arXiv:1109.4609v1 [cs.NE] 21 Sep 2011

memristive fuzzy edge detector

Farnood Merrikh-Bayat, Saeed Bagheri Shouraki

Abstract

Fuzzy inference systems always suffer from the lack of effitistructures or platforms for their hardware
implementation. In this paper, we tried to overcome thisofgm by proposing new method for the implementation
of those fuzzy inference systems which use fuzzy rule basmake inference. To achieve this goal, we have
designed a multi-layer neuro-fuzzy computing system basedhe memristor crossbar structure by introducing
some new concepts like fuzzy minterms. Although many appibos can be realized through the use of our
proposed system, in this study we show how the fuzzy XOR fanatan be constructed and how it can be used to
extract edges from grayscale images. Our memristive fudgg eletector (implemented in analog form) compared
with other common edge detectors has this advantage thahiegtract edges of any given image all at once in

real-time.

. INTRODUCTION

In the past decades, the integrated circuits (IC) indus&ty $uccessfully followed Moores Law/ [1].
However, Complementary Metal Oxide Semiconductors (CM&&)ing is approaching a physical and
economical limit. To effectively extend Moores law, in aiiloih to pushing the limit of lithography
for smallest possible devices, there is a great need for moveerful devices, disruptive fabrication
technologies, alternative computer architecture and racheh materials, etc.

One possible way to extend this law beyond the limits of titos scaling is to obtain the equivalent
circuit functionality using an alternative computing sete Nowadays, most of the currently working
computing systems like Digital Signal Processors (DSPd)Rald Programmable Gate Arrays (FPGAS)
are constructed based on two basic concepts; they useldagia to perform computing or decision
making tasks and they work in discrete form. The former tsdnla separation of memory and computing
units [2] and inefficient computation while the later onededo slow and high area-consuming systems.

Such computing paradigms usually suffer from the constasdnof establishing a trade-off between
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flexibility and performance. They also introduce limitedmerical precision both in the input signals and
the algorithmic quantities. For example, input signalsweeally quantized to limited numeric precision in
A/D converters. In addition, the arithmetic operations @gied out with limited computational precision
and the results are rounded or truncated to a specific linpitedision [3], [4], [5].

In recent years, particularly after the publication of thaper [6] in 1 May 2008, we have seen
considerable scientific and technological progress in thlkel fof memristive computing systems. This
great interest in these systems is mostly due to their pgatentovercoming most of the aforementioned
challenges in front of today’s digital systems which has mated them as an alternative computing
scheme. For example, it has been demonstrated that thesamsysan be constructed much denser
and faster through the use of nano-crossbar technology teyddonsume much less energy than their
counterparts[[7]. However, almost all of these systems wgasnaconstructed based on the concepts of
traditional digital logic.

Recently, we showed that it is possible to design a memeisinft computing system|[8] with learning
capabilities which uses fuzzy logic instead of digital logp do its computations. In addition to be build
on fuzzy logic’s concepts, it was implemented in analog fammd therefore it was very fast and completely
consistent with the analog nature of memristor. Moreovar, groposed neuro-fuzzy computing system
had this advantage that in its hierarchical structure, migrmaits were assimilated with computational
units like what we have in human brain. Now, in this paper, wk show another way to implement
fuzzy inference systems that use fuzzy rule base to makeemée by introducing new concepts likezzy
minterms Although this analog multi-layer neuro-fuzzy system whi somehow inspired from our earlier
work can be used in so many image processing tasks, here weamtentrate on the application of edge
detection from grayscale images. For this purpose, at fiesimil describe the fuzzy XOR function by
fuzzy rule base. Then, this fuzzy function will be constagcthrough our multi-layer neuro-fuzzy system
and then will be applied to consecutive pixels of the inpwitygcale image to extract edges from it. As
simulation results indicate, our proposed method extractesh sharper and meaningful edges compared
with traditional edge detecting algorithms even in noisyiemment. However, the main benefit of our
fuzzy edge detector is for its efficient hardware implemeoain analog form. Actually, this is because
of this advantage that this structure can detect all hotatoand vertical edges in grayscale images
simultaneously in real-time. Finally, it should be noteattsince our computing system is constructed

by the use of memristor crossbars, it can be simply record@y@ven during its working time by the



reprogramming of memristors in crossbars.

