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Abstract
Purpose Machine learning approaches can only be reliably evaluated if training, validation, and test data splits are repre-
sentative and not affected by the absence of classes. Surgical workflow and instrument recognition are two tasks that are
complicated in this manner, because of heavy data imbalances resulting from different length of phases and their potential
erratic occurrences. Furthermore, sub-properties like instrument (co-)occurrence are usually not particularly considered when
defining the split.
Methods We present a publicly available data visualization tool that enables interactive exploration of dataset partitions
for surgical phase and instrument recognition. The application focuses on the visualization of the occurrence of phases,
phase transitions, instruments, and instrument combinations across sets. Particularly, it facilitates assessment of dataset splits,
especially regarding identification of sub-optimal dataset splits.
Results We performed analysis of the datasets Cholec80, CATARACTS, CaDIS, M2CAI-workflow, and M2CAI-tool using
the proposed application. We were able to uncover phase transitions, individual instruments, and combinations of surgical
instruments that were not represented in one of the sets. Addressing these issues, we identify possible improvements in the
splits using our tool. A user study with ten participants demonstrated that the participants were able to successfully solve a
selection of data exploration tasks.
Conclusion In highly unbalanced class distributions, special care should be takenwith respect to the selection of an appropriate
dataset split because it can greatly influence the assessments of machine learning approaches. Our interactive tool allows for
determination of better splits to improve current practices in the field. The live application is available at https://cardio-ai.
github.io/endovis-ml/.
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Introduction

Technologies that enable next-generation context-aware sys-
tems in the operating room are currently intensively research
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ed in the domain of surgical workflow recognition [1].
Recent studies that apply machine learning algorithms to this
task have shown highly promising results [2, 3]. To further
support advances in this area, academic machine learning
competitions are hosted regularly [4–6]. However, despite
the progress in surgical workflow recognition, the develop-
ers of machine learning algorithms are faced with several
challenges that result from the heterogeneous nature and
complexity of surgical workflows, as well as the temporal
correlation of sensor data.

Specifically, one of the major challenges of the surgical
workflow data lies in the unequal distribution of classes (i. e.,
surgical phases) [7–15], which is commonly referred to
as data imbalance in the machine learning literature [16].
This phenomenon occurs due to characteristics of surgical
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workflows, as individual phases and surgeries can vary sig-
nificantly in their duration [17] and execution [18]. This
issue is further exacerbated by the fact that some phases
can re-occur several times during surgery while some phases
can be optional [13, 14]. This results in an imbalanced rep-
resentation of classes in the dataset which in turn hinders
the ability of machine learning classifiers to accurately pre-
dict the underrepresented classes [16]. Besides, the surgical
phases strongly correlate with the instruments that are used
during the phase [19, 20]. Therefore, unequal distribution of
phases also affects the distribution of sub-properties in the
datasets, such as surgical instruments [21].Most importantly,
when splitting such datasets into training, validation, and test
set, it is necessary to ensure that the dataset splits are rep-
resentative and cover all classes in order to obtain reliable
evaluation results [16].

In this work, we present an interactive data visualization
application that facilitates the assessment of dataset splits for
surgical phase and instrument recognition with regard to the
aforementioned challenges. The main goal of this work is to
provide a data visualization tool that can be used by machine
learning practitioners as well as biomedical challenge orga-
nizers to gain insights into dataset splits of surgical workflow
data.

Related work

With the advent of deep learning, the topics of automatic
phase and instrument recognition have gained consider-
able traction. In one of the earliest studies on this topic,
Twinanda et al. [7] train a convolutional neural network for
the joint phase and instrument recognition and apply a hidden
Markov model to enforce temporal dependencies of phase
predictions. Jin et al. [22] present an improvement upon the
previous work by training a deep convolutional network and
a recurrent neural network in an end-to-end manner. Further-
more, amulti-stage temporal convolutional network has been
successfully applied to the task of surgical phase recognition
by Czempiel et al. [11]. In the recent works, the focus has
shifted toward the transformer architectures [12, 23–26].

