
SPECIAL ISSUE

Model-based mapping of reconfigurable image registration
on FPGA platforms

Mainak Sen Æ Yashwanth Hemaraj Æ
William Plishker Æ Raj Shekhar Æ
Shuvra S. Bhattacharyya

Received: 22 July 2007 / Accepted: 12 February 2008

� Springer-Verlag 2008

Abstract Image registration is a computationally inten-

sive application in the medical imaging domain that places

stringent requirements on performance and memory man-

agement efficiency. This paper develops techniques for

mapping rigid image registration applications onto con-

figurable hardware under real-time performance

constraints. Building on the framework of homogeneous

parameterized dataflow, which provides an effective formal

model of design and analysis of hardware and software for

signal processing applications, we develop novel methods

for representing and exploring the hardware design space

when mapping image registration algorithms onto

configurable hardware. Our techniques result in an efficient

framework for trading off performance and configurable

hardware resource usage based on the constraints of a

given application. Based on trends that we have observed

when applying these techniques, we also present a novel

architecture that enables dynamically-reconfigurable image

registration. This proposed architecture has the ability to

tune its parallel processing structure adaptively based on

relevant characteristics of the input images.

Keywords Dataflow � HPDF � Image registration �
Reconfigurable architectures

1 Introduction

Image registration is a fundamental requirement in medical

imaging and an essential first step for meaningful mul-

timodality image fusion and accurate serial image

comparison. It is also a prerequisite for creating popula-

tion-specific atlases and atlas-based segmentation. Despite

the existence of powerful algorithms and clear evidence of

clinical benefits they can bring, the clinical use of image

registration remains limited. The slow speed (i.e., long

execution time) of fully automatic image registration

algorithms especially for 3D images has much do with this

lack of clinical integration and routine use.

This paper focuses on image registration algorithms that

must be executed under real-time performance constraints.

Performance requirements will vary by scenario as differ-

ent procedures will require different levels of accuracy and

speed and use different image sizes. For example, correc-

tion during prostate radiotherapy treatment must be very

accurate, but it is based on relatively small images and can

tolerate a few seconds of registration time. Conversely,

M. Sen (&) � Y. Hemaraj � W. Plishker � R. Shekhar �
S. S. Bhattacharyya

Department of Electrical and Computer Engineering,

University of Maryland, College Park, MD, USA

e-mail: mainak.sen@gmail.com

M. Sen � W. Plishker � S. S. Bhattacharyya

Institute for Advanced Computer Studies,

University of Maryland, College Park, MD 20742, USA

e-mail: plishker@umd.edu;

Y. Hemaraj � W. Plishker � R. Shekhar

Department of Diagnostic Radiology,

University of Maryland, Baltimore, MD 21201, USA

e-mail: yash@umd.edu

M. Sen

Cisco Systems, San Jose, CA, USA

Y. Hemaraj

Texas Instruments, Germantown, MD, USA

R. Shekhar

e-mail: rshekhar@umm.edu

S. S. Bhattacharyya

e-mail: ssb@umd.edu

123

J Real-Time Image Proc

DOI 10.1007/s11554-008-0075-z

using preoperative images to guide needle insertion in the

abdomen potentially requires large images be registered in

sub-second time to correct for motion due to breathing,

while still demanding high accuracy.

Among many approaches that have been developed to

tackle this problem, a hardware implementation is one way

to speed-up applications over existing software imple-

mentations. Such a hardware implementation is presented

in [24]. Designing hardware can take significantly longer

time compared to software, requiring programmers to work

at a level of abstraction lower than the natural level for the

application. As implementation decisions are made,

designers move further away from the natural application

representation. While this is standard practice to achieve

high performance implementations on hardware platforms

such as FPGAs and ASICs, systematic methods based on

precise application modeling abstractions and associated

hardware mapping techniques offer designers a faster,

more effective path to implementation. Such methods

make the design process more structured, while at the same

time exposing opportunities for system-level performance

optimization.

In this paper, we develop such a structured design

methodology in the context of image registration. Our

approach starts with capturing the high level algorithm

structure through a carefully-designed, coarse-grain data-

flow model of computation. It is essential for the dataflow

model while being high-level to be also detailed and rep-

resent the behavior of the system to the finest granularity so

that from this single high level representation, designers

can reach various design points in the hardware design

space. These design points represent relevant area-perfor-

mance trade-offs associated with different configurations,

as we show later for different input characteristics in image

registration. Knowledge about this range of configurations

can be used to customize the final implementation based on

certain input characteristics. We elaborate on these input

characteristics later in the paper.

In some previous work, models of computation such as

dataflow graph have been used for hardware code generation.

For example, [10, 18, 23], use a restricted form of dataflow

graph called synchronous dataflow (explained in Sect. 2.1)

to generate RTL. In [22], the authors present a system design

approach using a different model, called the Kahn process

network model, which can be used to generate RTL code for

applications written in MATLAB to be automatically map-

ped onto FPGA- and microprocessor-based platforms. In

[14], the authors propose a heterogeneous system modeling

approach based on dataflow graphs for synthesis on FPGAs.

This approach focuses mainly on core generation for reus-

ability. Recently in [7], a System C-based design flow for

digital signal processing systems was presented where a

mixed specification of the system in System C and formal

methods could be used to implement the system targeting

FPGAs. Our approach differs from the previous efforts in

that we develop methods to analyze the coarse-grain data-

flow representation (which is dynamic) to systematically

provide a hardware implementation that can dynamically

optimize its processing structure in response to the particular

image registration scenario in which it operates.

Several clinical applications to benefit from the pro-

posed work include whole-body PET/CT registration [20],

virtual colonoscopy [3] and image registration tasks

involving pre- and intra-operative images in the context of

image-guided surgeries [5]. The overall benefits can

potentially extend to numerous other applications being

developed by researchers worldwide.

In this paper, we combine and enhance our previous

work to present an efficient class of dynamic architectures

and an associated design flow for image registration algo-

rithms. Our design flow is developed through efficient

dataflow-based modeling techniques. We present area and

power calculations that characterize our proposed archi-

tectures. In terms of modeling methodology, we present

useful refinements of our previous work on developing and

applying novel data flow-based models and analysis

methods of image registration applications [8]. These

methods provide a framework for mapping and optimizing

these applications onto embedded architectures. Using this

framework, we extend our previous work on evaluation of

trade-offs between different design points [19] and propose

a dynamically reconfigurable architecture for image reg-

istration that optimizes its processing structure adaptively

based on relevant characteristics of its input. We complete

our study by proposing an algorithm for switching between

the two proposed architectures, and presenting overall

system memory requirements (including external memory)

and power estimations for the different configurations.

Our proposed methodology in this paper is relatively

generic, and can be applied to other kinds of image pro-

cessing tasks; further low-level fine-tuning for specific

applications can be performed on top of the implementa-

tion derived through the more general dataflow-based

modeling and analysis approach. Extraction/exploitation of

parallelism starting from dataflow languages is a well-

studied topic. Going to implementation on an FPGA from a

dataflow language is also well-understood in various con-

texts, as the layout of dataflow applications often maps

well to the layout of an FPGA’s fabric. What is especially

innovative about the approach that we develop in this paper

over previous publications is the use of dynamic modeling

techniques to target a dynamically reconfigurable system.

