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Abstract
Purpose Middle ear infection is the most prevalent inflammatory disease, especially among the pediatric population. Current
diagnostic methods are subjective and depend on visual cues from an otoscope, which is limited for otologists to identify
pathology. To address this shortcoming, endoscopic optical coherence tomography (OCT) provides both morphological and
functional in vivo measurements of the middle ear. However, due to the shadow of prior structures, interpretation of OCT
images is challenging and time-consuming. To facilitate fast diagnosis and measurement, improvement in the readability of
OCT data is achieved by merging morphological knowledge from ex vivo middle ear models with OCT volumetric data, so
that OCT applications can be further promoted in daily clinical settings.
Methods We propose C2P-Net: a two-staged non-rigid registration pipeline for complete to partial point clouds, which are
sampled from ex vivo and in vivo OCTmodels, respectively. To overcome the lack of labeled training data, a fast and effective
generation pipeline in Blender3D is designed to simulate middle ear shapes and extract in vivo noisy and partial point clouds.
Results We evaluate the performance of C2P-Net through experiments on both synthetic and real OCT datasets. The results
demonstrate that C2P-Net is generalized to unseen middle ear point clouds and capable of handling realistic noise and
incompleteness in synthetic and real OCT data.
Conclusions In this work, we aim to enable diagnosis of middle ear structures with the assistance of OCT images.We propose
C2P-Net: a two-staged non-rigid registration pipeline for point clouds to support the interpretation of in vivo noisy and partial
OCT images for the first time. Code is available at: https://gitlab.com/nct_tso_public/c2p-net.
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Introduction

The middle ear consists of the tympanic membrane (TM)
and an air-filled chamber containing the ossicle chain (OC)
that connects the TM to the inner ear. From a functional
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perspective, the middle ear matches the impedance from air
to the fluid-filled inner ear [1].

Middle ear disorders contain deformation, discontinuation
of TM and OC, effusion, and cholesteatoma in the middle
ear. These may occur because of middle ear infection (e.g.,
acute otitis media (AOM), chronic otitis media (COM), otitis
media with effusion (OME)) and trauma [2, 3]. Most com-
monly, serious and chronic middle ear disorder may lead to
conductive hearing loss and inner ear disorder [4]. Current
middle ear diagnostics methods or tools cover only aspects
of the pathology and cannot determine the origin and site of
transmission loss, e.g., otoscopy, audiometry, tympanometry,
etc.

As an innovative image technology, endoscopic OCT
enables the examination of both themorphology and function
of the middle ear in vivo by the non-invasive acquisition of
depth-resolved and high-resolution images [5–7]. Neverthe-
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Fig. 1 Overview of data samples. In a, I is the ex vivo template point
cloud reconstructed from μCT scans on the left. II is the segmented
middle ear model, and each color stands for one structure. III shows
the model with sparse labels. Accordingly, I, II and III in b present in

vivo OCT point cloud, segmented OCT model and labels. The simula-
tion pipeline on the top left takes a complete ex vivo ear point cloud,
performs non-rigid and rigid simulation, and produces synthetic partial
and noisy in vivo point cloud shown in c

less, multiple sources of noise, e.g., the shadow of preceding
structures, reduce the quality of the target structures further
away from the endoscopic probe, e.g., ossicles. Therefore,
the reconstructed 3D models from the OCT volumetric data
are usually noisy and difficult to interpret, especially the iden-
tification of the deeper middle ear structures such as incus
and stapes (see Fig. 1).