Data visualization techniques represent a promising ap-
proach that can facilitate the exploration of surgical work-
flows. Yet, only limited research on visualization techniques
for the analysis of surgical workflows has been conducted so
far. Previously, Blum et al. [27] proposed a method based on
Bayesian model merging to derive a workflow model from
a set of procedures and visualize it as a graph. One of the
most recent studies by Mayer et al. [28] presents an inter-
active visualization method that focuses on the analysis of
temporal relationships within the surgical workflow data and
provides means for comparing sets of procedures (e.g., strat-
ified by surgeon, pathology, etc.).

To the best of our knowledge, only two works addressing
the analysis of dataset splits for surgical phase or instrument
recognition have been published so far. Fox andSchoeffmann
[29] show that random sampling of video frames without
considering patient split might result in training and test sets
containing video frames that are visually similar. This signif-
icantly distorts the evaluation results on the test set and yields
overly optimistic results. Sahu et al. [8] redefine the task of
instrument detection as amulti-label recognition task in order
to account for co-occurrences of surgical instruments. Due
to high imbalance of the dataset, the authors perform a strat-
ified split on instrument co-occurrences which improves the
performance of the classifier in comparison with other strat-
ification approaches. Further, the work presents methods for
the quantification of dataset imbalances.

Visualization framework

The proposed visualization framework aims to facilitate
interactive exploration of dataset splits for surgical workflow
recognition. In essence, this framework processes frame-
wise phase and binary instrument annotation data to derive
further attributes of surgeries that are crucial for creating
representative dataset splits. Using the phase annotations,
we sum the number of video frames that are assigned to each
phase (i.e., phase occurrence). Furthermore, we calculate the
frequency of sequential occurrence of two phases (i.e., phase
transitions) and derive the overall duration by counting the
total number of video frames of each surgery (i.e., surgery
duration). Using the instrument annotation data, we count
the number of frames each instrument is visible (i.e., indi-
vidual instrument occurrence). However, this representation
does not reflect the complexity of surgical instrument anno-
tations since the instruments can be used simultaneously and
are therefore not mutually exclusive. For this reason, we also
count video frames in which two or more instruments co-
occur (i.e., instrument co-occurrence). In the next step, these
attributes are aggregated over surgeries and dataset splits.
Finally, the data are presented in form of interactive visu-
alizations. All attributes are represented by the number of
video frames in which they are annotated, except for phase
transitions which are described by the number of times they
occur, as they do not have a temporal dimension.

The framework is implemented as aweb application, using
theD3 [30] library for the visualization of data. For the repre-
sentation of the previously discussed attributes of surgeries,
the user interface is divided into four separate views. The
two main views Phase view and Instrument view specifically
focus on the visualization of surgical phases and instruments,
respectively. Two further supplementary views provide an
overview of the assignment of surgeries to the dataset splits
as well as their durations. The colors red, green, and blue are
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used consistently across all views to encode attributes of the
training, validation, and test set, respectively. All of the four
views are interlinked, thus allowing to explore the correspon-
dences between various attributes by filtering the data based
on an attribute in one view and inspecting the filtered data
in the adjacent view. The following sub-sections introduce
individual views of the user interface.

Phase view

In this view, phase occurrences are visualized as nodes along
the horizontal axis, ordered according to their conceptual
order from left to right (see Fig. 1A). The visualization is
based on the Arc Diagram visualization method [31]. Each
node contains a donut chart that represents the proportion of
frames that are assigned to the corresponding dataset split.
The colors red, green, and blue encode the attributes of the
training, validation, and test set, respectively. Furthermore,
the center of each node shows the number of surgeries in
which the phase occurs. Phase transitions are visualized as
arcs between individual nodes, whereas the number of times
a transition between two phases happened is mapped to the
width of arcs (see Fig. 1B). Since transitions can occur in both
directions, forward transitions are displayed in the upper half,
while backward transitions are placed in the lower half of the
chart. The transitions starting from the left side of the view or
ending in right side represent start and end of the surgeries.
The overall distribution of frames across surgical phases is
displayed as a bar chart below the phase nodes (see Fig. 1C).
Finally, the horizontal bar charts at the bottom of the view
show individual instrument occurrence per each phase (see
Fig. 1D).

