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Abstract

Semantic segmentation in surgical videos has applications in intra-
operative guidance, post-operative analytics and surgical education.
Segmentation models need to provide accurate and consistent predic-
tions since temporally inconsistent identification of anatomical structures
can impair usability and hinder patient safety. Video information can
alleviate these challenges; leading to reliable models suitable for clinical
use. We propose a novel architecture for modelling temporal relation-
ships in videos. Our model includes a spatio-temporal decoder to enable
video semantic segmentation by improving temporal consistency across
frames. An encoder processes individual frames whilst the decoder pro-
cesses a temporal batch of adjacent frames. The decoder can be used
on top of any segmentation encoder to improve temporal consistency.
Model performance was evaluated on the CholecSeg8k dataset and a
private dataset of robotic Partial Nephrectomy procedures. Segmenta-
tion performance was improved when the temporal decoder was applied
across both. Our model also displayed improvements in temporal con-
sistency. This work demonstrates an advance in video segmentation of
surgical scenes with potential applications in surgical education and
operating room guidance with a view to improve patient outcomes.
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1 Introduction

Video semantic segmentation has the potential to provide useful insights to sur-
geons by localising objects of interest in the surgical scene. Post-operative video
processing can facilitate case review and improve training, while real-time
guidance could support surgeons in uncertain scenarios through overlays. One
method of extracting relevant information from surgical videos is scene segmen-
tation, which provides per-pixel labelling of the scene. Anatomy localisation,
facilitated by this technique, needs to be accurate and temporally consistent
to provide surgeons with helpful guidance through model predictions.

Scene segmentation in surgical videos has been studied extensively in the
literature. State-of-the-art models often use single images as input to the
model, producing inconsistent predictions, especially in sequences that con-
tain images with ambiguous and partially occluded views. This could confuse
surgeons and pose risks to the patient by providing contradictory information.
This problem can be alleviated by using image sequences segmenting the scene,
allowing the model to use temporal context within the video. By making pre-
dictions temporally consistent, the model is more reliable in challenging video
sequences where the view can be partially occluded, or the anatomy of inter-
est has not been fully exposed, in which case limited visual cues from single
frames can cause models to flicker between plausible categorisations.

In this paper, we propose a spatio-temporal model that uses features
extracted from a series of consecutive frames by a single-frame encoder to
provide temporally and spatially consistent predictions. We validate the pro-
posed model using different single-frame encoders and against a state-of-the-art
video segmentation model. Results are reported in two datasets, the pub-
licly available semantic segmentation CholecSeg8k [1] dataset, which includes
images from laparoscopic cholecystectomy videos, and a private semantic
segmentation dataset consisting of 137 Partial Nephrectomy (PN) procedures.

The first demonstration of the proposed temporal model is the detection of
anatomy in PN videos, which is a novel application for segmentation models.
In PN, it is important to correctly identify and expose the renal vein and
artery in order to clamp the renal artery before excising the tumour from the
kidney. Hence, we apply our temporal decoder to this dataset to demonstrate
consistent and smooth prediction of the relevant anatomy during PN. The
results show that the performance of semantic segmentation models improve
when using the proposed temporal decoder while also increasing their temporal
consistency. The contributions of this work are:

e A spatial and temporal convolutional model that can extend any single-
frame segmentation architecture to leverage temporal context in semantic
segmentation. Similar architectures have been used before for temporal clas-
sification [2] tasks but have not been exploited for semantic segmentation.

® Quantitative investigation and benchmarking of the temporal consistency
in two datasets and two different encoders. In addition to standard metrics
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Fig. 1 Diagram of the proposed model. The model accepts a sequence of frames as an input
based on a temporal window 7 and extracts features for each using a static encoder. They
are subsequently passed to a temporal decoder which learns spatio-temporal representations
and finally outputs a segmentation map for the central frame of the temporal batch.

reported for semantic segmentation, we evaluate the temporal consistency
of the models using an optical flow-based metric inspired from [3].
e Application of the proposed model to detection of anatomy in PN.