Our aim is to improve the interpretation of the OCT
volumetric data by merging the ex vivo middle ear model
reconstructed from micro-Computed Tomography (μCT)
scan of isolated temporal bones and the in vivo OCT model.
Note that a single μCT model was used as a template and
fitted to all patient-specific OCT scans.We first convert all ex
and in vivo middle ear data to point cloud representations for
ease of flexiblemanipulation ofmiddle ear shapes. Neverthe-
less, finding one-to-one correspondence between such a point
cloud pair is still challenging due to the noise and incomplete-
ness of theOCTmodel, and thedifferencebetween thepatient
data and the template μCT data. To tackle these issues, we
first employ a neural network that searches the sparse corre-
spondences for the source and target points, then a pyramid
deformation algorithm to fit the points in a non-rigid fashion
based on the predicted correspondences. The neural network
is trained on randomly generated synthetic shape variants of
the middle ear that contain random noise and only partial
points. This enables the generalization of the neural network
to newpatient data aswell as the adaption to noise andoutliers
The main contributions of this work are listed as follows:

1. A generation pipeline in Blender3D that simulates syn-
thetic shape variants from a complete ex vivo middle ear
model, and simulates noisy and partial point clouds com-
parable to in vivo data.

2. C2P-Net: a two-staged non-rigid registration pipeline for
point clouds. It demonstrates that C2P-Net registers the
complete point cloud template to partial point clouds of
the middle ear effectively and robustly.

Related work

In this section, we review methods that analyze 3D point
clouds and solve registration problems. Learning the geom-
etry of 3D point clouds is the foundation of diverse 3D
applications, but is also a challenging task due to the irregu-
larity and asymmetry of point clouds. Recently, approaches
that focus on learning point features with neural networks
have been widely investigated to overcome such issues. One
category of methods is to project the point cloud to a regular
representation, e.g., voxel grids [8], 2D images from multi-
views [9, 10], or combined [11] that 2/3D convolutional
operations can be performed on top of these intermediate
data in Euclidean space. Apart from these, PointNet [12]
leverages multilayer perceptron (MLP) to obtain pointwise
features and a max-pool to aggregate global features but
without local information. This drawback is alleviated by
PointNet++ [13], which uses PointNet to aggregate local fea-
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tures in a multi-scale structure. In addition, various explicit
convolution kernels are applied directly on the point clouds
to extract encodings [14–16] in which point features are
extracted based on the kernel weights.

Conventional methods solve the point cloud registration
task as an optimization problem of transformation parame-
ters. Iterative Closest Point (ICP) [17] iteratively calculates
a rigid transformation matrix based on updated correspon-
dence set from a last iteration, Non-rigid Iterative Closest
Point (NICP) [18] achieves non-rigid registration by opti-
mizing an energy function including local regularization
and stiffness. Coherent Point Drift (CPD) maximizes the
probability of Gaussian Mixture Model (GMM) by mov-
ing coherent GMM centroids from the two point clouds.
Recently, deep learning-based methods using the aforemen-
tioned point cloud encoding techniques have been widely
investigated [19–22]. PointNetLK [19] extracts semantic
point cloud features using anMLP, then performs rigid align-
ment using the Lucas and Kanade algorithm [23].

RegTR [20] and NgeNet [21] employ KPConv [14] to
extract both global and local features from the source and
target point clouds. Following this, attention mechanisms are
introduced to enable the communication of the extracted fea-
tures and estimate a global transformation from the predicted
correspondences of the MLPs.

In contrast to this direct way, NDP [22] decomposes the
global transformation into sub-motions which are iteratively
refined using MLPs at each pyramid level. Inspired by this
recent work regarding point cloud analysis and registration,
we adopted NgeNet [21] and NDP [22] as the main compo-
nents to construct our registration pipeline.

Methods

The non-rigid registration of the ex and in vivo middle ear
point clouds (see Fig. 1) using neural networks is realized
in a supervised learning fashion. Due to lack of real OCT
data with ground truth, and the difficulties of finding one-to-
one correspondences between the general and ex vivo model
and the noisy and partial in vivo model, we generated syn-
thetic in vivo middle ear point clouds based on the ex vivo
μCT model using a two-step simulation pipeline. For point
cloud registration, we propose C2P-Net, which is a two-stage
registration method. We first train a neural network on the
synthetic samples to explore the correspondence along with
an initial rigid transformation matrix, then based on this, a
hierarchical algorithm is performed to estimate the non-rigid
deformation.

