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ABSTRACT 

Image and video quality in Long Range Observation 
Systems (LOROS) suffer from atmospheric turbulence 
that causes small neighbourhoods in image frames to 
chaotically move in different directions and substantially 
hampers visual analysis of such image and video 
sequences. The paper presents a real-time algorithm for 
perfecting turbulence degraded videos by means of 
stabilization and resolution enhancement. The latter is 
achieved by exploiting the turbulent motion. The 
algorithm involves generation of a “reference” frame and 
estimation, for each incoming video frame, of a local 
image displacement map with respect to the reference 
frame; segmentation of the displacement map into two 
classes: stationary and moving objects and resolution 
enhancement of stationary objects, while preserving real 
motion. Experiments with synthetic and real-life 
sequences have shown that the enhanced videos, 
generated in real time, exhibit substantially better 
resolution and complete stabilization for stationary 
objects while retaining real motion. 
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1. Introduction 

Long Range Observation Systems (LOROS) are highly 
demanded  in many fields such as astronomy (i.e. planet 
exploration), geology (i.e. topographical measurements), 
ecology, traffic control, remote sensing, and homeland 
security (surveillance and military intelligence).  Ideally, 
image quality in LOROS would be limited only by the 
optical setup used, but in reality they suffer from 
atmospheric turbulence.  

The troposphere layer of the atmosphere is in constant 
motion due to winds and local temperature variations. 
These variations cause formation of air pockets, which 
have a uniform index of refraction and can be modeled as 
spherically shaped turbulent cells in a range of sizes and 
densities (referred to as “turbulent eddies”). This causes 
small neighbourhoods in the image sequences to 
chaotically move in different directions in different 
frames. As a result, images captured by optical sensors in 
the presence of atmospheric turbulence are degraded in 
their resolution and geometry.  

Recently, a turbulence compensation algorithm 
applying local neighborhood methods was introduced 
suggested [1, 2, 3, 4]. The algorithm uses, for 
reconstructing distortion-compensated image frames, an 
adaptive control grid interpolation method based on 
estimating the local spatial displacement vectors. The 
algorithm also manages to preserve the genuine motion of 
the object by evaluating its motion vectors characteristics 
and making a decision whether to make the correction 
(turbulent motion) or not (real motion)  In the present 
paper, we describe further improvement of the algorithm 
which enables full stabilization and resolution 
enhancement (“super-resolution”) of the stationary areas 
in the field of view under real time implementation, Most 
super-resolution techniques are based on the fact that no 
real observation platform can be absolutely stationary. 
Therefore there are always some micro-movements 
during the video data acquisition stage. Consequent 
frames that differ only due to these small movements of 
the image plane can be combined in order to generate a 
new image with better spatial resolution. The novel use of 
the turbulent motion, rather than the acquisition system’s 
vibrations, as the base for super-resolution is presented in 
this paper. 

Generally, the super-resolution process can be divided 
into 2 main stages. The first is determination, with a sub-
pixel resolution, of pixel movements in order to get as 
many data samples as possible within the sampling 
interval defined by the sensor geometry. The second is to 
combine the data observed in every frame in order to 
generate one new image with better spatial resolution. 
Super-resolution principles and general multi-channel 
image recovery are detailed in number of publications.  
Several researchers treat the problem of high resolution 
image recovery by designing an efficient multi-frame 
filtering algorithms, that account for both intra-frame 
(spatial) and inter-frame (temporal) correlations, for 
restoring image sequences that are degraded both by blur 
and noise [5, 6, 7]. Others have formulated solutions to 
global motion problems, usually from an application 
perspective [8, 9, 10, 11, 12, 13, 14]. These can be 
broadly classified as feature-based and flow-based 
techniques. Feature-based methods extract and match 
discrete features between frames, and the trajectories of 
these features are fit to a global motion model. In flow-
based algorithms, the optical flow of the image sequence 



is an intermediate quantity that is used for determining the 
global motion.  