In order to support interactive exploration of the data,
several interaction techniques are implemented in the phase
view. By selecting individual phase nodes, filtering is applied
across other views to display frames for the selected set of
phases. Furthermore, surgeries can be filtered by the occur-
rence of a particular phase transition. The Phase view and
other views are updated accordingly to display the surgeries
that contain the selected transition. Besides, the occurrence
of phase transitions in the training, validation, and test sets
can be displayed as pie charts placed over each transition arc
upon selecting the corresponding option in the phase view
menu.

Instrument view

The instrument view addresses the visualization of indi-
vidual instrument occurrences as well as the instrument
co-occurrences (see Fig. 2A). The colors red, green, and
blue encode the attributes of the training, validation, and test
set, respectively. This visualization approach is based on the
Radial Sets technique by Alsallakh et al. [32] which targets

the analysis of set memberships of data elements. The cen-
tered bar charts which are arranged radially show the total
number of frames a surgical instrumentwas visible in each set
(i.e., individual instrument occurrence). Additionally, a bar
chart that reflects the number of frames in which no instru-
ments are visible, so-called idle frames, is also included in
this view. The combinations of instruments (i.e., instrument
co-occurrences) are displayed as nodes in the center of the
instrument view. The nodes themselves are represented as
pie charts, whereas each segment of the pie chart shows the
prevalence of this instrument combination in the training,
validation, and test set. The positioning of the nodes is deter-
mined by a force-directed layout algorithm implementation
of the D3 library [30].

To facilitate the exploration of the surgical instrument
data, several interaction techniques are implemented in this
view. By selecting an individual instrument, all instrument
co-occurrence nodes that involve the selected instrument are
highlighted in the Instrument view. Besides, co-occurrence
nodes can be selected individually which reveals the propor-
tion of co-occurrence frames in relation to the frames of the
involved instruments (see Fig. 2B). Upon filtering of individ-
ual instruments or instrument co-occurrences, other views of
the visual framework are updated accordingly to view the
selected frames.

Supplementary views

The main views are enhanced by two supplementary views
which provide a general overview of the dataset. The col-
ors red, green, and blue encode the attributes of the training,
validation, and test set, respectively. The first supplementary
view represents a table that shows the partitioning of surg-
eries into the training, validation, and test sets. The individual
surgeries can be interactively re-assigned to a different set via
drag and drop. The second supplementary view encompasses
two bar charts that display the total number of surgeries and
frames for each set (see Fig. 3A). Additionally, a set of bar
charts displaying the number of frames for each individ-
ual surgery are arranged on the right side of the view (see
Fig. 3B). The average number of frames for each set is shown
as dashed lines in the bar charts (see Fig. 3C).

Evaluation and results

The proposed visualization framework is evaluated through
a user study using the Cholec80 dataset [7]. In addition to
the user study, we use our framework to analyze splits of
five popular datasets for the surgical phase and instrument
recognition tasks, highlight problematic cases, and propose
optimized splits.
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Fig. 1 Phase view of the proposed application with eight proctocolec-
tomy surgeries from the “Surgical Workflow Analysis in the sensorOR
2017” challenge dataset [6]. The nodes show the phase occurrence
across splits and surgeries (A). Transitions between phases are visu-

alized as arcs (B). The bar chart in the middle of the view shows the
total number of frames per phase (C). The centered vertical bar charts at
the bottom display the occurrence of individual instruments per phase
(D)

Fig. 2 Instrument view of the proposed application with eight proctocolectomy surgeries from the “Surgical Workflow Analysis in the sensorOR
2017” challenge dataset [6] (A) and selected combination of Grasper and Ligasure (B)