Synthetic data generation

We start with a complete middle ear model MμCT recon-
structed from μCT volume as basis for the simulation in

Blender3D. The non-rigid simulation is performed with the
assistance of lattice modifiers attached to each structure with
reasonable resolution. The lattice vertices are assigned to var-
ious groups according to length, thickness, and width of the
global and local shape of a structure. By transforming and
rotating various vertex groups with random parameters with
boundary conditions, a random shape of a structure can be
generated, e.g., a relatively shorter malleus with a longer lat-
eral process. The non-rigid simulation step is formulated as
T̃nr = Snr (T , pnr ), where T is the template middle ear, pnr
are the input parameters, and T̃nr is the simulated non-rigid
shape variants of T . Next, armature modifiers are attached
to each structure and connected in an end-to-end fashion at
the articulations. Then, rigid simulation is accomplished by
transforming and rotating the armature bones. We denote the
rigid simulation as Sr . Thus, a random shape variant of the
middle ear T̃ can be obtained which is considered as the in
vivo ear model of a new patient: T̃ = Sr (T̃nr , pr ).

In practice, the in vivo OCT model is usually noisy and
only partially visible,which limits the registrationmethods in
finding accurate and robust correspondences. To simulate the
real data, we extract randompartial patches for each structure
of the shape variant T̃ by a combined probability, which is
calculated as the distance of each vertex to the support point
of each structure and random Gaussian noise. Additionally,
for the sake of simulating incomplete posterior structure, e.g.,
stapes, caused by the occlusion and shadow from the anterior
structures, e.g., ear canal wall, we determine the number of
points of the posterior structures by the distance to the exter-
nal ear and a random factor. Furthermore, uniform random
displacements are applied to the vertices to generate the final
noisy and partial in vivo point cloud Pinv (see Fig. 1).

C2P-Net

We delineate the architecture of C2P-Net in Fig. 2. It con-
sists of two components dedicated to two stages: initial rigid
registration and pyramid non-rigid registration. Given an ex
vivo point cloud as a template extracted from a μCT model:
Pexv = {xi ∈ R3}i=1,2,...,N , and a partial point cloud of the
simulated in vivo shape variant: Pinv = {y j ∈ R3} j=1,2,...,M ,
we adopted the Neighborhood-aware Geometric Encoding
Network (NgeNet) [21] to solve the initial rigid registration
task. This stage is formulated as:

τ, σ = NgeNet(Pexv, Pinv) where (u, v) ∈ σ (1)

where τ ∈ SE(3) is the rigid transformation matrix which
aligns Pexv with Pinv , and (u, v) ∈ σ is the sparse correspon-
dence set where u and v are indices for points in Pexv and
Pinv . Due to the multi-scale structure and a voting mecha-
nism integrating features from different resolutions, NgeNet
handles noise well and predicts correspondence robustly.
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Fig. 2 Schematic architecture of C2P-Net. The input of the pipeline is
the ex vivo (blue) and in vivo (orange) point cloud. To explore the
correspondence between the two inputs, NgeNet is trained on syn-
thetic samples to extract the features for each point at different levels.
These are integrated by a voting algorithm. A feature matching rou-
tine is performed to obtain the sparse correspondence set as well as a

rigid transformation matrix. On top of the previous outputs, NDP maps
the input point clouds to sinusoidal space and decomposes the global
non-rigid deformation at each pyramid level into sub-motions. With
the increase in sinusoidal frequency, the non-rigid deformation of each
point is continuously refined at each level. The registered point cloud
is shown on the right side

Based on the previous predicted correspondence set and
the rigidly aligned source and target point clouds, we employ
the Neural Deformation Pyramid (NDP) [22] to predict
the non-rigid deformation of the given point cloud pair.
NDP defines the non-rigid registration problem as a hier-
archical motion decomposition problem. At each pyramid
level, the input points from last level are mapped to sinu-
soidal encodings with different frequencies: �(pk−1) =
(sin(2k+k0 pk−1), cos(2k+k0 pk−1)), k is the current level
number, k0 controls the initial frequency and pk−1 is an out-
put point from the last level. Lower frequencies at shallower
levels represent rigid sub-motion, while higher frequencies at
deep levels emphasize non-rigid deformations. In this way, a
sequence of sub-motions is estimated from rigid to non-rigid,
and the final displacement field is the combination of such a
sequence. Formally, we denote the stage as:

φest = NDPn,m(P̃exv, Pinv, σ ) (2)

where P̃exv is the source point cloud Pexv transformed by τ , n
is the number of pyramid layers of the NDP neural network,
m is the maximal iteration within a single pyramid layer,
and φest is the predicted displacement field describing how
each point should move to the target. Combined losses are
calculated at each iteration, including correspondence loss
and regularization loss, and back-propagated to update the
weights of each MLP. Of which, the correspondence loss
LCD is defined as the Chamfer distance (3) between P̃exv
which is masked by the correspondence σ and Pinv .

CD(A, B)= 1

|A|
∑

xi∈A

min
y j∈B

|xi−y j |+ 1

|B|
∑

y j∈B
min
xi∈A

|xi−y j |

(3)

LCD = CD(P̃σ
exv, Pinv) (4)

P̃σ
exv = {P̃exv[u]|∃v : (u, v) ∈ σ } are the masked ex vivo

points that have correspondence in the target in vivo point
cloud.

Evaluation

C2P-Net predicts a displacement field to fit the ex vivo point
cloud template to the target in vivo point cloudwhich is noisy
and partial.At training time,C2P-Net employs anAdamopti-
mizer and ExpLR scheduler and uses supervised learning to
learn on a synthetic dataset with 20,000 in vivo shape vari-
ants of the middle ear. During inference, it takes around 3.5 s
for C2P-Net to react to a new in vivo shape on RTX 2070
Super. Since the neural network is trained on synthetic data,
it is crucial to investigate the generalization of the neural net-
works on unseen samples as well as the performance on real
OCT data. Thus, we conduct two experiments on synthetic
data and real OCT data with various metrics: mean displace-
ment error (5), Chamfer distance (3), and landmarks error
(6). Furthermore, we compare our results with other popular
non-rigid registration methods, e.g., Non-rigid ICP (NICP)
and Coherent Point Drift (CPD).

MMDE = 1

N

N∑

i

‖φest − φgt‖ (5)

N is the size of the test dataset, φest is the estimated displace-
ment field of a sample, and φgt is the corresponding ground
truth.

In Silico A synthetic dataset is generated using the
pipeline described in “Synthetic data generation” with the
same boundary conditions, and the target shape variants are
unseen to the neural network during training. For each target
shape, we estimated the displacement field for the identical
template point cloud using C2P-Net trained on 20,000 sam-
ples. The mean target displacement field for the synthetic
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Fig. 3 a shows the relation between the MDE of synthetic samples and
the visible points ratio, which is calculated as the ratio between the point
number of a target point cloud to the corresponding ground truth point
cloud: |Pinv |/|T̃ |. The decreasing trend shows that with more points
available in the target in vivo point clouds, the neural network tends

to predict better deformation. b Depicts the MDE to the initial rigid
registration error which is produced by the NgeNet. The better the ini-
tial rigid registration and correspondence set predicted by NgeNet, the
lower the global non-rigid registration error from NDP becomes

dataset is 1.54mm. Figure3a illustrates that the neural net-
work tends to predict the deformation of the ex vivo point
cloud with higher accuracy if it obtains more information
about the target in vivo OCT point cloud. With few excep-
tions, Fig. 3b shows when the initial registration error made
by NgeNet is low, the final global non-rigid displacement
field from NDP tends to be small.

In Vivo A real OCT dataset with 9 samples of the human
middle ear was collected with a handheld OCT imaging sys-
tem [5] and segmented manually by surgeons within 3D
Slicer along with a set of sparse landmarks for each structure
of a sample (see Fig. 1). Since there is no ground truth corre-
spondence available for the source and target point clouds to
calculate MMDE, we introduce another metric based on the
sparse landmarks:

ML = 1

|Lexv|
∑

li,k∈Lexv

min
l j,k∈Linv

‖li,k − l j,k‖ k=1,2,...,K (6)

where Lexv are the landmarks on the ex vivo point cloud
from μCT, which is also marked manually, Linv are the cor-
responding landmarks on the target in vivo point cloud, and
the landmark points belong to K different segmentations.