2 Relevant work

A large number of semantic segmentation models, either convolutional-
based [4] or transformer-based [5], rely on single images to identify objects
in a scene. This can lead to spatially and temporally inconsistent predictions
especially for ambiguous images for which the model needs temporal context.

Previous work on video instance segmentation has used optical flow to
track segmentation predictions [6, 7]. However, such methods are limited to
using features between pairs of images and cannot leverage longest tempo-
ral context, while context aggregation also relies on the performance of the
optical flow algorithm, which is computationally expensive. Transformer-based
architectures have also been applied to tackle this problem, notably in [8]
exploited mask-constrained cross-attention to learn temporal features between
time-points in an architecture that performs both semantic and instance seg-
mentation. Other methods have used a combination of 2D encoders and 3D
Convolutional layers in the temporal decoder [9] and Convolutional Long
short-term Memory cells in the decoder [10]. Alternative approaches also
include the enforcement of temporal consistency through a loss function dur-
ing training [11] or through architectures that include high and low frame
rate model branches to combine temporal context from different parts of the
video [12]. Temporal modelling has been investigated thoroughly in action
recognition [13, 14]. Temporal Convolutional Networks (TCNs) have been a
popular architecture as they can provide a large receptive field without result-
ing on prohibitively large models and thus can operate on longer temporal
windows. Variants of this model have been proposed, such as extending them to
stochastic modelling [15]; however, their benefits have not yet been employed
to video semantic segmentation. Therefore, these benefits have been an inspi-
ration to adapt this architecture to video semantic segmentation, which is by
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Fig. 2 Outline of the architecture of the proposed temporal decoder (SP-TCN).

definition a computationally heavy task with one of the main challenges being
the exploitation of longer temporal context.

3 Methods

Let Z; € {0,255}"-#-:C be an RGB frame at time ¢ with width W, height H,
and C' = 3 colour channels. Let S; € {0,C}"# be the corresponding pixel-
wise segmentation annotation at time ¢ with C semantic classes. Let E(-) be
an encoder that extracts frame representations for each frame individually as
E(:) : T — x¢, where x; is a spatial feature representation of the frame 7; at

time ¢. We developed a temporal decoder D(:) : [Zt]ii:_/zrp — [St]:;r:_/iﬁ that

processes a temporal batch of features [zt]z:_/ p 12 centered at time ¢ within a
temporal window of 7 frames. The result is a spatio-temporal decoder A(-) :
[It]i;t/ 27/2 — [S}]i;i/ 27/2 which predicts temporally consistent and accurate

segmentation maps [St]i;i/ 27/2 .

3.1 Spatial Temporal Convolutional Network (SP-TCN)

The proposed decoder takes as input a temporal batch of static frame repre-
sentations [zt]ii:_/ = E([x]f_iﬁ) from the encoder, centered at the image
Z; where T is the temporal window of the model. The SP-TCN consists of
three main building blocks: two 3D Convolutional blocks, N 3D dilated resid-
ual layers and a segmentation layer. In Figure 2, we illustrate how dilation
facilitates an exponential increase in the temporal receptive field in successive
dilated 3D convolutions. Each convolutional layer consists of kernels of size
(3 x 3 x k;) where k; determines the time kernel dimension. The convolutions
are acausal, which process both past and future information. A representa-
tion z; consequently receives context from both z,_j, 2 and 2,4, /2. The 3D
convolutional blocks both preceding and succeeding the N 3D dilated residual
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Fig. 3 Schematic of the increase in receptive field caused by repeated dilated 3D convo-
lutions with 3 successive layers using ks = 3 and 7 = 8. The exponential increase in the
dilation factor facilitates a large temporal receptive field for each frame. Both inputs and
outputs of the dilated TCN block are temporal representations z.

layers are only composed of a single 3D convolutional layer. Conversely, each
3D dilated residual layer is composed of a dilated 3D convolution, followed
by weight normalisation, batch normalisation, ReLLU activation and a final 3D
convolution layer.