This paper is organized as follows. The working procedurenefmristor crossbar structures and their
application in the hardware implementation of artificialired networks are described in Sectioh Il. The
process of constructing binary XOR function by using themoek proposed by McCulloch-Pitts and the
problem of thresholding in these networks are demonstrate®ectionIll. Section IV is devoted to the
explanation of our proposed multi-layer neuro-fuzzy cotimgusystem designed for the implementation of
those fuzzy inference systems which use fuzzy rule base ke méerence. Application of the constructed
fuzzy XOR function in detecting edges from grayscale imaggsesented in Sectidn V. Eventually, some

experimental results are presented in Sedtign VI, beforelasions in Sectioh VII.

II. MEMRISTOR CROSSBARS

After the first experimental realization of the fourth funaental circuit element,e. memristor, in its
passive form([6], whose existence was previously predictd®71 by Leon Chua [9], many researches are
seeking its applications in variety of fields such as neuevse, neural networks and artificial intelligence.
It has become clear that this passive element can have maaeptd applications such as creation of
analog neural network and emulation of human learrning [A0]ding programmable analog circuits [11],
[12], constructing hardware for soft computing tools![18hplementing digital circuits[[14] and in the
field of signal processing [15], [16].

From the mathematical model of memristor (for example the ogported by HP[]6]), it can be
concluded that passing current from memristor in one doecwill increase the memristance of this
passive element while changing the direction of the apptiedent will decrease its memristance. In
addition, passing current in one direction for longer perad time will change the memristance of the
memristor more. Moreover, by stopping the current from pasthrough the memristor, memristance of
the memristor will not change anymore. As a result, memrisaothing else than the analog variable
resistor where its resistance can be properly adjusted &ygehg the direction and duration of the applied
voltage. Therefore, memristor can be used as a simple gtai@gce in which analog values can be stored
as a memristance instead of voltage or charge.

A crossbar array basically consists of two sets of condactpiarallel wires intersecting each other
perpendicularly. The region where a wire in one set crosses a wire in the other set is called a
crosspoint (or junction). Crosspoints are usually sepdrdity a thin film material which its properties

such as its resistance can be changed for example by cargrttle voltage applied to it. One of such
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Fig. 1. A typical memristor crossbar.

devices is memristor which is used in our proposed circuitghis paper. Figuré]1l shows a typical
memristor crossbar structure. In this circuit, memristetsich are formed at crosspoints are depicted
explicitly to have better visibility. In this crossbar, mastance of any memristor can simply be changed
by applying suitable voltages to those wires that memrigdiabricated between them. For example,
consider the memristor located at coordinate (1, 1) (cngsgioint of the first horizontal and the first
vertical wires) of the crossbar. Memristance of this metari€an be decreased by applying a positive
voltage to the first vertical wire while grounding the firstrizontal one (or connecting it to a negative
voltage). Dropping positive voltage across one memristir gause the current to pass through it and
consequently, memristance of this passive element willdmeehsed. In a similar way, memristance of this
memristor can be increased by reversing the polarity of gied voltage. As stated before, application
of higher voltages for longer period of time will change themristance of the memristor more. This
means that the memristance of any memristor in the crossimabe adjusted to any predetermined value
by the application of suitable voltages to specific row andiom of the crossbar.

To summarize, memristor crossbar is a 2-dimensional gr&d #malog values can be stored in its
crosspoints through the memristance of the memristorss&prently, it seems that the memristor crossbar
is a perfect structure to construct and store 2-dimensieaiht matrix of neural networks [17], [18] as

used in these paper as well.