Table 1 itemizes the registration results of C2P-Net and
baseline models on both datasets. We can observe our reg-
istration pipeline outperforms the other methods in terms
of MMDE and ML. However, baseline models tend to have

Table 1 Experiments results on synthetic data (SYN) and realOCTdata
(REAL), including mean displacement error (MMDE)[mm], landmarks
error (ML)[mm] and Chamfer distance (MCD)[mm]

SYN REAL

MMDE ↓ MCD† ML ↓ ML ↓ MCD†

ICP∗ 2.01 1.85 1.15 4.74 3.03

NICP 4.61 0.22 0.87 4.39 0.68

CPD 8.79 1.07 0.96 2.17 0.059

C2P-Net (ours) 0.781 0.582 0.424 0.808 2.43

The bold numbers indicate the best-performing methods on each metric
∗ rigid registration method(s)
† baseline methods tend to fall into local minima and ignore the geom-
etry, though the CD is lower

smaller MCD, which means the source point clouds are
deformed largely to fit the target regardless of the anatom-
ical geometry of the middle ear. Furthermore, this issue is
demonstrated visually in Fig. 4, which depicts several reg-
istration results from C2P-Net and baseline models on real
OCT samples. Hence, it is manifested that C2P-Net is able
to register the partial target point cloud without losing the
underlying geometry of source point clouds, which is the
critical information clinicians want to obtain with registra-
tion. On the contrary, the baseline models only focus on the
spatial position of local points regardless of the neighboring
and global geometry of the middle ear template.
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Fig. 4 Registration results of
baseline models and C2P-Net on
synthetic (SYN) and real OCT
samples (REAL). Blue point
clouds are the deformed ex vivo
ear models, i.e., the shape
template, calculated by all the
investigated methods. The
orange point clouds stand for the
registration target, i.e., in vivo
point clouds. From the
visualization, we can see
baseline non-rigid methods,
NICP and CPD, tend to squeeze
the points from the ex vivo
template largely to match the
target point clouds, since they
only focus on the position of
local points, while C2P-Net
retains the global geometry of
the middle ear due to the learned
correspondence knowledge
between the ex and in vivo point
clouds

Conclusion

In this work, we propose to improve the interpretation of
OCT data for surgical diagnosis by fusing the knowledge
from ex vivo and general μCT data with the in vivo noisy
and incomplete OCT data. To this end, we propose C2P-Net
which is based on NgeNet and Neural Deformation Pyramid.
It takes the ex and in vivo 3D point clouds as input and
explores the sparse correspondence between the two, then
aligns them in a non-rigid fashion. Due to the lack of training
data, a fast and effective synthetic simulation pipeline was
designed using Blender3D, which produces noisy and partial
point clouds as seen in vivo based on the randomly generated
shape variants of the middle ear. Our neural network was
trained based on 20,000 synthetic samples, and it took around
3.5 s to predict the displacement field for a given in vivo point
cloud at inference time.

To assess the performance of C2P-Net, experiments on
synthetic and real OCT datasets were carried out. Since the
real OCT data are noisy and incomplete, we investigated
various metrics including mean displacement error, land-
mark error, and Chamfer distance and compared C2P-Net to
the other baseline models from both statistics and geometry
aspects. From Table 1 and Fig. 4, we can see that C2P-
Net is able to deal with the partial OCT data and retain
the anatomical structure during non-rigid registration, while
other non-rigid methods do not understand the global geom-
etry of the point clouds and focus only on local points.

Future work will focus on improving registration accu-
racy. This can be achieved by improving the simulation
pipeline with realistic noise to further bridge the gap between
synthetic and real data. Furthermore, the segmentation infor-

mation can be employed by the network to improve the
prediction of correspondences. Apart from this, inference
time can be further decreased by exploring the optimal con-
figuration of the network for the OCT samples.
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