In particular, we have found a unique application to sup-

port the exploration of this topic, and developed an

integrated environment of modeling, architecture, and

FPGA implementation for this application. While the

J Real-Time Image Proc

123

kernels and dataflow techniques are previously published,

the new work that we present in this paper models and

analyzes the targeted application to explore development of

a dynamically reconfigurable architecture along with a

comprehensive view of going from a dataflow description

to a working implementation in hardware in the context of

an image registration algorithm.

2 Background

2.1 Dataflow modeling

In the dataflow model of computation, an application is

represented as a directed graph in which vertices (actors)

correspond to computational modules, and edges corre-

spond to first-in, first-out buffers that queue data (tokens) as

it passes between actors. The granularity of dataflow rep-

resentations can range from fine-grained, where actors

represent individual operations such as addition or multi-

plication, to coarse-grained, where actors typically

represent sub-graphs or code segments on the order of 10–

100 lines. Dataflow is widely used in the design of signal

processing applications because it is an intuitive mode for

algorithm designers to work with, and it also exposes high-

level application structure that is useful for analysis, veri-

fication, and optimization of implementations [1].

The synchronous dataflow (SDF) model [11] has strong

compile time predictability properties, and is the most

mature form of dataflow for signal processing system

design. In SDF, the production and consumption rates of

actors—i.e., the numbers of tokens produced and con-

sumed when actors execute—are fixed and known a priori.

Therefore, the model can provide guarantees on buffer

sizes and produce provable safe schedules. However, the

SDF model is highly restrictive for many application areas

such as computer vision because the model cannot handle

data-dependent rates of data transfer between actors [16].

Various extensions and alternatives to SDF have been

developed to provide for more flexible application model-

ing. For example, a cyclo-static dataflow (CSDF) [2] graph

can accommodate multi-phase actors that exhibit different

consumption and production rates during different phases,

as long as the variations across phases form statically-

known, periodic patterns. This provides for more flexibil-

ity, but still does not permit data-dependent production or

consumption patterns.

More recently, a meta-modeling technique called

homogeneous parameterized dataflow (HPDF) [17] was

proposed in which actor behavior can be adapted in a

structured way through dynamically-adjusted parameter

values. While HPDF allows significant flexibility in

dynamically changing actor behavior, the restrictions

imposed in the model ensure that HPDF subsystems are

homogeneous—in terms of the rate at which their constit-

uent actors execute—across any particular level in

modeling hierarchy. This permits efficient scheduling and

resource allocation for actors, as well as verification of

bounded memory requirements and deadlock-free opera-

tion, which are useful safety properties to guarantee in

embedded hardware and software systems.

HPDF is especially useful because it is a meta-modeling

technique. Hierarchical actors in an HPDF model can be

refined using any dataflow modeling semantics that pro-

vides a well-defined notion of subsystem iteration. For

example, a hierarchical HPDF actor can have SDF, CSDF,

or HPDF actors as its constituent actors. When HPDF is

applied with CSDF modeling for its constituent actors, we

refer to the resulting model of computation as HPDF/

CSDF. HPDF/CSDF allows for a dynamic number of

phases for an actor, along with dynamic production and

consumption rates on each phase. However, to satisfy

HPDF constraints, the total number of tokens produced by

an actor on a given edge ‘e’ in a given invocation must

equal the total number of tokens consumed by the corre-

sponding invocation of the sink actor of ‘e’. A more

detailed and formal description of HPDF/CSDF is given in

[6]. We use HPDF/CSDF in Sect. 4 to model a mutual

information based image registration algorithm.

2.2 FPGA technology

Image registration algorithms have the potential to be

mapped onto a variety of parallel platforms [25] for efficient

execution. Clusters accelerate highly coarse forms of par-

allelism [26] and single chip multiprocessors can exploit

coarse parallelism and often vector level parallelism. The

Cell processor, a single chip multiprocessor designed for

high performance computing, has been used to accelerate

rigid registration based on mutual information [28]. With

such platforms, speed is achieved through utilizing multi-

processing, SIMD techniques, and specialized memory

schemes along with processing a subset of the voxels.

GPUs have been increasing their raw computational

horsepower at a rate faster than CPUs. With many pro-

cessing elements, high memory bandwidth, and

programmability, they have become an inexpensive target

of choice for many computationally intensive applications.

GPU architectures are able to achieve such a dense com-

putational power through simple processing elements,

structured memory resources, and restricted communica-

tion channels. Indeed, graphics processors have proved

effective for gradient flow based registration [27], for 3D

non-rigid registration using sum-of-squared differences

[29], and even examined for heterogeneous platforms tai-

lored to image registration [30]. But to properly exploit the

J Real-Time Image Proc

123

GPU architecture, application parallelism must match the

concurrency in the GPU’s pixel processing datapaths while

accommodating computation, memory, and IO restrictions.

Major obstacles are encountered while mapping parallel

applications that does not map well to GPUs compared to

FPGAs which are more flexible as targets.

While work on these other platforms explore important

acceleration facets of image registration, the speed necessary

for real-time multimodal registration is still not available.

Consequently, we have explored in this work dataflow level

parallelization opportunities that are best suited to hardware

platforms such as FPGAs. FPGAs are more flexible than

GPUs and have increased in computational power just as

quickly which makes it an ideal alternate platform to explore.

They present a homogeneous computational ‘‘fabric’’ to the

programmer, giving them the freedom to express complex

application interaction while still being able to exploit par-

allelism present in the application.

Fast automatic image registration (FAIR) [4] is such an

architecture proposed by Castro-Pareja et al. for acceler-

ated hardware implementation of rigid image registration.

FAIR is optimized and fine tuned for partial-volume-

interpolation-based image registration by means of pipe-

lining, parallel memory access, and distributed processing.

The FAIR project was demonstrated by a proof-of-concept

implementation that achieved greater than an order of

magnitude speedup for registration of multimodality ima-

ges (MR, CT and PET) of the human head, PET and CT

images of the thorax and abdomen, and 3D ultrasound and

SPECT images of the heart [21]. As a demonstration of

single modality image registration, FAIR used the accel-

erated implementation also for registration of pre- and

post-exercise 3D ultrasound images of the heart [21].

In this work, we target our hardware optimization frame

work to an FPGA device, the Altera StratixII

EP2S15F484C5. The major advantages of modern FPGA

technology are its flexibility to capture many styles of

parallelism and the potential for dynamic reconfiguration

of the underlying processing structure. In the context of

FPGA implementations, dataflow is especially useful

because it effectively exposes application concurrency, and

facilitates configuration of and mapping onto parallel

resources. With hardware description languages (HDLs)

such as Verilog and VHDL, application designers must

layout their application to explicitly expose parallelism for

it to be utilized. Furthermore the model of execution of

HDLs is tied directly to the hardware, which often does not

match the native application model. This static description

of the application can therefore be cumbersome when

exploring different points in the design space.

Formal modeling techniques such as HPDF provide

designers with a natural way of describing applications,

while implicitly exposing parallelism that may be exploited

in a variety of ways. This opens up design space explora-

tion opportunities for meeting different user constraints,

and achieving different implementation trade-offs. How-

ever, streamlining the use of dataflow technology is

challenging because it requires careful mapping of appli-

cation characteristics into the graphical and actor-based

modeling abstractions of dataflow, and because the asso-

ciated optimization issues, while exposed more effectively

for signal processing applications compared to other

modeling abstractions, are usually NP-complete to solve

exactly [1].