I1l. USING ARTIFICIAL NEURAL NETWORKS TO CONSTRUCT A BINARYXOR FUNCTION AND THE

PROBLEM OF THRESHOLDING IN THESE NETWORKS

Since our goal is to propose a simple structure for the fuz@RXunction, it will be very useful to
see how binary XOR gate is implemented in primary artificliral networks. For this purpose, consider
one of the simplest networks proposed by McCulloch-Pittd943 [19], [20] for the implementation of

logical XOR gate which is depicted in Fig. 2(a) for converienin this figure, each neuron with binary



activation receives a number of inputs (either from origida@a or from the output of other neurons in
the networks). Each of these inputs comes via a connectairhts a strength (or weight); these weights
correspond to synaptic efficiency in a biological neuroneéich neuron, the weighted sum of inputs is
formed and then a simple hard thresholding function is &ppto the sum to produce the output result
of the neuron. In the network of Fig. 2[a), all neurons exgentrons of the input layer have a threshold
value of 2 (as written near to them on the figure) which meaaslinen their total input (weighted sum
of inputs) becomes more than 2, their output will be set tacldg Otherwise, their response will become
equal to logic 0. As a result, this network performs the lagOR function on two binary inputs,e.
x1 andxq, and creates binary outpyt

Note that in the network shown in Fig. 2(a), each neuron wighcorresponding connection weights
performs a simple logic function. For example, in the hidtsrer, neurornz; with connection weights of
wy; andws; creates logic function:; 73 (r;1 AND NOT x5) while the neuror:; with connection weights
of wy, andws, builds logic functionziz, (zo AND NOT z;). Also, in the output layer, neurom with
connection weights ofv3 andw,3 creates the logical OR function on the outputs of neurgnand zs.

Therefore, the overall network of Fig. 2(a) performs thédiwing logic function on its inputs:;; andz,:
y=x1 XOR 1y =21 ® 19 = 2175 + 2277 = (x1 AND NOT z3) OR (x9 AND NOT z;) (1)

or equivalently it can be expressed as:
y = (1 A —wg) V (22 A 1q) (2)

Based on these equations, it can be said that the neural kativiBig.[2(a) implements the logical XOR
function in thesum of productform. However, this network compared with traditional dagjicircuits
has this advantage that by some maodification, it can haveitegaicapability.

Note that we have written Eq.(1) in the form of E@l (2) to shdw probable similarities between
tasks which are done in traditional neural networks withsthtasks that fuzzy logic usually performs.
For this purpose, we can interpret the working procedurehefretwork of Fig[ 2(a) in another way.
Figure[2(D) shows the same network but in a different formthis figure, connection weights between
layers are implemented through the nano-crossbar stegctér complete description of the procedure of
the construction of synaptic weights through the usage ohnstor crossbar is provided in [13] and [8].
Let's denote those connection weights which are located/dsst the input and the hidden layer by a

2 x 2 matrix S and those connection weights which are located betweenidder and the output layer



Fig. 2. (a) The artificial neural network proposed by McCeciiePitts for the implementation of logical XOR function.) (Bhe same
network of Fig[2(d) redrawn by the usage of nano-crosshactsires. (c) This figure shows that the connection weigttimean be treated
as a fuzzy relation. In this case, activation of one concepie@input layer will select one column of the fuzzy relatias an output.

by a2 x 1 vectora. In addition, let's assume that each neuron in the netwqgpkesents one numerical
or linguistic concept. For example, in the network of Figh)Rthe output neuron may represent concepts
like “red”, “small”, “age=23" and etc. In this case, it can kaid that when the output of one neuron
becomes active (logic 1), it shows that its correspondingcept is happened. Therefore, by this way we
have changed the meaning of the output of neurons. In the othiels, we have assumed that the output
of each neuron at any time shows our confidence degree ab®wcturrence of the concept assigned
to that neuron. Consequently, by considering the workirecgdure of the network of Fif. 2(b) in this
way, it becomes clear that signals which are propagatingemetwork will be in the form of confidence
or membership degrees. In this case, the connection weighixvt and the connection weight vector
a will somehow have the role of fuzzy relations in fuzzy infece systems [8]. To clarify this matter

further, consider the following example. Assume that tiguts of the McCulloch-Pitts neural network of



Fig.[2(b) arex; = 0 andz, = 1 where for this configuration of inputs, the output of the systshould
bey =1 (remember that this network implements the logical XOR fiom). Figurel 2(d) shows the first
step in which inputs are applied to the network. Settingo logic 1 means that the confidence degree
about the occurrence of that concept which is assigned tmney is 1 or equivalently 100 percent. On
the other hand, by setting; to logic O we say that we are absolutely sure that the concepgred to
neuronx; has not happened or our confidence degree about the ocauwétius concept is zero. Based
on the current output values of neurans and z,, input of neurons:; and z;, can be computed which
will be equal to -1 and 2 respectively as shown in FFig.]2(c) ai.Wote that if we put these two values
in a vector like[-1 2]7, it will become equal to the second column of matfixwhich can be also

obtained through the simple vector to matrix multiplicatias follows:

1 2" =Sx[0 17 = SR IV o0 1" 3)
-1 2

where in this equatior]p) 1]7 is the outputs of neurons; andz, in a vector form. Now, if we assume
that matrixS is a fuzzy relation connecting vector variables= [z; x5] andz = [z; 2], then the vector
to matrix multiplication of Eq.[(3) will be equal to the sumegluct fuzzy inference method [21]. Again,
inputs of neurong; and z; will have the role of confidence degrees. For instance, whethis example
the input of neuron, becomes 2, it means that the confidence degree that the eccarof the concept
assigned to neurom; may result in the occurrence of the concept assigned to neyr high. On the
other hand, when the input of neurenis -1, it means that those concepts which are assigned tomgur
x5 andz, are independent from each other and we do not have beliefit@diring of neuronz; results in
the firing of neuror;. In the other words, firing of neuram, activates neuron, with higher confidence
degreesj.e. 2, compared with other neurons which are located in the sayes.|

In the next step, each neuron puts a threshold on its inpwgreThre two main reasons behind this
thresholding task in traditional neural networks. Firstthis way it is possible to force output of neurons
to be bounded between two specific values (in the special afate hard thresholding of this example,
output of neurons will be either 0 or 1). Second, threshgdif the outputs of neurons will eliminate
those neurons which have low output value and thereforet;genlinearities to the system. As a result,
these neurons cannot affect the rest of the network whileetfeet of those neurons which their outputs
are above the threshold value will be strengthened. Howévierthresholding task has a simple problem:

what should be the threshold value? In traditional neurtd/okk it is common to determine the threshold



value through the training process. Now, let's see how tiniegholding task can be modified in networks
that deal with confidence degrees (as explained beforepuitittiegrading the performance of the network
significantly. In fuzzy logic, it is well-known that confidee or membership degrees are always non-
negative and there is no necessity for the height of fuzzy @ehumbers to be equal to one. Therefore, in
networks which are working with confidence degrees, instdatbmmon thresholding functions such as
a binary or bipolar sigmoid function, other functions canused. However, these functions should have
the aforementioned property: output of neurons with highatput value should be strengthened more
than those neurons which have lower output value. For ex@angule of such functions ig(z) = z”
wheren can be any real number greater than 1. It is clear that usiegptfunctions instead of common
threshold functions can have this benefit that they do noe laay variable parameter to be determined
like the threshold value.

Based on the explanations provided in this section, we watlify the network of Fig[ 2(B) to create a
new structure as the hardware implementation of fuzzy XOfttion which is capable of working with

signals of a kind of confidence degree.

IV. Fuzzy ExcLUSIVE OR (XOR)FUNCTION AND ITS MEMRISTOR CROSSBARBASED HARDWARE

IMPLEMENTATION

In this section, we want to present a new way to build fuzzyddgnctions specially the fuzzy Exclusive
OR (XOR) gate. Actually, we want to show how a fuzzy versiortted McCulloch-Pitts network shown
in Fig.[2(a) can be constructed. First of all, note that thezyuXOR function between input variables
andzx, can be expressed through the following fuzzy rule base:

IF z1 iIssmall  AND zy iISsmall  THEN y is small

IF x;issmall  AND  z, is big THEN g is big

IF  x; is big AND =z, issmall THEN yis big

IF  x; is big AND 1z, is big THEN y is small

It is clear that any other fuzzy system which is expresseeédas fuzzy rule base can be constructed
in a similar way by utilizing our proposed method as desctibelow.

Based on the explanations provided in Section Ill, we hawgp@sed a memristor crossbar-based
hardware for the fuzzy XOR function. This hardware is showifrig.[3. The circuit of Figl_I3 consists of
three different parts which are the fuzzification, the fumyterm creating and the aggregation units. In

the next three subsections, the working procedure of eathesk parts is explained.
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Fig. 3. Our proposed structure for the hardware implememtaif the fuzzy XOR function.