User study

In total, ten participants with data science background have
been recruited to participate in the evaluation study of the
proposed visualization framework. After a brief introduction
into the domain of surgical phase recognition and the features
of the proposed application, the participants were asked to

solve ten tasks covering a wide range of possible exploratory
analyses that can arise during the preparation of Cholec80
dataset [7]. Further details on the user study are provided in
the supplementary information. Tomeasure the results of this
study, task completion percentage was used, which has the
value of 1 only if the participant solves the task correctly, 0
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Fig. 3 Supplementary view of the proposed application. Two mirrored
bar chars show the number of surgeries and the total number of video
frames in the training, validation, and test set (A). A set of three bar

charts display the duration (i.e., number of frames) of each surgery (B).
The dashed lines show the average surgery duration per set (C)

otherwise. Overall, the majority of the tasks were completed
successfully by ≥ 80% of participants.

After completing the tasks, the participants were asked to
fill out the System Usability Scale (SUS) [33] questionnaire.
It consists of ten statements that the study participants ranked
on a 5-point Likert scale ranging from1 (strongly disagree) to
5 (strongly agree). The ranking of the statements is then used
to calculate the SUS score which expresses the usability of
the system. The value of the score ranges between 0 and 100,
with higher values expressing better usability. The proposed
application reached the SUS score of 81.25.

Analysis of dataset splits

In order to validate the proposed framework, we perform
analysis of various dataset splits for the Cholec80 [7],
CATARACTS [10], CaDIS [34], as well as the M2CAI
workflow and tool datasets [7, 35] using our visualization
framework, report our observations, and propose improve-
ments in the dataset splits. The datasets represent a diverse
selection of surgical procedures, workflows, surgical instru-
ments, dataset splits, as well as annotation and data types.

Analysis of the Cholec80 dataset

For the analysis of the Cholec80 dataset splits, we chose the
three most common Cholec80 splits [15]. We downsampled
phase annotations of the Cholec80 dataset to 1 fps to obtain
frames with both phase and instrument labels.
40/-/40 split
In the 40/-/40 split, which is used in the studies [7, 36], all sur-
gical phases are represented in both sets. However, a closer
inspection of phase transitions unveils a group of nine surg-
eries (10, 13, 19, 22, 23, 29, 32, 33, 38) that deviate from
the standard workflow by skipping the first phase and initi-
ating the surgery directly in the second phase (see Fig. 4A).
Notably, all of the nine surgeries are assigned to the training
set; therefore, the evaluation of the model’s performance on
the test set does not include this specialworkflow. In addition,
another unique workflow that only occurs in three surgeries

(12, 14, 32) in the training set can be identified using the
proposed visualization (see Fig. 4B). After the Gallbladder
packaging phase, these three surgeries move on to the Gall-
bladder retraction, thus omitting the Cleaning coagulation
phase. Subsequently, the surgeries return to the previously
skipped Cleaning coagulation phase which is also the final
phase of the three surgeries. Since this unique sequence of
phases only appears in the training set, they are not included
in the evaluation of the machine learning model. Proposed
improvement:With this information at hand, the split can be
optimized by re-assigning the surgeries 29, 32, 33, and 38 to
the test set, as interactively determined in our tool. Accord-
ingly, four randomly selected surgeries 58, 66, 71, 78 from
the test set are assigned to the training set to retain the 40/-
/40 split. As a result of this re-partition, the aforementioned
cases of phase transitions now also appear in the test set.

Regarding the instrument use, the proposed visualization
shows that all of the individual instruments are represented
in all sets and also follow similar distributions. Nevertheless,
there are several instrument combinations that do not occur
in one of the sets (see Fig. 4C). However, these instruments
combinations mostly represent rare cases, as they account
for only a small fraction of the dataset and appear in single
surgeries.
32/8/40 split
To perform model selection or hyperparameter search, stud-
ies [11, 25, 37] use eight surgeries from the training set
for validation, resulting in a 32/8/40 split [15]. This split
yields sufficient representation of phases across sets. How-
ever, surgeries from the validation set have fewer frames on
average (≈ 1900 frames) than the training and test sets with
≈ 2200 and≈ 2500 frames, respectively (see Fig. 5A). Espe-
cially, the disparity between the average duration of surgeries
from the validation and test set (≈ 10 min) might affect the
performance estimation on these sets.As the surgery duration
can indicate its complexity, the surgeries from the validation
set may be easier to infer.