A dataflow representation is suitable for behavioral

modeling, structural modeling and mixed behavior-struc-

ture modeling. Transformations can be applied to all three

types of representations to assess different solutions in the

overall design space and focus subsequent steps of the

design flow on more favorable solutions.

This paper addresses these challenges for the image

registration domain.

3 Image registration

Image registration is the process of aligning two images

that represent the same feature. Image registration can be

thought of as a mapping function F:I ? R that accepts an

image to be mapped (also called the floating image I) and

returns the image transformed such that it can map directly

onto another image (also called the reference image R).

Medical image registration concentrates on aligning two or

more images that represent the same anatomy from dif-

ferent angles, obtained at different times, and/or using

different imaging techniques. Image registration is a key

feature for a variety of imaging techniques, and there are

two main algorithmic approaches—linear and elastic. A

linear transformation can be approximated by a combina-

tion of rotation, translation, and scaling coefficients, while

an elastic approach is based on nonlinear continuous

transformations, and is implemented by finding correla-

tions among meshes of control points. Our study

concentrates on the linear approach. As mentioned earlier,

real-time image registration is essential in the medical field

for enabling image-guided treatment procedures, and pre-

operative treatment planning.

There are many approaches to 3D image registration

[13]. But for hardware implementation, a robust, accurate,

flexible algorithm that does not require manual feedback is

preferred. Algorithms based on voxel (a pixel in 3-d space)

similarity fulfill the above criteria better than feature-based

approaches [9]. Of them, the most commonly used tech-

nique is image registration based on mutual information

[15]. Mutual information (MI) methods have been shown

to be robust and effective for multi-modal images.

J Real-Time Image Proc

123

3.1 MI-based image registration

Figure 1 represents the algorithmic flow of MI-based

image registration. MI-based image registration relies on

maximizing the mutual information between two images.

Mutual information is a function of two 3-D images and a

transformation between them. The transformation matrix

contains the information about the rotation, scaling shear

and translations that need to be applied to one of the

images in order to map it completely to the other image so

that a one-to-one correspondence is established between

the coordinates of the images where they overlap. A cost

function based on the mutual information is calculated

from the individual and joint histograms. The transforma-

tion that maximizes the cost function is viewed as the

optimum transformation. The goal of MI-based image

registration is then to find this optimal transformation T:

T ¼ arg max
T

MIðRIðx; y; zÞ; FIðTðx; y; zÞÞÞ

Here, RI is the reference image, and FI is the floating image

(the image that is being registered).

3.2 Computation of mutual information

Mutual information is calculated from individual and joint

entropies using the following equations:

MIðRI; FIÞ ¼ HðRIÞ þ HðFIÞ � HðRI; FIÞ;
HðFIÞ ¼ �

X
pFIðaÞlog pFIðaÞ;

HðRIÞ ¼ �
X

p
RI
ðaÞlog pRIðaÞ; and

HðRI; FIÞ ¼ �
X

pRI;FIða; bÞlog pRI;FIða; bÞ

ð1Þ

where H(RI), H(FI), H(RI, FI) and MI(RI, FI) are the

reference image entropy, floating image entropy, joint

entropy and mutual information between the two images

for a given transformation.

The mutual histogram represents the joint intensity

distribu tion. The joint voxel intensity probability, pRI, FI(a, b)

is the probability of a voxel in the reference image having

an intensity a and the corresponding voxel for a particular

transformation T in the floating image having an intensity

b can be obtained from the mutual histogram of the two

images.

The individual voxel intensity probabilities are obtained

from the histograms of the reference and floating images in

the region of overlap of the two images for the applied

transformation. The individual histograms can be com-

puted by taking the row sum and column sum of the joint

histogram.

The calculation of mutual information starts with the

accumulation of the mutual histogram values to the

mutual histogram memory while every coordinate is

being transformed (we refer to this as the MH update

stage). This is followed by the MI calculation stage

where the values stored in the mutual histogram memory

are used to find the individual and joint entropies

described above.

In the MH update stage, voxel coordinates are multi-

plied by the transformation matrix and the resultant

coordinates obtained are used to update the joint histo-

gram. Since the new coordinates do not always coincide

with the location of a voxel in the reference image,

interpolation schemes need to be employed. In the tri-

linear interpolation scheme, the new value of the floating

image FI (x0,y0,z0) is calculated based on the amount of

offset the new coordinates (x0,y0,z0) have from the nearest

voxel position. However, this scheme introduces a new

value, which makes the MH sparse and hence ineffective

in MI calculation. In [12], it was shown that the partial

volume interpolation scheme does not cause such unpre-

dictable variations in the MH values as the transformation

matrix changes. This method accumulates the 8 interpo-

lation weights directly into the mutual histogram instead

of calculating a resultant intensity level and increments

that intensity level’s MH count by one, as in trilinear

interpolation. Thus, the partial volume interpolation

scheme ensures a smooth transition in the MH memory

and hence causes smooth MI changes for various

transformations.Fig. 1 Mutual-information-based image registration

J Real-Time Image Proc

123

Constructing the mutual histogram, the first step in

mutual information calculation, involves performing partial

volume interpolation n times, where n is less than or equal

to the number of voxels in the reference image. The

number of operations in the second step, the calculation of

mutual information, is a function of the size of the mutual

histogram. Since the size of the mutual histogram is less

than the size of the image, it is the first part that is the

performance bottleneck.

It has been shown that the size of the mutual histogram

can be selected as 64 9 64 for 8-bit images (i.e., images in

which each pixel is represented by 8 bits). By doing so, we

can obtain a very good density of MH values, while at the

same time pre serving the variation along the different

entries.

At current microprocessor speeds, the time of mutual

histogram calculation for 3-D images is dominated almost

exclusively by the memory access time. Around 25

memory accesses are needed to perform partial volume

interpolation per voxel of the reference image: 1 to access

the reference image voxel, 8 to access the 8-voxel

neighborhood in the floating image and 16 accesses to the

mutual histogram memory (8 reads to get the old value in

the adder and 8 writes to write back the updated value

after adding the weights). Accesses to the reference image

are sequential and standard caching techniques can be

effectively used. The mutual histogram memory has a

small size and thus accesses to it also have high locality

of reference. However, the floating image is accessed in a

direction across the image that depends on the transfor-

mation being applied. Unless there is no rotation

component, this direction is not parallel to the direction in

which voxels are stored, hence accesses have poor

locality and do not benefit from memory-burst accesses or

memory-caching schemes. The access pattern problem is

hard and a case study is interesting in its own merit.

Though this problem can be alleviated to some extent

using SRAM or RLDRAM (or other such memories with

low latency) and hence reduce the latency of the whole

system, we have not studied any algorithmic solutions to

the problem.

In our study, we instead concentrate on the throughput

of the system. Speedup of registration is achieved by

identifying throughput bottle neck areas and optimizing

them in order to decrease the processing time. Speedup of

the algorithm can be obtained by using pipelined archi-

tectures and also by using parallel architectures [4]. Since

the majority of the registration execution time is spent on

calculating the mutual histogram, accelerating mutual his-

togram calculation has been the focus of our work. The aim

of this paper is to use dataflow graph models to describe the

inherent concurrency in MI-based image registration,

analyze the bottleneck areas from these models, and use

high level dataflow graph transformations to exploit

potential areas that can be parallelized.