A. The fuzzification unit

Since inputs and outputs of most of currently working systeare crisp, we need to find a way to
convert them to their corresponding fuzzy numbers befoneguhem in our structure. Consequently, the
first part of the circuit of Figl.13 (from the input layer to thesti hidden layer specified by a gray dashed
rectangle) is intended for this purpose.

In the antecedent parts of the fuzzy rule base describingmbring procedure of the fuzzy XOR
function, two different concepts or fuzzy sets are congdefor each of the input variables which
are “small” and “big”. At any time, based on the observed egaldor input variables, some of these
concepts become active with different strengths. For exanwhen input variabler; has its maximum
value, its corresponding “small” and “big” concepts shob&tome active with minimum and maximum
possible strengths or confidence degrees respectivelythi®reason, we have considered two distinct

input terminals for each of the input variables in the fuzafion unit of the circuit of Figl13; one for
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concept %; is big” and one for concepta; is small” where in this structure can be either 1 or 2.
In this case, each of these input terminals will specify amdividual concept and those values that we
apply to them will somehow determine our confidence degréesitathe occurrence of these assigned
concepts for given input data. Actually, in this way, we tregut data as confidence degrees and not
as a meaningless value of crisp variables. Therefore, incitogit of Fig.[3, input and output values
of the system are of a kind of membership or confidence degrdsit is the combination of these
values and those concepts which are assigned to input apaditauturons that creates fuzzy numbers.
For example in the application of edge detection, the first thie second input neurons of the system of
Fig.[3 will represent concepts “brightness of the first inpixel” and “darkness of the first input pixel”
respectively. In this case, when intensity values of pixeks applied to these neurons as an input, they
will be interpreted as the confidence degree of those afareamed concepts. Therefore, henceforward
when the intensity value of one pixel is 255, it will not shawetbrightness of the pixel anymore but it
will demonstrate that our confidence degree about the lrggst of this pixel is maximum or 255. On
the other hand, applying 255 to the input neuron which is #dpgasentative of the concept “darkness on
the first input pixel” means that our confidence degree abdwitdarkness of this pixel is maximum and
no other pixel in the image can be darker than this one. Taereit should become clear that in our
network, applied input and generated output values do ne¢ Bay meaning by themselves alone and
they only specify the strength of the activation of thoseaspts which are assigned to neurons.

Since the two fuzzy sets defined on the universe of discowfseput variablesj.e. “small” and “big”,
are dependent on each other (because when one variable ‘ibigibtt will be “small”), values which
are applied to their corresponding input terminals showdbpendent as well. For this purpose, in the
structure of Fig[ B, we apply the current value of variableo the input terminal representing concept
“z,; is big” and its complement which is defined ag** — x; where z"** is the maximum value that
variablez; can take to the other input terminal representing concepis’' small”. By this trick, when
the value of variabler; is small, applied value to the input terminal representingoept “; is small”
will be high showing that our confidence degree about theditglof the concept &; is small” is high.
Similarly, in the application of edge detection, intensiglue of pixel will be directly applied to input
terminal representing concept “pixel is bright” and its atage (255 minus the intensity value of the pixel)
will be applied to input terminal representing concept &iis dark”.

Now that we have proposed a method to construct fuzzy cos@phe input stage of our system, it
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is time to define the shape of the membership functions oktliezzy sets (concepts). For this purpose,
a simple preprogrammed memristor crossbar structure isidgered in the fuzzification unit of the circuit
of Fig.[3 which is inspired from the first layer of the network Fig. [2(b]. In this memristor crossbar
structure, the first two vertical wires somehow acts as aans@/ of discourse of variable, while the
next two vertical wires represent the universe of discowfsénhe other variablej.e. z5. In this case,
preprogrammed weights at crosspoints of the crossbar waikehhe role of the membership functions
of the fuzzy sets defined on the universe of discourses oft impuables. In fact, it is the configuration
and value of these weights that specify the shape of thesebsrship functions. For example, In the
fuzzification unit of the circuit of Figl 13, weights on the fimnd second columns of the crossbar define
the shape of the membership functions of fuzzy sets “big” ‘@mdall” respectively on the universe of
discourse of variable,. The shape of these membership functions that we have @adiih this sample
circuit is depicted in the left side of the crossbar whileitimeimerical specifications are presented in the
inset of the figure. Note that by the reprogramming of memrssat crosspoints of the crossbar, shapes
of these membership function and their support can be sicipyged. We have a similar case for input
variablex,. It is evident that any number of fuzzy sets with any arbytravembership functions can be
implemented in a similar way.