Similar to the 40/-/40 split, the surgeries skipping the first
phase are found exclusively in the training andvalidation sets.
Besides, the 32/8/40 split entails reduction in the training set
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Fig. 4 Characteristics and shortcomings of the 40/-/40 split of the
Cholec80 dataset [7]. Surgeries starting in the Calot triangle dissec-
tion phase are only present in the training set (A). The ending sequence

Gallbladder retraction toCleaning coagulation occurs only in the train-
ing set (B). The instruments Bipolar and Scissors co-occur only in the
training set (C)

size. This becomes especially apparent in case of two phase
transitions (Gallbladder dissection, Cleaning coagulation)
and (Cleaning coagulation, Gallbladder packaging) as they
are reduced from three occurrences to just a single occurrence
in the training set, as opposed to two and nine occurrences
in the validation and test set, respectively (see Fig. 5B). This
will presumably hinder the generalization of the model. Pro-
posed improvement: This can be solved with our tool by
re-assigning the surgery 14 to the validation set, surgeries
23, 29, 32 to the test set, and surgeries 37, 41, 57, 60 to the
training set. Regarding the instruments, the co-occurrences
of surgical instruments that are missing in one of the sets are
more prevalent in this split due to the additional validation
set. One considerable example is the simultaneous use of
Grasper, Bipolar, and Irrigator occurring in 503 frames in
the training set and in 154 frames in the test set (see Fig. 5C).
40/8/32 split
Instead of setting aside eight surgeries from the training set,
some studies [11, 38] select eight surgeries from the testing
set for validation, thus creating a 40/8/32 split. In this split, all
phases as well as single instruments are present in all sets and
also follow similar distributions. Similar to the original 40/-
/40 split, surgeries starting in the Calot triangle dissection
phase are exclusive to the training set. Furthermore, the three
surgeries that move on from Gallbladder packaging to Gall-
bladder retraction and end in theCleaning coagulation phase
are also found only in the training set. Proposed improve-
ment: This particular issue can be addressed by moving the
surgeries 14, 33, 38, 57 to the validation set, the surgeries 23,

29, 32 to the test set, and the surgeries 43, 46, 47, 48, 60, 70
to the training set to retain the 40/8/32 split.

Compared to the 32/8/40 split, the validation set holds a
larger amount of frames, thus resulting in a better coverage
of various cases (see Fig. 6A). Furthermore, the phase tran-
sitions (Gallbladder dissection, Cleaning coagulation) and
(Cleaning coagulation, Gallbladder packaging) now appear
three times in the training set, thus providing more sam-
ples for the training of the model (see Fig. 6B). Considering
the co-occurrence of instruments, an improvement over the
32/8/40 split can be observed, as the combination ofGrasper,
Bipolar, and Irrigator now also appears on 47 frames in the
validation set (see Fig. 6C).

Analysis of the CATARACTS dataset

The CATARACTS dataset [10] provides annotations of steps
which describe the surgical procedures at amore fine-grained
level compared to surgical phases. Since each step of the
CATARACTS dataset is preceded by an Idle step, we exclude
this step from the analysis to obtain a linear workflow. In the
following, we inspect the suggested 25/5/20 split [10].

