fig. 5) is shown. When map-
ping the histologic data to micro-CT, small details are lost in
contrast tomajor aspects, like dominant colors inMT-stained
images. The blurring depends on the similarity of the shape
of the histologic image and the micro-CT image.

We verified themapping algorithm by transferring the his-
tologic image to its own shape and the resulting image was
very similar to the original one with a correlation coefficient
of 0.989.

We systematically decreased the similarity between the
histologic image and mask by applying a dilation with
different-sized disks on the mask. The correlation coefficient
decreased with increasing dilation (0.9496 for disk size 5,
0.9107 for disk size 15, 0.8412 for disk size 50). The results
are shown in Fig. 7.

The virtual inflation transformed the tissue mesh to bet-
ter fit the aneurysm, yielding a small change in the volume
(4%). The mapping algorithm can be used for images with
every staining (req. 1). Together with the virtual inflation, the
mapping algorithm addresses the problem of deformation of
the tissue (req. 3).

Finally, the visual exploration combines hemodynami-
cally relevant parameters from preoperative data with image
data of the tissue collected during surgery (req. 4).

Informal evaluation

Two medical experts with experience in histologic image
analysis examined the data based on the program using the
think-aloudmethod. The resected dome only covered a small
part of the IA. Compared with the rest of the aneurysm, the
WSS was not conspicuous. Focusing on the WSS at the
resected dome, the middle part of the tissue had a lower
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Fig. 8 Exploration of the resected IA dome by mapping the wall thick-
ness to color (a) and analyzing corresponding histological images. The
ORO staining shows a lipid accumulation (red), especially in the region
with increased wall thickness (b). The aSMA staining reveals a smooth

muscle cell structure that is globally organized for this area (c). Also, a
slight loss of smooth muscle cells was visible in the area of lipids, when
comparing the adjacent sections

WSS than the outer parts. The experts stated that the transi-
tion from low WSS to high WSS is interesting, especially
the possibility to compare this region with the different
histological stainings. In the resected dome sample no cor-
relation between calcification and histologic particularities
was found. Calcification was mostly present in one half of
the tissue. In this part, the WSS was slightly higher.

The experts also compared the thicker part of the resected
tissue with the different histologic images provided by our
visual exploration approach. First, they focusedon the assess-
ment of wall thickness and cellularity and analyzed the
correlated HE and MT staining. In addition, they detected
lipid accumulation in the ORO-stained images and a slight
loss of smooth muscle cells in the aSMA-stained images, see
Fig. 8. These findings are very important for understanding
the composition of the IA wall.

Discussion

The presented datasets are rarely available and with an
increasing number of endovascular IA treatments, fewer sur-
gical interventions are performed. This further limits the
collection of resected dome tissue for research purposes, and
histologic analysis becomes less available.

Although a strong deformation during the tissue pro-
cessing and differences in histologic stainings prevent an
automatic co-registration, histologic information is neces-
sary for understanding aneurysm wall composition. The
presented pipeline can combine the multimodal data and
provides insight into the complex IA wall and associated
hemodynamics even when an automatic registration is not
possible.

For the presented approach, the length of the sample was
approximated based on the sum of all section thicknesses and
was used as a guide in the slide positioning tool. This must be
used carefully, as it might be misleading due to differences
in measurements in various modalities and tissue shrinkage
during the fixation process [28,29].

Our pipeline can be applied to any IA, provided that the
required multimodal imaging datasets are available. Since
we focus on the aneurysm sac, separation of the aneurysm
from the parent vessel should be performed, as carried out in
previous work [21].

This study has several limitations. As mentioned above,
the data sets are very rare,which justifies such a detailed anal-
ysis and demonstration of proof-of-concept. Unfortunately,
research with a focus on the IA wall mainly explores tis-
sue samples collected during surgical clipping, whereas the
often small number of samples limits the explanatory power.
Jabbarli et al. [30] compared the results of several studies
for IA wall composition to extract a detailed pathophysio-
logical wall model accounting for the number of patients
and the existence of conflicting results during their evalu-
ation. Subdivision of aneurysm wall types varies, e.g. five
wall types (atherosclerotic, hyperplastic, thin, rupture site,
and normal) based on surgical videos [14] or subdivision into
thick, intermediate and super-thin translucent tissue based on
histological and intraoperative observational studies [31].
This heterogeneity is also reflected in aneurysms with blebs.
The evaluation of their wall composition yieldswalls of vary-
ing structures [22]. For giant aneurysms, the triple-layered
microstructure of aneurysm walls as well as an intraluminal
thrombus could be identified for most cases, again, the walls
exhibited heterogeneous thicknesses [32].

In conclusion, to provide more generalizable results, a
larger database is required. In addition, only a small part of
the aneurysm wall can be collected during surgery and the
tissue is deformed during the process. The preoperative 3D
model only shows the aneurysm lumen and not the aneurysm
wall tissue. This complicates the registration of the aneurysm
to the collected tissue. Therefore, the accuracy of the WSS
mapped to the micro-CT image is limited. The pitfall of var-
ious stainings of histologic samples is the missing ground
truth information about the 3D shape. To cope with this limi-
tation, our visual exploration pipeline guides the positioning
of slides, see Fig. 3. The concept of our pipeline illustrates
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howmultimodal data can be combined to fulfill the presented
requirements. Since it is tailored to the presented data set, no
general software tool is shareable right now.

In this study, no correlation between histology, calcifica-
tion and WSS was evident. A further limitation is the small
variance of the WSS at the collected tissue. Tissues from
other areas or IAsmight bemore expressive, but such datasets
are rarely available. Future work could aim at phantom stud-
ies, as carried out for validation of the virtual inflation [15].
However, different parts of the aneurysm wall exhibit differ-
ent elastic properties [33] which might not be realized with
a phantom.

Conclusion

We presented a pipeline for visual exploration of multi-
modal aneurysm data comprising histologic and micro-CT
images as well as 3D surface meshes of the aneurysm and
the resected dome. The proposed methods allow the combi-
nation of 2D histology with 3D micro-CT data, even if the
histologic data is incomplete, comprises a variety of stainings
or is insufficient for 3D reconstruction on its own. It can be
used to find correlations between hemodynamic forces and
wall characteristics like histologic structures, wall thickness
or calcification.
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