Now, lets see how the fuzzification unit of our proposed systerks. To clarify the working procedure
of this unit, consider the following simple case. Assumd tha current values of input variables and
x, arex$® andxs® respectively. In this case, similar to what we had in Sedliiroutput column vector

of the fuzzification unitj.e. v,..ification, CaN be written as:
Vfuzsification = 05781 + (2797 — 257 ) sy + 2 %s5 + (277 — 25”) s, (4)

wheres; for i = 1,2, 3,4 is the column vector representing predetermined weighttherith column of

the crossbar located between the input and the first hidder Endz"** for i = 1,2 is the maximum
value that input variable; can take. However, since weights are programmed on the icsicolumns

of the crossbar in a way that they do not have overlap with ktsign the next two columns, it can be
said that upper rows of this crossbar creates the weighteda$uthe membership functions defined on
the universe of discourse of input variabte while lower rows of the crossbar generates the weighted
sum of those membership functions which are defined on theetse of discourse of input variable.
Therefore, on the upper rows of the first hidden layer (outguthe fuzzification unit) we will have a

fuzzy number with the membership function gf**s; + (:ET‘” — xff”s) so corresponding to the applied
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crisp input valuer$® and on the lower rows we will have a fuzzy number with the mensttip function
of 29"%s3 + (a:gm — :cng) s, corresponding to the applied crisp input valtg.

To summarize, the role of the fuzzification part of the citasito convert the crisp input numbers
to their corresponding fuzzy numbers where the shape ottheszy numbers are specified through the
weights which are programmed on columns of the crossbaall#imote that output of this part of the

circuit are from a kind of membership degrees and therefoeg are always non-negative.

B. the fuzzy minterm creating unit

That part of the network of Fid.]3 which is located between firt and the second hidden layer
and specified by a grayscale dashed rectangle is called #ag fuinterm creating unit. The main role
of this part of the circuit is to compare the created fuzzy ham by the fuzzification unit with some
patterns which are programmed on the columns of the crasibdact, this section of the proposed
system performs a dot product between input fuzzy numbargpo of the first hidden layer) and the
weight vectors which are formed on columns of the middle slvas. Therefore, it somehow measures
the available similarities between input fuzzy numbers pretprogrammed weights on columns of the
crossbar.

However, the fuzzy minterm creating unit actually does siing more than a simple dot product
between vectors. To make it more clear, consider the firgt I@fi-most) column of the crossbar in this
unit. The output of its corresponding neuron (connectedhito ¢column) will be maximum only when the
both of input variablesi.e. z; andz,, have their maximum values (Note that in this structure, imeags
have this condition that both of the input variables and Wweigctors are non-negative). Therefore, it can
be said that this column of the crossbar implements the edést part of the following fuzzy rule:

IF x1 iIsbig  AND xg isbig  THEN 1 D xo IS small

and output of its corresponding neuron for any observedtspill show the result of the evaluation
of the antecedent part of this rule for this given data. Simgeits of this unit of the system are fuzzy
numbers and this column of the crossbar somehow implemieat&NID function between input variables
themselves and not their complements, we can assume thiaates the first fuzzy minterme. minterm
number 0. Similar to Boolean minterms, this minterm will éaks maximum output value if and only if
both of its input variables have their maximum values (oriejantly when both of them are “big”). In
a similar way, the second column of the crossbar clearly @mgints the antecedent part of the following

fuzzy rule:
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IF x1 iIsbig  AND ro iSsmall  THEN 1 @ xo IS big

which its output can be considered as the second fuzzy mintextween input variables (minterm
number 1). This is because of the fact that this column implem the AND function between the
variablez; (or concept &; is big”) and the complement of the second variabe(or concept % is
small”). Therefore, for any different configuration of twans of the antecedent parts of the rules, one
distinct fuzzy minterm will be constructed. These fuzzy tarms have this property that at anytime and
based on input data, all of them will be active with differetitengths but only one of them will have
higher output value compared with other minterms. As a te$yl this way we can recognize which
concepts have been happened simultaneously.