3.3 Optimization

Our targeted image registration algorithm calculates the

transformation matrix for which the mutual information

between the images is maximum. There are a variety of

methods for exploring this optimization space, which vary

in speed, convergence, and suitability to certain problems.

For example, techniques such as the downhill simplex

method provide faster convergence than the others. In the

simplex method, in order to optimize a transformation with

m parameters, the optimizer needs to store (m + 1) previ-

ous values. Despite their variation, they uniformly require

some similarity calculation to evaluate potential solutions.

Often the results of the similarity calculation serve as

feedback to guide the optimizer. Therefore improvements

in efficiency and performance of similarity calculations

will benefit all optimization approaches. A more compre-

hensive explanation of such optimizations and references

can be found in [15].

4 Application modeling

In this section, we construct a hierarchical dataflow

representation of MI-based image registration, and we use

the HPDF meta-modeling approach integrated with CSDF

(HPDF/CSDF) for modeling lower-level, multi-phase

interactions between actors. For all positive n, the number

of tokens produced by the nth complete invocation of a

source actor must equal the number of tokens consumed by

the nth complete invocation of the associated sink actor.

Fig. 2 shows our top level HPDF model of the application.

Here, ‘‘(m + 1)D’’ represents (m + 1) units of delay; each

unit of delay is analogous to the z-1 operator in signal

processing, and is typically implemented by placing an

initial data value on the corresponding dataflow edge. The

MI actor consumes one data value (token) on every

Mutual
Information

()

Optimizer
()

(s 0) m m

(s-1 0) 1 0 1(s 1) 0

(m+1)D

Fig. 2 Top level model of image registration application

J Real-Time Image Proc

123

execution. This token contains co-ordinates of the refer-

ence image and the floating image. After s executions, each

consuming one token (coordinate values in this case),

where s denotes the size of the image, the MI actor pro-

duces the entropy between the reference and floating

images. This value is then sent to the optimizer as a single

token.

The optimizer, which stores the previous (m + 1) values

to perform a simplex optimization of an m-parameter

transformation vector, sends m tokens to the MI actor.

Since m can vary depending on the number of parameters

used to represent the desired transformation, the associated

edge represents a variable-rate edge of the HPDF graph. A

valid schedule (an order of execution that can be used to

correctly execute the system) for this HPDF graph would

be

ðsaÞba ð2Þ

In this paper, we describe our schedules as looped sched-

ules which is a compact form of representing the execution

order of actors (as in Eq. 2). A looped schedule is generally

of the form (nT1T2...Tm), and such a schedule represents n

successive repetitions of the execution sequence T1T2...Tm,

where each Ti is either an actor or another looped schedule

(to express nested looped schedules).

The internal representation of the hierarchical MI actor

is shown in Fig. 3. Here, ‘‘Reference Image’’ (A) consumes

one token (coordinates) and produces one token (intensity

values at the input coordinates), and ‘‘Coordinate Trans-

form’’ (B) produces one token, which represents the

transformed coordinates. If this voxel is valid (i.e., the

voxel coordinate falls within the floating image coordinates

boundary), it is passed on to the ‘‘Weight Calculator’’ (D)

and ‘‘Floating Image’’ (E).

Now since all voxels may not be valid, r tokens (r B s)

are produced from the ‘‘Is Valid’’ (C) actor. This actor also

produces r tokens on the edge that connects it to ‘‘MH

Memory’’ (G)—specifically, it passes a token from ‘‘Ref-

erence Image’’ only if a valid voxel results from the

transformation on input coordinates. For every input token

in D and E, 8 output tokens are produced on both the

outgoing edges. The corresponding 8 intensity locations in

the ‘‘MH Memory’’ are updated based on the tokens pro-

duced by D.

After all coordinates are processed, which occurs during

the first 8r phases of the MH Memory actor or equivalently

after s phases of the ‘‘Coordinate Transform’’ actor, one

token of size q 9 q is sent to the ‘‘Decomposer’’, which in

turn sends out q 9 q tokens to the ‘‘Entropy Calculator’’

(H) actor. H consumes all of these tokens, and produces a

single token that contains the entropy value corresponding

to the transformation applied based on the equations given

in (1). We added the ‘‘Decomposer’’ mainly for ease of

representation of the application in dataflow; this module

was subsumed by ‘‘MH Memory’’ in the final hardware

implementation. A valid schedule for the Mutual

Information subsystem based on Fig. 3 would be

(sABC)(rDE(8FG))(q2ZH).

Looking more closely at ‘‘Coordinate Transform’’, we

see that it has an additional input edge that takes in the

initial m tokens from the ‘‘Optimizer’’ (b) but produces no

output. Figure 3 only represents the steady-state behavior

of the Mutual Information subsystem for simplicity.

Figure 4 represents the initialization and the steady-state

Coordinate
Transform

(B)

Is Valid
(C)

Weight
Calculator

(D)

Adder
(F)

Floating
Image

(E)

MH
Memory

(qxq)
(G)

Reference
Image

(A)

(s 1)

(s 1)

(s 1)

(r 8) (8r 1)

(s 1) (s 1)

(r 8)
(8r 1)

(8r 1)

(8r 1)

(8r 1)

(8r 1)

Entropy
Calculator

(H)

(8r-1 0) 1
(r 1)

(r 1)

(r 1)

(r 1)

(s 1)

(r 1)

r (1,0,0,0,0,0,0,0)

Decomposer
(Z)

1 (q2-1 0)

(q2 1) (q2 1) (q2-1 0) 1

Fig. 3 Dataflow model of

mutual information subsystem

J Real-Time Image Proc

123

behavior of Coordinate Transform, where the initial m

tokens are used to calculate the new transformation matrix,

and hence the values inside the actor are updated without

producing any data. A valid schedule of the whole ‘‘Mutual

Information’’ subsystem considering the initial and steady-

state behavior of ‘‘Coordinate Transform’’ is:

ðmBÞðsABCÞðrDEð8FGÞÞðq2ZHÞ ð3Þ

Figure 5 shows the dataflow model of the ‘‘Entropy

Calculator’’. ‘‘Row Sum’’ (I) executes once every time it

obtains one row (q elements) to produce one token, but the

‘‘Column Sum’’ (L) can only produce an output for every

input after it has already received q 9 (q - 1) elements

corresponding to (q - 1) rows.

There are many valid schedules that can be proposed for

Fig. 5; here we show how one such valid schedule can be

derived. Since a valid schedule for ‘‘Entropy Calculator’’ is

quite complex, we derive it step-by-step—the graph has

three distinct paths, the upper path (involving Z, I, J, K) can

be executed with the valid schedule (q(qZ)IJ)K; the middle

path (involving Z, J, N, O) can be executed with the valid

schedule (q(q - 1)ZL)(qZLN)O; and the lower part of the

graph (involving Z, T, U) can have the valid schedule

(q2ZT)U. Combining these, a valid schedule for the

‘‘Entropy Calculator’’ subsystem can be derived as:

ðq� 1ðqZLTÞIJÞðqZTLNÞIJKOUV ð4Þ

Combining (3) and (4), the valid schedule for the ‘‘Mutual

Information’’ subsystem can be derived as:

ðmBÞðsABCÞðrDEð8FGÞÞ
� ðq� 1ðqZLTÞIJÞðqZTLNÞIJKOUV ð5Þ

and taking (2) also into account, a valid schedule for the

whole image registration algorithm can be derived by

replacing a with (5).