The inspection of the visualizations reveals that all steps
are present in the training, validation, and test set. Particu-
larly, even steps that are rare and appear only in 3 out of
50 surgeries are included in all dataset splits. Phase tran-
sitions that appear frequently prominently stand out in the
visualizations. However, upon closer inspection, numerous
rare transitions that are exclusive to single surgeries can be
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Fig. 5 Characteristics and shortcomings of the 32/8/40 split of the
Cholec80 dataset [7]. Surgeries from the validation set have fewer
frames on average, compared to the training and test sets (A). The phase
transitions (Gallbladder dissection, Cleaning coagulation) and (Clean-

ing coagulation,Gallbladder packaging) occur only once in the training
set (B). The simultaneous occurrence of the instrumentsGrasper, Bipo-
lar, and Irrigator is not represented in the validation set (C)

Fig. 6 Characteristics of the 40/8/32 split of the Cholec80 dataset [7].
Surgeries from the validation set contain more frames on average than
surgeries from other sets (A). Furthermore, this split provides a bet-
ter coverage of the phase transitions (Gallbladder dissection, Cleaning

coagulation) and (Cleaning coagulation, Gallbladder packaging) in
the training set, compared to the 32/8/40 split (B). The combination of
Grasper, Bipolar, and Irrigator appears in all sets (C)
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also identified. Furthermore, most of the surgeries start in
the Incision step while two surgeries, one from the training
and one from the test set, start in the Toric Marking step and
consequently proceed to the Incision step.

Reviewing the occurrence of surgical instruments, it
becomes apparent that the instrumentsMendez ring and Van-
nas scissors generally do not appear in the test set (see
Fig. 7A). Furthermore, Cotton is not used in the validation
set and only rarely appears in the test set (see Fig. 7A). Pro-
posed improvement: To achieve a better representation of
Cotton across sets, we interactively re-assign the surgery 35
from the training to the validation set and surgery 14 from
the validation to the training set. By performing these actions,
we ensure thatCotton is also represented in the validation set
(see Fig. 7B).

Analysis of the CaDIS dataset

The CaDIS dataset [34] consists of 25 surgeries from the
training partition of the CATARACTS dataset [10] that have
been annotated with the segmentation masks of anatomical
structures and surgical instruments. We convert the segmen-
tation masks of surgical instruments from the Task III of the
original publication [34] into binary frame-wise annotation
format that is required by the visualization application. Fur-
thermore, we follow the suggested dataset split that has been
specifically designed such that all instrument classes are sim-
ilarly distributed across dataset splits.

The application reveals that all individual instrument parts
are indeed present in all dataset splits (see Fig. 8). Never-
theless, when examining the co-occurrences of instruments,
several instrument combinations that are unrepresented in
one of the sets can be identified. Particularly, several instru-
ment combinations are exclusive to the training set. For
instance, the combination of Capsulorhexis Cystotome and
Bonn Forceps only appears in two surgeries with the IDs 19
and 20 from the training dataset. Proposed improvement:
To reduce the number of unrepresented co-occurrences, the
surgery 19 should be moved to the validation set, surgery 21
to the test set, and surgeries 7 and 2 to the training set. Other
instrument combination from the training set are unique to
individual surgeries; therefore, this issue cannot be mitigated
by a re-partition on a surgery basis.

Analysis of the M2CAI-workflow dataset

This dataset has been introduced as part of the M2CAI
EndoVis challenge 2016 and provides surgical phase anno-
tation for a total of 41 cholecystectomy surgeries [7, 35]. For
the analysis of the dataset, we downsample the annotations
to 1 fps and use the dataset split that has been used in the
challenge.

The visualizations reveal that all eight phases are rep-
resented across splits (see Fig. 9). Besides, the majority of
the phase transitions occur in both training and test sets.
Nevertheless, the visualization also uncovers four phase tran-
sitions that are rare and appear exclusively in the test set.
These four transitions are particularly conspicuous as they
skip multiple sequential phases and therefore might indicate
aberrant surgical courses. Upon filtering of surgeries that
contain the aforementioned transitions, it becomes evident
that these surgeries generally follow unique workflows. The
surgery 3 initially follows a linearworkflow, starting from the
first phase Trocar placement, consequently moving on to the
Preparation, and then, it abruptly ends after the third phase
Calot triangle dissection skipping five succeeding phases.
Similarly, the surgeries 1 and 11 from the test set adhere to
the conceptual order of the phases for the first five phases and
then finish in the Gallbladder dissection, thus omitting the
phases Gallbladder packaging. Cleaning coagulation, and
Gallbladder retraction. Proposed improvement: By mov-
ing the surgery 11 from the test set to the training set and a
randomly selected surgery 10 from the training set to the test
set, this workflow is now represented in both training and test
sets.