Now, let's assume that specific inputs are applied to theesysind we want to evaluate the antecedent
part of each of these rules for these inputs. In the other sydat these inputs, we want to determine
the strength of the activation of each of these fuzzy mingerfActually, this evaluation task is the second
main duty of the fuzzy minterm creating unit which is done listpart of our system through the dot
product of the membership functions of the created fuzzy men (outputs of the first hidden layer) and
weight vectors programmed on the columns of the crossbar.

Finally, note that based on the provided explanations abmitthresholding task in artificial neural
networks, the activation function of the output neuronshef fuzzy minterm creating unit is considered to
be x" to magnify the difference between outputs of neurons ofldyisr. However, the role of this kind of
activation function can be interpreted in another way; ihebow emulates the role of the AND operation
between two parts of the antecedent of fuzzy rules. Noteweatisually connect parts of the antecedent
by a conjunction ('AND’) to have a simple way to know when théwo parts happen simultaneously. If
these two parts happen at the same time, the evaluation ofsbk corresponding rule will be higher than
any other rules. By the use of thé¢ (n > 1) we will have the same condition. In this case, evaluation
result of those rules (fuzzy minterms) which have only ongvaart in their antecedent will be much
less than the evaluation result of the rule which both pafrisscantecedent are active at the same time.

Actually, here we tied to reveal the similarities betweenzfurule bases and truth tables in digital logic.

C. The aggregation unit

The last part of the circuit of Fid.l 3 is the aggregation unitdted between the second hidden layer
and the output layer. The main role of this unit is to aggregainsequence parts of the rules based on

their evaluation results. In our proposed structure, thi€g@ss is done by summing outputs of those rules
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(neurons) which have the same consequence part. Thereferejll have one output per each different
consequence part (concept) in fuzzy rule base. Here, soffieeetices are visible between our proposed
inference system and other common inference methods. dfiedt, we have used a summation operator
as a triangular conorm to aggregate fuzzy rules. Seconck siar primary goal was to construct a system
with fuzzy input and fuzzy output terminals, no defuzzifioatunit is intended at the output stage of the
system. Consequently, as mentioned before, at the outpye sif our system, instead of one simple crisp
output, we will have one output per each distinct conseqeigrast (output concept). Herein, it should
be noted that similar to other t-conorm operators, the tesuthis summing operation is of a kind of
membership degrees which determines confidence degrees tgovalidity of those concepts which
are assigned to output neurons. For example, in the netwepictetd in Fig[ B, the first output neuron
represents concepty @ x» is big”. In this case, by the increase of the output of thisraeuour belief
about the occurrence of the concept ¥ x5 is big” which is assigned to this neuron increases as well.
Since the concepts; ® x5 is big” is the consequence part of these following rules:

IF x; is big AND =z, is small THENz; & z» is big

IF z1 is small AND x5 is big THEN z; & x5 is big

which are constructed on the second and the third columnseafrossbar of the fuzzy minterm creating
unit, outputs of their corresponding neurons are summeetheg in the aggregation unit to create a single
output neuron for representing concept ¥ x5 is big”. In this case, when the value of the XOR function
between input variables; and z, is high (x; and z, differ significantly), output of this neuron will
be more than any other neurons at the output layer. As a yesotte the output of this neuron in the
aggregation unit has a direct relationship with the resuithe XOR function between input variables, it
can be simply considered as a final output of the system. Tdrereunlike to traditional fuzzy systems
which usually consider the own concepts such as “y=1" or §=as their final outputs, output of our
system is the confidence degrees of these concepts.

Finally, it should be emphasized that for each output coniceje circuit of Fig[ 8, we have considered
only one single row (output). This is because of the fact thathis way, the output of the system will
become a single number. However, it is clear that by incngatfie number of rows for each concept and
programming them properly, it is possible to get fuzzy nuralder each output concept as well.