3D Dilated Residual layers: The dilated residual layers contribute
towards a larger receptive field without increasing prohibitively increasing the
depth of the network. The dilation factor d; the iy, dilated residual layer
depends on the number of layers N and is equal to d; = 2¢, fori = [0,..., N—1]
where i = 0 is the first layer. The full architecture of the dilated layers and
the segmentation layer are shown in Figures 2 and 3.

4 Experimental validation

The proposed model is benchmarked using two state-of-the-art encoders, the
convolution-based light-weight version of HRNetv2 [4] and Swin transformer [5]
to demonstrate how the temporal decoder improves state-of-the-art single-
frame segmentation models of different size. In addition, we compare against
the state-of-the-art video segmentation model Mask2Former [8].

4.1 Datasets

The proposed model is benchmarked with two datasets, a private dataset
consisting of images from PN procedures and the publicly available Cholec-
Seg8k dataset which consists of images taken from a subset of laparoscopic
cholecystectomy procedures [1].

Partial Nephrectomy. The private PN dataset consists of 53,000 images
from 137 procedures annotated with segmentation masks for the kidney, liver,
renal vein, and renal artery. The images are annotated at 1 or 10 frames per sec-
ond (fps) frames with sequence duration of 10 or 15 seconds. The images were
labelled by trained non-medical experts under the supervision of an anatomy
specialist, using annotation guidelines validated by surgeons.

CholecSeg8k. The public CholecSeg8k dataset consists of 8,080 images from
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Fig. 4 Temporal consistency (TC) metric is calculated between a pair of consecutive frames
Z:;—1 and Z;. The frames are given as input to a pre-trained optical flow algorithm and the
segmentation model under evaluation. The optical flow prediction warps Si_1 from t—1to
t, obtaining S¢—1_+. The TC metric is calculated as the IoU between S;—1_,+ and S;.

17 videos of the Cholec80 dataset annotated at 25fps[1]. Images are annotated
with segmentation masks containing 13 classes (background, abdominal wall,
liver, gastrointestinal tract, fat, grasper, connective tissue, blood, cystic duct,
l-hook electrocautery, gallbladder, hepatic vein and liver ligament).

4.2 Metrics

We assess the segmentation performance using the Intersection over Union
(IoU) metric, and the temporal consistency of the model predictions using
the Temporal Consistency (TC) metric.. The IoU is computed per each class

and image, ToUS(S¢,5¢) = ggggg,
estimation for class ¢ on image at time ¢, N is the intersection operator, and U
is the union operator. The IoU per class is computed as the mean across images
IoU® = = Zz;l IToUf, where T is the total number of images. We use the

mean Intersection over Union (mloU) across classes to report a single number,

where Sy is the annotation, S’f the model

computed as mloU = % Zle IoU®¢ where C is the total number of classes.
The TC metric, based on [3], is calculated as TCy,_1; = IoU(St,S”t_l_)t),
where S;_1_,; is the warped prediction from time ¢ — 1 to time ¢. We use
RAFT [16] as optical flow algorithm, pre-trained on Sintel dataset. Figure 4
shows a visual representation of the TC metric calculation.

4.3 Experimental setup

The temporal decoders were trained using N = 4 dilated residual layers and
feature size 128 for each layer. We used the Adam optimizer, lcycle learn-
ing rate scheduling and balanced sampling of classes with 500 samples during
training. We chose a value of k; = 3 for the spatio-temporal convolutions. The
model outputs a temporal batch of segmentations. However, we only back-
propagate the loss on the central frame 7, of the temporal batch [It]zz_/?r /2
The model was trained with a Cross Entropy loss. All models were trained for
100 epochs. The encoders trained in 12 hours and the decoders trained in 24
hours approximately. Models were implemented with PyTorch 1.10.