While the turbulent distortions compensation was 
previously dealt, it was considered to be of an annoyance. 
The use of turbulence motion for super-resolution was 
firstly suggested by the authors in [15]. However, the 
presented method generates a single super-resolved frame 
from a sequence; hence the motion in the scene is 
discarded. This is also referred to, in the literature, as 
static super-resolution (For the definition of static and 
dynamic super-resolution see [16]). 

This paper suggests using turbulent motion for quasi-
dynamic super-resolution of turbulent degraded 
sequences. Quasi-dynamic means that while background 
areas are stabilized and super-resolved, the moving 
objects are preserved. The suggested method achieves 
super-resolution through a flow-based hierarchical 
mechanism. In the first stage, the scene motion field is 
extracted. Then, real motion is discriminated from 
turbulence caused motion in the observed scene. This is 
described in section  2. Super-Resolution is applied on 
areas, which contain turbulent motion. This is detailed in 
section  3. 

2. Motion Extraction and Discrimination  

Extraction of the motion field of a video sequence is 
carried out in two phases. In the first, a reference image, 
estimating the stable scene is generated ( yxI ˆ,ˆ ) . Then, for 
each pixel in the original frame ( )yxI , , its 
coordinates ( )yx ˆ,ˆ in the reference frame are determined.  

2.1 Estimation of the Stable Scene 

The reference image is an estimate of the stable scene. 
Such an image has to be obtained from the input sequence 
itself [17,18,19]. In order to achieve optimal results, the 
reference image should have the following properties: 

 The reference image should contain only the 
static background with no moving objects in it. 

 It should contain no turbulent induced geometric 
distortion. 

 It should have high signal to noise ratio. 
The suggested algorithm for generating the reference 

image uses a pixel-wise rank filtering in a temporal 
sliding window. The use of rank smoothing filters such as 
median and alpha-trimmed mean secures that estimation 
of the pixel’s real value (if there were no turbulence) is 
close to the mean of the array of the same pixel's values in 
a long period of time [19], and at the same time that 
moving objects, whose pixel gray levels form the tails of 
the gray level distribution in a long sequence, will be 
eliminated from the estimation. More general element-
wise rank filtering in the time sequence to obtain the 
reference image is used in [1-4]. The suggested method 
utilizes pixel-wise temporal median filter for extraction of 
the reference stable frame [20, 21]. Figure 1(a) presents a 
frame extracted from a real-life turbulent degraded video 

sequence [22], while figure (b) is the reference frame 
computed by applying element-wise temporal median 
filtering over 117 frames. The reference frame exhibits an 
estimate of the stable scene omitting moving objects from 
the scene.  

2.2 Motion Field Extraction 

The mapping of one turbulent image to a stable image can 
be obtained by registering a spatial neighborhood, 
surrounding each pixel in the image, to a reference image. 
In this way, a field of motion vectors is obtained. Such a 
registration can be implemented using optical flow 
methods [23,24,25,26,27,28,29]. In its simplest form, the 
optical flow method assumes that it is sufficient to find 
only two parameters of the translation vector for every 
pixel.  

The vectorial difference between the pixel’s location 
in the original image ( )),( yxI  and its location in the 

reference image ( ))ˆ,ˆ(
ˆ

yxI is the motion 
vector [ ] [ ]yyxxyx ˆ,ˆˆ,ˆ −−=∆∆ . 

For the subsequent processing stages, the translation 
vector is presented in polar coordinates, hence magnitude 
and angle ( ) ( ){ }tyxtyxM ,,,, ,θ  of the motion vector. Having 
the motion field in hand, one can discriminate real motion 
from turbulent one through a statistical analysis of the 
Magnitude { }),,( tyxM  and Angle { }),,( tyxθ  components of 
the motion field. 