Looped schedules are useful for software code genera-

tion from a dataflow graph as every actor appearance in a

looped schedule can be replaced by a function call (or

inline code), and parenthesized terms can be replaced by

software loops to generate complete executable code for an

application [1]. Looped schedules are also useful in gen-

erating test benches with which different hardware

alternatives can be functionally validated.

In addition to leading to looped schedule representa-

tions, the model of Fig. 6 shows potential for parallel

hardware mapping at various levels of abstraction. For

example, extensive parallelism within the processing

structure for a single pixel (which we henceforth refer to

as ‘‘intra-pixel’’ parallelism) is possible for the MH

memory and adder. From Fig. 3, we can see a data-rate

mismatch between ‘‘Weight Calculator’’ and ‘‘Adder’’.

Similar data-rate mismatch exists between ‘‘Floating

Image’’ and ‘‘MH Memory’’. These naturally suggest a

parallel architecture, as shown in Fig. 6, where multiple

copies (8 in the illustration as the data-rates are mis-

matched by a factor of 8) of an actor can be created for

an intra-pixel parallel implementation. We also note that

the resultant graph in Fig. 6 becomes HPDF as all the

parameterized actors now have the same production and

Coordinate
Transform

(m 0 s 1)

(m 1 s 0)

(m 0 s 1)

Fig. 4 Initial and steady-state modeling of coordinate transform

Decomposer
(Z)

Row Sum
(I)

Column
Sum
(L)

-plogp
(J)

-plogp
(T)

Adder
(K)

Adder
(O)

Adder
(U)

Adder
(V)

q
1

(q2 1)

1 1

1 1

1 1

q 1

1

q-plogp
(N)

1 1

q^2 1

1

(q*(q-1) 0) (q 1)

1

1

1

Fig. 5 ‘‘Entropy Calculator’’ where q depends on the number of bits used to represent each pixel in the input image. The value of q is 64 for 8-bit

images

J Real-Time Image Proc

123

consumption rates and hence fire at the same rate. The

data flow model in Fig. 3 also exposes parallelism among

the processing structures of any two pixels, as input actors

A and B have s distinct phases without any interdepen-

dency amongst them where s is the number of pixels in

the image. This (which we henceforth refer to as ‘‘inter-

pixel’’ parallelism) leads to another set of useful parallel

implementation considerations.

Based on these insights, we develop in Sect. 8 an

architecture that applies both intra- and inter-pixel paral-

lelism, and balances these forms of parallelism adaptively

in response to relevant input characteristics.

5 Actor implementation

The lowest level (non-hierarchical) actors in our dataflow-

based design are implemented in Verilog. As an illustration

of a Verilog-based actor in our design, Fig. 7 shows the

code corresponding to the Adder actor (F in Fig. 3). An

interesting point to note in this code example is that by

analyzing the dataflow behavior, we can ensure that the

interface code between the adder and the weight calculator

places the correct weight at every clock cycle in the input

buffer labeled ‘weight’. This illustrates how using dataflow

as a high-level modeling abstraction helps to structure the

hardware implementation process, and makes the hardware

description language (HDL) code modular and more

reliable.

In our overall implementation, we used a one-to-one

mapping in hardware from each dataflow graph actor

except for the ‘‘Decomposer’’ module, which, as described

in Sect. 4, was subsumed inside ‘‘MH Memory’’ for effi-

cient implementation. We have verified the correctness of

our design and hardware description language implemen-

tation through functional simulation.

6 Experimental setup

We explored in detail the effect of having a parallel

architecture on the targeted application, as suggested by the

application-level dataflow model. In our experimental

setup, we varied the degree of parallelism, and studied the

relationship between the performance and area of the

implementation. We also found that the percentage of

voxels that fall in the valid range after a transformation by

the ‘‘Coordinate Transform’’ greatly influences the runtime

of the algorithm. Hence, we studied our system perfor-

mance by varying the percentage of valid voxels (PVV) for

a given transformation.

Adder
(F1)

MH
Memory

(qxq)
(G1)

(r 1) (r 1)

(r 1)

(r 1)

(r 1)

(r 1)
(r 1)

(r 1)

Adder

To Decomposer

From Floating
Image

From Weight
Calculator F2

F8

G2

G8

Fig. 6 Parallel architecture for

MH update showing intra-pixel

parallelism

/* global definitions in top.v */
reg [imsize+fracwidth-1:0] mh [0:4096];
reg [imsize+fracwidth-1:0] edgeweights [0:numweights-1];

/*one example module */
module mhupdate
#(parameter imsize = 8,
parameter fracwidth = 8,
parameter numweights = 8,
parameter lognumweights = 3)
(input [imsize-1:0] rival,fival,
input [imsize+fracwidth-1:0] weight,
input clk);
reg [11:0] currval;
reg [lognumweights:0]counter;

always @(posedge resetall)
counter <= 0;

always @(posedge clk)
begin

if(counter < numweights) begin
mh[currval] <= mh[currval] + weight;
currval[5:0] <= rival[imsize-1:imsize-6];
currval[11:6] <= fival[imsize-1:imsize-6];
counter <= counter + 1;

end
else

counter <= 0;
end

endmodule

Fig. 7 Example verilog code (partial) of the adder from Fig. 3

J Real-Time Image Proc

123

6.1 Application parallelism

When the ‘‘Floating Image’’ is provided with the base

address in the floating image space, the actor generates the

floating image values (corresponding to the neighborhoods)

and provides it to the mutual histogram memory for

updating the mutual histogram with the weights generated

by the weight calculator actor. When we have just one set

of actors (floating image, weight calculator and mutual

histogram memory), it takes 8 firings of this set of actors

(corresponding to the values of the 8 neighborhoods)

before the next input can be processed by the coordinate

transform actor. However, if we have two copies of the

above set of actors, then each set can process four neigh-

borhoods each. Similarly if we have four (or eight) copies,

then each set can process two (or one) neighbor hood(s)

each. This would mean that the number of firings of each

set of actors becomes 4, 2, (or 1), respectively. These sets

of actors can fully execute in parallel without any depen-

dency. The dependency in the mutual histogram memory is

removed by allowing eight copies of it to be updated

independently, and the result for each location in the

memory is obtained by adding each of the corresponding

locations in the eight copies of the table at the end. As

updating the mutual histogram is a crucial part of the

algorithm, such parallel execution should result in signifi-

cant improvement of the whole application.

However the parallel configurations result in extra

FPGA resources and extra external memory. Memory

requirements also increase with increasing image size. In

addition, there is a cost of interfacing these external

memories that needs to be addressed. Each memory com-

ponent comes with a latency that adds to the processing

time.