A spatio-temporal network for video semantic segmentation in surgical videos

We used horizontal flipping as augmentation during training. For PN, we
used 85% of the videos for training, 5% for validation, and 10% for testing. For
CholecSeg8k, since the dataset is small, we used 75% of the videos for training
and 25% of the videos for testing (videos 12, 20, 48 and 55). The test set in
CholecSeg8k was chosen to ensure that all classes had sufficient instances in
the training set. For PN, the model weights for testing were selected based on
the lowest validation loss. For CholecSeg8k, we used the weights in the last
epoch due to the lack of validation set. We trained with a temporal window of
T = 14 for PN and T = 10 for CholecSeg8k.

Mask2Former was trained using pairs of frames selected within the same
respective window sizes. For the PN dataset, we used unlabelled frames so that
the windows include frames only at 10 fps and not a combination of frames of
frame rates to facilitate model learning. For CholecSeg8k, we used the frames
provided in the dataset only as they provide very dense temporal context with
frames at 25 fps. All models were trained on 2 DGX A100 GPUs.

4.4 Results

We present quantitative and qualitative results for all models and datasets.
Table 1 summarises the mean IoU and mean TC for all models and all datasets.
Results indicate that the segmentation performance improves when using the
proposed temporal decoder for both datasets in comparison to single-frame
models. In particular, a 1.04% to 1.3% increase of the mean IoU is reported
for PN with the use of the temporal decoder. Similarly, a 0.960% to 4.27%
increase of the mean IoU is reported when using the SP-TCN with single-
frame encoders compared to the single-frame model for CholecSeg8k. Similarly,
results indicate that the temporal consistency improves with an increase of
6.29%-7.23% in PN, and an increase of 2.56-3.20% in CholecSeg8k dataset. In
both datasets, the best performing combination is the Swin base encoder +
SP-TCN.

Per-class metrics are presented in Table 2, 3 for PN and for Cholecseg8k
in Tables 4 and 5. Results show that kidney is the class that obtains the most
consistent improvement across all combinations. Similar results are observed
for CholecSeg8k as well, with Mask2Former giving similar performance to the
best peforming Swin base + SP-TCN. It is worth noting that the absolute
numbers for TC are higher for CholecSeg8k as the time interval between images
is shorter than in the PN dataset (25 fps compared to 1 and 10 respectively),
hence less motion is observed between frames and therefore there is higher
overlap between predictions in subsequent frames.

Example predictions for the PN dataset are shown in Figure 5. These exam-
ples show that segmentation predictions are more temporally and spatially
consistent in these sequences. For instance, the borders for the kidney flicker
less and the liver segmentation does not miss any part of the anatomy between
frames (left sequence). In addition, the temporal decoder recovers missed pre-
dictions by the single-frame model within the image sequence for the renal
artery (right sequence).

7
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Fig. 5 Example predictions for the PN dataset. Figures show example segmentations for
kidney (pink), liver (cyan), renal vein (blue) and renal artery (green).
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Fig. 6 Example predictions for kidney (pink), liver (cyan), renal vein (blue) and renal
artery (green) for two sequences of three images from the PN dataset. Top row: images at
three different timestamps of 0.1 seconds apart, second row: annotation, third row: Swin
base, fourth row: Swin base + SP-TCN.

The model presents some limitations which are the following: the tempo-
ral decoder may not be able to recover missing information if the features
extracted by the encoder within the given temporal window do not include
sufficient information. For example, if an anatomical structure is completely
missed by the encoder in the full temporal window used by the decoder, the
temporal decoder may fail to recover it. In addition, the images contained in
the temporal window need to be of consistent time spacing since it does not
learn sufficiently when used with images that come from varying time inter-
vals. The temporal decoder also performs better when the images are within
short time steps.