2.3 Motion Discrimination 

In order to avoid, in course of the generation of the super-
resolved frame, integration of irrelevant data, pixels that 
represent real moving objects must be extracted from the 
observed frames. Hence a Real Motion Separation Mask 
( ) has to be formed for each pixel in each 
incoming frame. To this end, a real-time two-stage 
decision mechanism is suggested [4]. The first step is 
aimed at extracting areas, such as background, that are 
most definitely stationary. It is designed to achieve fast 
real time computation. In most cases a great portion of the 
stable parts in the scene will be extracted at this stage. 
The rest of the pixels are dealt with at the second step. At 
this phase, the gray-level difference between running 
value of each pixel of the incoming frame and its 
temporal median is calculated as “real-motion measure”. 
Figure 1(c) represents in darker pixels, pixels, which 
were tagged as real-motion. While this first stage detects 
most of the background pixels as such, it presents 
estimation noise. This noise is eliminated at the second 
stage. 

),,( tyxRMSM

The second step improves extraction accuracy at the 
expense of higher computational complexity, but it 
handles a substantially smaller portion of the pixels. This 
stage uses computing and statistical analysis of optical 
flow for motion segmentation ([1-4]). Cluster analysis of 
the Magnitude distribution function for all (x, y), in a 



particular frame, allows separating two types of motion 
amplitudes: small and irregular and large and regular. The 
first is associated with small movements caused by 
turbulence. The latter corresponds to movements caused 
by real motion. Pixel’s motion discrimination through 
angle distribution is achieved by means of statistical 
filtering of the angle component motion field. For each 
pixel, its neighborhood’s angles’ standard deviation is 
computed. Turbulent motion has chaotic directions. 
Therefore, a motion filed vectors in a small spatial 
neighborhood distorted by turbulence has considerably 
large angular standard deviation. Real motion, on the 
other hand, has strong regularity in its direction and 
therefore its angles’ standard deviation value over a local 
neighborhood will be relatively small. Homogeneous 
background areas contain no motion. Therefore the 
standard deviation of the zero motion vectors will be zero 
as well. Figure 1(d) represents the pixels which are 
tagged as containing real motion in darker pixels. While 
the moving car is preserved, the estimation noise 
presented by the first estimation phase is eliminated.  

 (a) 

 (b) 

 (c) 

 (d) 

Figure 1 – Motion Extraction and Discrimination. (a) 
is a frame extracted from a real-life turbulence degraded 
sequence. (b) is the reference frame computed over 117 
frames by applying element-wise temporal median. 
Darker pixels in (c) represent pixels in which real motion 
was detected through computation of the absolute gray-
level difference of the processed frame from the reference 
frame and is aimed at extracting areas, such as 
background, that are most definitely stationary. Darker 
pixels in (d) represent pixel tagged as containing real 
motion by statistically analyzing the motion field. The 
moving car is preserved; the estimation noise presented 
by the first estimation phase is eliminated. 

3. Generation of Super-Resolved Frames 

The motion vector maps for all frames are used to 
enhance the resolution of the acquired fames. This is 
achieved by replacement of pixels in an interpolated 
estimation of the steady scene by pixels from the frames 
according to their position defined by their motion vector 
with sub-pixel accuracy. 

3.1 Accumulation of Background or Stationary 
Pixels’ Information 

Let the processed sequences frames’ size be ( )LK ×  pixels.  
The super-resolved sequence frames’ size is ( )LNKN ⋅×⋅ , 
where ( )N is governed by the user. As described in section 
 2.3, for every pixel in an incoming frame, the translation 
vector [ ]( )yxyx yx ,, ˆ,ˆ ∆∆ is used to decide whether the pixel is 
of a background or real-moving object. Given that a pixel 
( )yx, is tagged as background or stationary, the 
corresponding gray-level value in the super-resolved 
frame is given by: 

( ) ( )yxyx II SRSR ,, =  Eq.  1 

where  and  indicate the pixel’s location in the 
supper-resolved frame and are given by:  

SRx SRy

{ } ( )[ ] ( )[ ]{ }yyNroundxxNroundyx SRSR ˆ,ˆ, ∆+⋅∆+⋅=  Eq.  2 

where ( )yx, is the pixel’s location in the acquired frame 
and [ ]( )yxyx yx ,, ˆ,ˆ ∆∆  is its translation vector computed with 
a sub-pixel accuracy.  