6.2 Relationship between PVV and performance

When the transformed coordinate falls in the valid region,

there are eight firings of the actor set (‘‘Adder’’, ‘‘MH

Memory’’ in Fig. 3). However, when ‘‘Is valid’’ does not

generate a signal (indicating that for the given input

coordinates, the transformation produces coordinates out-

side of the valid coordinate boundary), the iteration of the

graph stops for the corresponding input coordinates, and

the next token is processed by the coordinate transform

actor, indicating a new iteration. In our implementation,

when an invalid voxel coordinate is generated for the first

time, there is a two-cycle penalty for filling the pipeline (as

we have to propagate the invalid signal through ‘‘Weight

Calculator’’ and ‘‘Adder’’); however, the penalty is only

one clock cycle for every subsequent invalid signal (as

now, we already have the two relevant actors filled with the

invalid signal).

We explore performance-area trade-offs for different

PVV values in Sect. 8.

7 Results and explanation

To validate our claims about the benefits of this design

approach, we collected hardware synthesis results for

various proposed configurations of our targeted image

registration application. Ideally we would compare these

results to a variety of acceleration platforms including

GPUs. However, comparisons to existing GPU approaches

are not appropriate yet because they use algorithms

different than those used here. GPUs in particular are yet to

be utilized efficiently for mutual information based regis-

tration. Our results are obtained using the Quar tusII

synthesis tool from Altera for the StratixII family of

FPGAs (StratixII EP2S15F484C5). Table 1 presents the

synthesis results we obtained for various configurations.

Here, the columns represent different numbers of parallel

datapaths for the MH Update actor, and the rows represent

(from top to bot tom) the amount of external memory

required for the system, the amount of logic circuitry used

in the FPGA for the MI actor, the number of DSP elements

(specialized, coarse-grain hardware modules on the FPGA

for signal processing) used by the circuit for the MI actor,

the total number of ALUTs (adaptive lookup tables) used

in the FPGA for the MI actor, and the maximum frequency

of operation of the circuit representing MI. The amount of

required external memory increases with increasing num-

bers of parallel data-paths due to multiple corresponding

copies of the ‘‘MH Memory’’ module.

The adaptive logic module (ALM) is the basic building

block of the Altera StratixII FPGA. Each ALM contains a

variety of LUT (look-up table)-based resources, two full

adders, carry-chain segments, and two flip-flops. Each

ALM can be adaptively divided into two adaptive LUTs

(ALUTs).

The ‘‘LC Registers’’ (logic cell registers) row in Table 1

represents the total number of registers used, and row

labeled ‘‘Total FPGA Area’’ gives an idea of the available

Table 1 Synthesis results for the overall system for different con-

figurations of the MH update actor

Number of parallel datapaths 1 2 4 8

External memory 256 Kb 512 Kb 1 Mb 2 Mb

LC registers in FPGA 427 576 871 1463

DSP elements 30 30 30 30

Total FPGA area (number of

ALUTs)

598 878 1,439 2,588

Max freq of operation (MHz) 74 72.2 74 70.1

J Real-Time Image Proc

123

resources in the FPGA that is used. From Table 1 we can

see that both of these figures of merit increase as the

number of data-paths increase. However, the number of

DSP elements used remain almost constant as the DSP

elements are required in the Coordinate Transform actor

(‘B’ in Fig. 3), which is not replicated with replication of

datapaths. Table 2 is independent of the PVV as the PVV

only affects the runtime of the circuit.

Next, we simulated the performance of the various

configurations of the circuit with four different PVV

values—100%, 90%, 50% and 10%. This simulation was

carried out in terms of the required number of clock cycles.

We observed that when the PVV value is low, invalid

signals are dense, and conversely, that invalid signals are

sparse when the PVV value is high. This has a bearing on

the performance, as mentioned in Sect. 6.2.

Figure 8 shows the area (measured by the number of

adaptive logic units in the circuit without considering the

external memory) and performance (measured by the

number of execution cycles) as we vary (1) the number of

parallel datapaths in the MH update actor and (2) the PVV.

In Fig. 8, we see that the number of clock cycles (and

hence execution time) decreases with increasing number of

parallel datapaths for any particular PVV and the rela-

tionship is almost linear as the datapaths can execute

independently of each other. On the other hand, the number

of clock cycles decreases when the PVV decreases without

any change in the architecture. Hence, the throughput of

the system is a function of both the number of parallel

datapaths and the PVV. However, keeping in mind that the

PVV is input-dependent and architecture-independent, we

further note that the relative change in the number of clock

cycles for increasing data-path counts is dependent on the

PVV.

Building on this key observation, we propose a PVV-

based dynamically-reconfigurable FPGA implementation

in Sect. 8. For a more complete overview of the different

configurations explored, we present in Fig. 9 a full-system

area estimation with consideration included for external

memory. Even though we do not foresee image registration

being used in embedded platforms in the near future; power

has become a concern even in FPGAs [31]. Also, power, in

addition to area, can be considered as a cost metric in the

cost performance analysis of the various configurations of

our system. Hence we measured the dynamic power

dissipation of the FPGA for both the logic part and the full

circuit, including RAM, I/O power, DSP elements, and

clocks (without considering external memory, as that

would depend on the physical board on which the appli-

cation is finally implemented). These measurements are

summarized in Table 2. As expected, we see an increase in

the power consumption as the number of parallel data-

paths increase.

8 Dynamic reconfiguration

Based on the discussion in the last section, we see that

there are two parameters to determine the execution time of

our system–namely the PVV and number of parallel

Table 2 Comparison of power consumption of circuit under different

datapath configurations

Number of parallel datapaths 1 2 4 8

Power for logic (mW) 4 15 25 35

Dynamic power for FPGA (mW) 92 115 147 159

Fig. 8 Area vs. clock cycles for different PVV values and different

numbers of datapaths

Fig. 9 Overall system memory requirements in bytes, including

external memory

J Real-Time Image Proc

123

datapaths. However, they are not independent of each

other, as the relative change in execution time with

changing datapaths is dominated by the PVV. For example,

we see that for 100% PVV, the gain in execution time with

eight datapaths (compared to a single datapath) is around

0.05 9 106 clock cycles, whereas the gain is almost

2 9 106 clock cycles when the PVV drops to 10%. So

intuitively, for high PVV, the overhead of dedicating

hardware to expose parallel datapaths and decrease the

processing time for one output from the Coordinate

Transform in Fig. 3 (which we have been referring to as

intra-pixel parallelism) may be better utilized by distrib-

uting the hardware overhead to process multiple pixels in

parallel (which we have been referring to as inter-pixel

parallelism).

In this section, we compare a multiple one-voxel/one-

memory architecture against a single one-voxel/eight-

memory architecture; we develop a more flexible, dynamic

reconfigurable image registration architecture; and present

results from our design of this new architecture. In this

development, we compare and adaptively apply inter-pixel

parallelism and intra-pixel parallelism in the forms in

which these were exposed by our dataflow-based design

(Sect. 4).

Based on our results in Sect. 7, we see that the PVV is

input-dependent. Furthermore, we see that as the PVV

increases, the run-time increases and memory access

becomes more and more of a bottleneck. Gradually, it

becomes more performance-effective to trade-off inter-

pixel parallelism in the architecture for intra-pixel paral-

lelism in the form of multiple (parallel) memories that

alleviate the memory bottleneck. This trend is demon-

strated by the data in Table 3, which compares the

performance, for different PVV values, of a 1-voxel/8-

memory architecture (intra-pixel parallelism) to a 7-voxel

architecture with 1 memory module per voxel (inter-pixel

parallelism). The value of 7 is selected here because for the

targeted FPGA device, the area of a 1-voxel/8-memory

architecture is approximately 7 times that of a 1-voxel/1-

memory architecture. The units of performance in Table 3

are nano seconds per voxel per co-ordinate transform, and

the frequencies of operation of the different memory

architectures vary between 70 and 74 MHz for the various

configurations.