Furthermore, the proposed application shows that proce-
dures from the test set are on average nine minutes shorter
than the training counterpart. If the duration of the proce-
dure indicates its overall complexity, it can be assumed that
the evaluation on this test set might yield overly optimistic
results.

Analysis of the M2CAI-tool dataset

The M2CAI-tool dataset [7, 35] has been introduced as part
of the M2CAI EndoVis challenge 2016 and provides binary
instrument annotations of 15 surgeries. For the analysis of the
dataset, we follow the suggested split of 10/-/5 [35]. The visu-
alizations show that all individual instruments are included
in the training and test sets (see Fig. 10A). With respect to
the instrument combinations, there are four combinations
that appear exclusively in one of the sets and are unique
to a single surgeries. Further three combinations are heav-
ily imbalanced, for instance, the combination of Grasper,
Irrigator, and Specimen bag with 126 frames in training set
and a single frame in the test, or the combination of Bipolar
and Irrigator with a single frame in the training set and 28
frames in the test set.Proposed improvement:By switching
the surgeries 6 and 14, the distribution of instrument com-
binations across dataset splits can be significantly improved
(see Fig. 10B). The combination of Grasper, Irrigator, and
Specimen bag is now split into 87 and 40 frames in the train-
ing and test set, respectively.
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Fig. 7 Individual instrument occurrence and the co-occurrences of the
CATARACTS dataset [10] (A). Mendez ring, Vannas scissors, and
Cotton are not represented in one of the sets. Individual instrument
occurrence and the co-occurrences after the suggested re-partitioning

to ensure that Cotton also appears in the validation set (B). The widths
of the radial bar charts are scaled per each individual instrument for
better visibility

Fig. 8 Visualization of individual instrument occurrence and the co-occurrences of the CaDIS dataset [34]. The combination of instruments
Capsulorhexis Cystotome and Bonn Forceps appears exclusively in the training set

Summary of unrepresented cases

Table 1 shows dataset splits of the five datasets as well as the
number of phase transitions, and instrument combinations
that are not represented in one of the sets. The improved
dataset splits that are presented as part of this work are
denoted with *.

Discussion and future work

This work presents a publicly available visualization frame-
work that facilitates interactive assessment of dataset splits
for surgical phase and instrument recognition. The motiva-
tion for this has been previously outlined in some studies.
Zisimopoulos et al. [9] report a high discrepancy of the
model’s performance on validation and test sets which is
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Fig. 9 Visualization of phase occurrences and transitions from the M2CAI-workflow dataset [7, 35]

Fig. 10 Visualization of the instrument usage of the M2CAI-tool
dataset [7, 35]. Several instrument co-occurrences, e.g., Grasper, Irri-
gator, and Specimen bag, are not well distributed across the training and

test, appearing only on one frame in the test set (A). By swapping two
surgeries, these co-occurrences show an improved distribution across
sets (B)

attributed to some phases missing in the validation set. The
problem of the inherent data imbalance of surgical workflow
data has been previously highlighted in several works [7–
15]. The visualization framework presented in this work is
specifically designed to address these cases.