Throughout the supper-resolution data accumulation 
process there are three possible scenarios: (i) a certain 
pixel is assigned with a value once; (ii) a certain pixel is 



assigned with a value more than once; (iii) a certain pixel 
is not assigned with any value. The first scenario presents 
no problem; the single intensity gray-level value will be 
the output in the super-resolved sequence. For coping 
with the second scenario, one has to integrate the multiple 
values into one output gray-level value. This can be 
achieved through applying an average or a median filters 
on all accumulated data samples. In the case where no 
data is available at all for a certain pixel, the interpolated 
stable scene estimate is used as approximation of the 
super-resolved image. For image interpolation discrete 
sinc-interpolation, as the numerically optimal 
interpolation method, is used [30, 31, 32, 33].  Figure 
2(a) shows the super-resolved frame generated from a 
real-life turbulent degraded sequence (see Figure 1(a) and 
[22]). While the resolution is enhanced, the motion is 
omitted from the output sequence. The resolution 
enhancement is noticeable in Figure 2(b) and (c), where 
the left-hand side is a fragment taken from the reference 
frame, while the right-hand side is the super-resolved 
corresponding segment. The extracted segments are 
marked on (a). 

 

3.2 Generation of the Output Frames with Real-
Motion Preservation 

Based on the notations derived in the previous sections, 
.the output frame  is given by: ),,( tyxF

( ) ( ) ( ){ } ( ) ( )tyxtyxtyx
SR

tyxtyx RMSMIRMSMIF ,,,,,,,,,, 1 •+−•=

 

Eq.  3 

where ( ) is the super-resolved frame of the 

background and stationary objects; ) is the current 
processed frame (t); is real motion separation 
mask which is described in  2.3 and “• ” denotes element-
wise matrix multiplication. Figure 2(c) illustrates the 
qusi-dynamic super-resolution output. It presents the 
same super-resolved frame as presented in figure (a), 
while real-motion is present in the scene.  

SR
tyxI ,,

tyxI ,,

)

(

( tyxRMSM ,,

4. Conclusion 

The paper presents an algorithm for real time stabilization 
and resolution enhancement through atmospheric 
turbulence distortions in video sequences while keeping 
the real moving objects in the video unharmed. The 
algorithm is based on three building blocks: (1) estimation 
of the stable scene, (2) real motion extraction, and (3) 
background and stationary objects resolution 
enhancement and generation of the output frames. 
Moving objects are located and the resolution 
enhancement is applied only to the static areas of images. 
To this goal, for each pixel in the incoming frame it is 
decided whether it is of a moving or a stationary object. A 
hierarchical two-stage decision making mechanism is 
suggested to this goal. At the first stage, the absolute 
difference of the pixel’s gray-level value and the temporal 

median presenting is used to generate the motion 
extraction mask. This stage is computationally light and it 
allows to extracts most of stationary areas. The second 
stage improves accuracy of separating moving objects by 
more computationally complex algorithms. At this stage, 
optical flow computation is used for motion segmentation. 
Discriminating real motion is achieved through statistical 
analysis of the magnitude and angle of the motion field 
elements, which result in t Real Motion Separation Mask, 
RMSM. Finally, all areas in the incoming frame, which 
were tagged as stationary, are integrated into a super-
resolution process  

Experiments with real-live video sequences show that the 
restored videos exhibit excellent stability for stationary 
objects and yet retain the moving objects unharmed and 
easier to visually detect and track in a stable higher 
resolution background. The super-resolved image is a 
better candidate then the original one for further image 
processing tools such as aperture correction and noise 
filtering.

(a)

(b) 

(c) 



 
(c) 

Figure 2 . Static and Quasi-Dynamic Super-Resolution. 
Figure (a) is a super-resolved frame generated from a real 
life sequence (see Figure 1(a) and [22]). Images (b) and 
(c) illustrate the resolution enhancement. On both, the 
left-hand side is a fragment taken from the reference 
frame, while the right-hand side is the corresponding 
super- resolved segment. The corresponding fragments 
are marked on (a). (d) is the same super-resolved frame as 
(a), while real-motion is preserved. 
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