5 Conclusions

We present a temporal model that can be used with any segmentation encoder
to transform it to a video semantic segmentation model. The model is based on
the one-dimensional TCN model presented in [13] and is modified to effectively
use both spatial and temporal information. We validated its performance on
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Fig. 7 Example predictions for the CholecSeg8k dataset for two sequences of three images.
Top row: Images at three different timestamps of 0.04 seconds apart, second row: Annotation,
third row: Swin base, fourth row: Swin base + SP-TCN.
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Fig. 8 Example predictions for the CholecSeg8k dataset for two sequences of three images.
Top row: Images at three different timestamps of 0.04 seconds apart, second row: Annotation,
third row: Swin base, fourth row: Swin base + SP-TCN.

Table 1 Mean IoU and Mean TC for PN and CholecSeg8k

Model PN CholecSeg8k
Mean IoU Mean TC Mean IoU Mean TC

Mask2Former 0.5424 0.4910 0.6910 0.8659
HRNet32 0.5680 0.4570 0.6110 0.8368
HRNet32 4+ SP-TCN 0.5810 0.5199 0.6537 0.8624
Difference (%) 1.30 6.29 4.27 2.56
Swin base 0.6187 0.4890 0.6842 0.8406
Swin base + SP-TCN 0.6291 0.5613 0.6938 0.8726
Difference (%) 1.04 7.23 0.960 3.20

two datasets, the public CholecSeg8k and the private PN dataset. Results
showed that the proposed model consistently improves both segmentation and
temporal consistency performance. We showed the feasibility of performing
fine-grained semantic segmentation on PN, which has not been investigated
before in the literature. Improving temporal consistency for models to be used
during PN will facilitate correct identification of the renal vessels, and therefore
support safe clamping of the renal artery to avoid significant blood loss during
renal tumour removal. We also showed segmentation outputs for other anatomy
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Table 2 Per-class IoU for PN

HRNet32 . Swin base
Class Mask2Former | HRNet32 +SP-TCN Swin Base +SP-TCN
Background 0.9080 0.9140 0.9230 0.9270 0.9290
Kidney 0.5900 0.6180 0.6412 0.6664 0.6789
Liver 0.5265 0.5481 0.6186 0.7120 0.7108
Renal artery 0.3345 0.3958 0.3900 0.3855 0.3966
Renal vein 0.3520 0.3672 0.3350 0.4015 0.4300
Mean 0.5424 0.5680 0.5810 0.6187 0.6291

Table 3 Per-class TC for PN

HRNet32 . Swin base
Class Mask2Former | HRNet32 +SP-TCN Swin Base +SP-TCN
Background 0.9346 0.9340 0.9443 0.9362 0.9455
Kidney 0.5950 0.5253 0.5661 0.5466 0.6014
Liver 0.4024 0.3499 0.4542 0.3810 0.4860
Renal artery 0.2220 0.2628 0.3497 0.3188 0.3912
Renal vein 0.3200 0.2143 0.2850 0.2628 0.3823
Mean 0.4910 0.4570 0.5190 0.4890 0.5613

Table 4 Per-class IoU for CholecSeg8k

Class Mask2Former | HRNet32 fsli)lf’;tgli Swin Base ivsvgl_ szslfl
Background 0.9785 0.9757 0.9736 0.9731 0.9740
Abdominal wall 0.6925 0.7329 0.7444 0.7848 0.7414
Connective tissue 0.2484 0.3490 0.3537 0.2510 0.3120
Fat 0.8417 0.8350 0.7608 0.8408 0.8415
Gallbladder 0.6520 0.5599 0.5651 0.6040 0.6109
Gastrointestinal tract 0.5230 0.1930 0.4490 0.4935 0.5714
Grasper 0.7375 0.5589 0.6429 0.7263 0.7353
L-hook electroc. 0.7450 0.5338 0.6290 0.6829 0.6821
Liver 0.8000 0.7685 0.7639 0.8016 0.7750
Mean 0.6910 0.6110 0.6537 0.6842 0.6938

present in the procedure, such as the kidney and the liver. Exploiting temporal
information to make models more accurate is a step towards clinical use.
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