We note that in Table 3, considering the given area

constraint, the performance of a 1-voxel/1-memory archi-

tecture is better than that of a 1-voxel/8-memory

architecture. However, this trend changes as the voxel

validity percentage increases. Therefore, our image regis-

tration architecture monitors the PVV metric at run-time

and dynamically reconfigures the architecture from inter-

pixel parallelism mode to intra-pixel parallelism mode

once a transition point of around 50% PVV is observed. In

order to prevent rapid change in architecture in case the

PVV oscillates around 50%—which would result in

thrashing behavior—we assign a threshold T such that the

architecture gets reconfigured when a (50 - T)% PVV

state is followed by a (50 + T)% PVV state or vice-versa.

T can be set by the user depending on image characteristics

such that the dynamic reconfiguration happens only if

necessary in terms of performance. This dynamic archi-

tecture can be viewed as an (ideally) once-per-image,

PVV-driven re-scaling of the subsystem shown in Fig. 6.

As described above, our proposed architecture monitors

the PVV at run-time and dynamically reconfigures itself

between the inter-pixel and intra-pixel parallel modes when

the PVV crosses a certain threshold. Note that the optimal

transition point is in general image-dependent, and our use

of a fixed value of (50 ± T)% as a transition point is

therefore a heuris tic approach. Dynamically determining

the transition point is a useful topic for further investigation.

The reconfiguration cost is another important aspect of

this design. The overhead of reconfiguring the system can

be minimized by incorporating a simple block of logic that

switches between the two designs. The goal of such

reconfiguration is to be able to keep as many actors common

as possible between the two designs to reduce overhead.

Actors such as coordinate transform, reference image and

optimizer in Fig. 3 can be reused across different configu-

rations. Changes with respect to the production and

consumption rates are required for the floating image and

weight calculator during reconfiguration.

For our current implementation, we have assumed that

each set of images to be registered is independent of the

next set of images, and hence we always start with a

1-voxel/1-memory architecture. An interesting direction for

future work is to explore further optimization when corre-

lations among different sets of images are known a priori.

9 Conclusion

In this paper, we have presented a structured design

approach towards implementation of an image registration

Table 3 Comparison of intra-versus inter-pixel parallelism modes

for different PVV values

PVV (%) Performance of 7

1 voxel-1 memory

Performance of

1 1voxel-8 memory

10 6.39/7 = 0.91 2.54

50 17.8/7 = 2.54 2.91

90 27.82/7 = 3.97 2.5

100 30.08/7 = 4.29 2.33

The units of performance in Table 3 are nano-seconds per voxel per

co-ordinate transform

J Real-Time Image Proc

123

algorithm onto an FPGA for real-time constraints. We have

captured the inherent concurrency of the application at the

inter-pixel and intra-pixel levels by modeling it through the

framework of homogeneous parameterized dataflow. We

have also presented some dataflow-motivated parallel

architectures for image registration, and presented a

detailed study of area/performance trade-offs for these

architectures. Based on the results obtained, we have also

presented the design and FPGA mapping of an architecture

for dynamically-reconfigurable image registration. We

have demonstrated the ability of the architecture to stra-

tegically adapt its parallel processing configuration in

response to relevant image characteristics, and for this

purpose, we have formulated the PVV metric, which rep-

resents the percentage of valid voxels that results from a

transformation on the given floating image.

References

1. Bhattacharyya, S.S., Leupers, R., Marwedel, P.: Software syn-

thesis, code generation for DSP. IEEE Trans. Circuits, Syst.-II.

Analog Digital Signal Process 47(9), 849–875 (2000)

2. Bilsen, G., Engels, M., Lauwereins, R., Peperstraete, J.A.: Cyclo-

static dataflow. IEEE Trans. Signal Process 44(2), 397–408 (1996)

3. Castro-Pareja, C.R., Daly, B., Shekhar, R.: Elastic registration

using 3D chainmail. In: Proceedings of the SPIE (Medical

Imaging) (2006)

4. Castro-Pareja, C., Jagadeesh, J.M., Shekhar, R.: FAIR: a hard-

ware architecture for real-time 3-d image registration. IEEE

Trans. Inf. Technol. Biomed. 7(4), 426–434 (2003)

5. Dandekar, O., Walimbe, V., Siddiqui, K., Shekhar, R.: Image

registration accuracy with low-dose CT: how low can we go? In:

Proceedings of the IEEE International Symposium on Biomedical

Imaging, pp. 502–505 (2006)

6. Haim, F., Sen, M., Ko, D., Bhattacharyya, S.S., Wolf, W.:

Mapping multimedia applications onto configurable hardware

with parameterized cyclo-static dataflow graphs. In: Proceedings

of the International Conference on Acoustics, Speech, and Signal

Processing, pp. III-1052–III-1055, May 2006

7. Haubelt, C., Falk, J., Keinert, J., Schlichter, T., Streub, M.,

Deyhle, A., Hadert, A., Teich, J.: A system C-based design

methodology for digital signal processing systems. EURASIP J.

Embedded Syst. Article ID 47580, 22, (2007)

8. Hemaraj, Y., Sen, M., Shekhar, R., Bhattacharyya, S.S.: Model-

based mapping of image registration applications onto configu-

rable hardware. In: Proceedings of the IEEE Asilomar

Conference on Signals, Systems, and Computers, October 2006

9. Holden, M., Hill, D., Denton, E., Jarosz, J., Cox, T., Rohlfing, T.,

Goodey, J., Hawkes, D.: Voxel similarity measures for 3D serial

MR brain image registration. IEEE Trans. Med. Imaging 19, 94–

102 (2000)

10. Horstmannshoff, J., Meyr, H.: Efficient building block based RTL

code generation from synchronous data flow graphs. In: Pro-

ceedings of the Design Automation Conference (2000)

11. Lee, E., Messerschmitt, D.: Synchronous data flow. In: Pro-

ceedings of the IEEE, September 1987

12. Maes, F., Vandermeulen, D., Suetens, P.: Medical image regis-

tration using mutual information. Proc. IEEE 19, 1699 (2003)

13. Maintz, J.B., Viergever, M.: A survey of medical image regis-

tration. Med. Image Anal. 2(1), 1–36 (1998)

14. McAllister, J., Woods, R., Walke, R., Reilly, D.: Multidimen-

sional DSP core synthesis for FPGA. J. VLSI Signal Process Syst.