To validate the design of our application, we analyzed five
common datasets using our tool. We were able to pinpoint
several aspects of the dataset splits that can distort the evalu-
ation of the model’s performance. Moreover, the application
enabled us to eliminate some of these issues by interactively
re-partitioning the sets. Nevertheless, the proposed visual-
ization also bears certain limitations. The visualization of
phase transitions solely shows the frequency each individual

phase transition occurs in the dataset.While this visualization
approach allows to successfully identify phase transitions
that are unique, determining whether a particular sequence
of transitions appears in a surgery can only be achieved by
applying filtering in thePhase view. Therefore, unique work-
flowpatternsmay remainundiscoveredbyusing theproposed
application. The previous work by Blum et al. [27] presents
a more suitable approach for the analysis of workflow pat-
terns. Further, the visualization provides a heavily aggregated
view of surgical phases and does not provide a visual rep-
resentation of re-occurrences of phases, in case a phase has
been repeated multiple times during a surgery. The work by
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Table 1 Number of phase transitions, instrument co-occurrences, and individual instruments that are unrepresented in one of the sets and were
discovered using the proposed visualization framework. Improved splits proposed as part of this work are indicated with *

Dataset Splita Publications Unrepresented attributes
Phase transitions Instrument co-occurrences Individual instruments
Train Val Test Train Val Test Train Val Test

Cholec80 40/-/40 [7, 36] 0 – 3 4 – 4 0 – 0

40/-/40* 0 – 0 4 – 4 0 – 0

32/8/40 [22, 25, 37] 0 2 3 4 14 4 0 0 0

32/8/40* 0 0 0 6 11 3 0 0 0

40/8/32 [11, 38] 0 3 3 4 9 6 0 0 0

40/8/32* 0 0 0 6 10 3 0 0 0

CATARACTS 25/5/20 [10] 30 36 33 4 11 6 0 1 2

25/5/20* 30 35 33 4 11 6 0 0 2

CaDIS 19/3/3 [34] – – – 1 12 9 0 0 0

19/3/3* – – – 1 9 9 0 0 0

M2CAI-workflow 27/-/14 [7, 22, 23, 35] 4 – 0 – – – – – –

27/-/14* 3 – 0 – – – – – –

M2CAI-tool 10/-/5 [7, 8, 35] – – – 1 – 3 0 – 0

10/-/5* – – – 1 – 3 0 – 0

aNumber of surgeries assigned to the training/validation/test sets

Mayer et al. [28] allows for the understanding of the temporal
relationships within surgical workflow data.

While the visualization of instruments displays total num-
ber of video frames per each individual instrument as well as
the frames inwhich two ormore instruments co-occur, it does
not provide a clear visual representation of video frames in
which only a single instrument is used. To view such cases,
the user is required to perform filtering in the Instrument
view, consequently making them less apparent. This issue
should be addressed in the future work in order to provide a
complete overview of the instrument usage data.

Using the insights from our visualization tool, we were
able to successfully re-partition the datasets to achieve a bet-
ter distribution of attributes across dataset splits. However,
the re-partitioning was performed manually and likely does
not represent the most optimal splitting. In future work, algo-
rithms for the generation of optimal dataset splits [39] can
be explored. Besides that, our analysis of dataset splits and
the recommendations derived from it need to be supported
by quantitative evaluations in the future work.

Further, the scope of this application is limited to the anal-
ysis of phase and instrument annotations. However, visual
features, such as bad lighting conditions, over or underex-
posed instruments, and occlusions, have high influence on
the performance of the model [22] and should be considered
in the future work. Correspondingly, it can be also extended
to support adjacent tasks including instrument and pathology
detection or segmentation with bounding-box or pixel-level
predictions to account for spatial relationships of the data.
Finally, we also believe that integration of more fine-grained

surgical activity information, such as action triplets [40], can
provide amore sophisticated overviewof surgicalworkflows.

Conclusion

In this work, we presented a publicly available application
implemented for the research community that aims to facil-
itate visual exploration of dataset splits for surgical phase
and instrument recognition. To validate the design of our
application, we conducted a user study with ten participants.
Further, we performed an analysis of common surgical phase
and instrument recognition datasets and identified improve-
ments in the splits using our tool. The results indicate that the
proposed application can enhance the development process
ofmachine learningmodels for surgical phase recognition by
providing insights into the dataset splits, potentially result-
ing in more reliable performance evaluations. Furthermore,
we believe that organizers of biomedical challenges can
also greatly benefit from the proposed framework during the
preparation of challenge datasets.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11548-024-03063-
9.
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