Signal Image Video Technol. 43(2–3) (2006)

15. Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.: Mutual infor-

mation based registration of medical images: a survey. IEEE

Trans Med Imaging 22(8), 986–1004 (2003)

16. Sen, M., Corretjer, I., Haim, F., Saha, S., Schlessman, J., Bhat-

tacharyya, S.S., Wolf, W.: Computer vision on FPGAs: design

methodology and its application to gesture recognition. In: Pro-

ceedings of the IEEE Workshop on Embedded Computer Vision,

pages CD-ROM version, San Diego, pp. 8, June 2005

17. Sen, M., Bhattacharyya, S.S., Lv, T., Wolf, W.: Modeling image

processing systems with homogeneous parameterized dataflow

graphs. In: Proceedings of the International Conference on

Acoustics, Speech, and Signal Processing, pp. V-133–V-136,

March 2005

18. Sen, M., Bhattacharyya, S.S: Systematic exploitation of data

parallelism in hardware synthesis of DSP applications. In:

Proceedings of the International Conference on Acoustics,

Speech, and Signal Processing, pp. V-229–V-232, May 2004

19. Sen, M., Hemaraj, Y., Bhattacharyya, S.S., Shekhar, R.: Recon-

figurable image registration on FPGA platforms. In: Proceedings

of the IEEE Biomedical Circuits and Systems Conference,

London, pp. 154–157, November 2006

20. Shekhar, R., Walimbe, V., Raja, S., Zagrodsky, V., Kanvinde, M.,

Wu, G., Bybel, B.: Automated three-dimensional elastic regis-

tration of whole-body PET and CT from separate or combined

scanners. J. Nucl. Med. 46(9), 1488–1496 (2005)

21. Shekhar, R., Zagrodsky, V., Castro-Pareja, C.R., Walimbe, V.,

Jagadeesh, J.M.: High-speed registration of three- and four-

dimensional medical images by using voxel similarity. Radio-

graphics 23(6), 1673–1681 (2003)

22. Stefanov, T., Zissulescu, C., Turjan, A., Kienhuis, B., Deprettere,

E.: System design using Kahn process networks: the Compaan/

Laura approach. In: Proceedings of the Design, Automation and

Test in Europe Conference and Exhibition, February 2004

23. Williamson, M.: Synthesis of parallel hardware implementations

from synchronous dataflow graph specifications. Ph.D. thesis,

University of California at Berkeley, May 1998

24. Zitová, B., Flusser, J.: Image registration methods: a survey.

Image Vis. Comput. 21(11), 977–1000 (2003)

25. Plishker, W., Dandekar, O., Bhattacharyya, S.S., Shekhar, R.: A

taxonomy for medical image registration acceleration tech-

niques. In: Proceedings of the IEEE-NIH Life Science Systems

and Applications Workshop, Bethesda, pp. 215–218 November

2007

26. Ino, F., Ooyama, K., Hagihara, K.: A data distributed parallel

algorithm for nonrigid image registration. Parallel Comput 31,

19–43 (2005)

27. Koehn A., Drexl H., Ritter F., Koenig M., Peitgen H.-O.: GPU

Accelerated image registration in two and three dimensions. In:

Informatik Aktuell. Springer, Berlin (2006)

28. Ohara, M., Yeo, H., Savino, F., Iyengar, G., Gong, L., Inoue, H.,

Komatsu, H., Sheinin, V., Daijavad, S., Erickson, B.: Real-time

mutual-information-based linear registration on the cell broad-

band engine processor. In: presented at 4th IEEE International

Symposium on Biomedical Imaging, Arlington, 2007

29. Köhn, A., Drexl, J., Ritter, F., König, M., Peitgen, H. O.: GPU

accelerated image registration in two and three dimensions. In:

Handels, H., Ehrhardt, J., Horsch, A., Meinzer, H.-P., Tolxdorff,

T. (eds.) Bildverarbeitung für die Medizin. Informatik aktuell,

pp 261–265. Springer, Berlin (2006)

30. Plishker, W., Dandekar, O., Bhattacharyya, S.S., Shekhar, R.:

Towards a heterogeneous medical image registration acceleration

platform. In: Proceedings of the IEEE Biomedical Circuits and

Systems Conference, Montreal, pp. 231–234, November 2007

J Real-Time Image Proc

123

31. Kevin, M.: Power, suddenly we care. In: FPGA and Program-

mable Logic Journal, April 2005. http://www.fpgajournal.com/

articles_2005/pdf/20050426_power.pdf

Author Biographies

Mainak Sen received his Ph.D at the Electrical and Computer

Engineering Department at the University of Maryland, College Park

in November 2006. He received his B. Engineering degree (with

honors) in Computer Science and Engineering from Jadavpur

University, India in 2001. His research interests are model-based

hardware design, modeling of dynamic applications using dataflow

graphs, hardware\software co-design. He has worked extensively on

mapping of image processing algorithms onto FPGAs. He is currently

working at Cisco Systems in San Jose, CA, USA.

Yashwanth Hemaraj received his Masters in Electrical and

Computer Engineering from University of Maryland in June 2007 and

his B.S in Electronics and Communication Engineering from National

Institute of Technology Karnataka, Suratkal, India. He is currently

working at Texas Instruments, Germantown, Maryland. His research

interests include DSP algorithms, Image, Video and Speech pro-

cessing algorithms.

William Plishker is a Postdoctoral research fellow with a dual

appointment with University of Maryland, College Park and

Department of Radiology, University of Maryland School of Medi-

cine. He received his Ph.D in Electrical Engineering from University

of California, Berkeley in 2006 and B.S in Computer Engineering

from Georgia Institute of Technology in 2001. His research interests

include design automation techniques for programmable embedded

systems.

Raj Shekhar is an Assistant Professor of Diagnostic Radiology,

Bioengineering, and Electrical and Computer Engineering at the

University of Maryland, Baltimore and College Park. He previously

served as a Staff Scientist at the Cleveland Clinic and as a Senior

Engineer at Picker International (now Philips Medical Systems).

Dr. Shekhar received his doctorate in Biomedical Engineering from

the Ohio State University in 1997. Dr. Shekhar’s research interests are

medical image processing, real-time computing, 3D ultrasound, and

image-guided interventions. Dr. Shekhar has authored over 50 sci-

entific papers, including over 20 peer-reviewed articles. He also holds

three US patents.

Shuvra S. Bhattacharyya is a Professor in the Department of

Electrical and Computer Engineering, University of Maryland at

College Park. He holds a joint appointment at the University of

Maryland Institute for Advanced Computer Studies (UMIACS).

Dr. Bhattacharyya is coauthor or coeditor of four books and the author

or coauthor of more than 100 refereed technical articles. His research

interests include VLSI signal processing, embedded software, and

hardware/software co-design. He received the B.S. degree from the

University of Wisconsin at Madison, and the Ph.D. degree from the

University of California at Berkeley. Dr. Bhattacharyya has held

industrial positions as a Researcher at the Hitachi America Semi-

conductor Research Laboratory (San Jose, California), and Compiler

Developer at Kuck & Associates (Champaign, Il, USA).

J Real-Time Image Proc

123

http://www.fpgajournal.com/articles_2005/pdf/20050426_power.pdf
http://www.fpgajournal.com/articles_2005/pdf/20050426_power.pdf

	Model-based mapping of reconfigurable image registration �on FPGA platforms
	Abstract
	Introduction
	Background
	Dataflow modeling
	FPGA technology

	Image registration
	MI-based image registration
	Computation of mutual information
	Optimization

	Application modeling
	Actor implementation
	Experimental setup
	Application parallelism
	Relationship between PVV and performance

	Results and explanation
	Dynamic reconfiguration
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