In the next section, we will describe how this circuit can lsedias an image processing system to

extract edges from any given grayscale image.
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V. APPLICATION OF THE CONSTRUCTED FUZZYXOR FUNCTION FOR DOING EDGE DETECTION IN

GRAYSCALE IMAGES

In this section, we want to show how our proposed fuzzy XOFR gan be applied to grayscale images
to extract edges from them. First of all, let’s look at theqa®s of edge detection in binary images briefly.
In this kind of images, edges are located between pixels different intensities. In the other words,
wherever we have one black (with low intensity) and one wkwtéh high intensity) pixel near each
other, we will have edge between them. Otherwise, when beigpixels have the same pixel values,
no edge will exist. Consequently, edges can be detectedebatweighbor pixels in binary images by
the application of the logical XOR function to them: whengi#éor pixels have different intensities, the
output of the logical XOR function will be high (logic 1) whicis the indicator of the existence of an
edge between these pixels.

Now, consider the case in which we have grayscale imagesaidsif binary ones. In order to detect
edges in this kind of images, we need a simple function likeldimary XOR gate but by this difference
that it should be able to work with continuous values insteBdinary numbers. On the other hand, this
function should also have the following simple property:entboth of input pixels have similar intensities,
output of this function should be near zero but by the inaeafsthe difference between the intensities
of input pixels, the output of this function should increasewell. Therefore, output of this function or
system should be directly proportional to the differenceveen the intensity values of input pixels. If we
can design and build a function with these properties, thercan apply it to the consecutive pixels of
the input grayscale image and get an image as the output melsete in that image edges are specified
proportional to their strengths: stronger edges have highel values than weaker ones. One of such
systems which has this property is our proposed circuitadegiin Fig.[B. It generates low(high) output
when its input variables have similar(different) valuebaflis why we have called our proposed system
in Section 1V “fuzzy XOR gate”. It is clear that in this struce, unlike binary XOR function, input and
output variables can be continuous. However, our propogeryfXOR structure has this advantage that
it can extract all horizontal or vertical edges simultarsdpuThis is because of the fact that it is possible
to use several of these fuzzy XOR gates at the same time. Withe loss of generality, Figl 4 shows the
process of extracting edges from three neighbor pixelshig dircuit, two fuzzy XOR gates are merged
to each other to optimize the overall system. In the outpy¢rlawe have one output per each pair of

consecutive pixels showing the result of the fuzzy XOR figrcfor these pixels. By adding more fuzzy



Fuzzification of input variables

Construction of fuzzy

16

and their complements First hidden layer minterms between x, and x3
t — t
T "7 "T- T~ E I R R I I
L P>y I — I In this example:
b T N T ! I
R I Lo T I | =06
~ >
: | '|> } : i IJ Construction of fuzzy =0.4
X3 is small 0 : ~ {> t i ; ; j minterms between x; and x, =0.2
[ L : I I t =0.1
A : | : ‘ ! R | ® =1
o 1 ’ ,\{>_'—| — | ‘:_I’ | ; ] Neurons with identity
X, is big 1 : I/I\ t I | = | D activation function
| S L1 | | i _I Neurons with x"
X, is small : } KD : : : : : : : : _: activation function
| T Pl i
| > : |
L. | | N i i |
x; is big | N [ | |
LT I
L > _I
. | | N~ I ]
X, is small : : LT I y ;7|
: — > | 7
Input layer { Zl Zl Zl Zl Zl Zl 37 ?(7 ?(7 %7 X' ?7 §i7 ?‘7 } Second hidden layer
Eal sl S| Eai
Il Il I —_—— et L L — =
] N ) | ,\ |
i W W
O a by @ =x,®x
| I N =% 2
L | “
| | | _
. ] 1] f f | =% Dx,
Third | Second Firste (| 1 | | ——t__+r__rt__L__=Z__
Pixel Pixel Pixel R A I R R
|
: ® |,> T yr=x,@x
| |
| |
| ? ? i 1 n=x0x
' —
Aggregation of

X Output layer
midterms (fuzzy rules)

Fig. 4. The result of merging two fuzzy XOR systems of FigfurfyXOR to extract edges from three consecutive pixels.

XOR gates to this system in a same manner, we can construaicusé which can extract all vertical
edges in one row of the image simultaneously. By using simgilzuits for other rows of the image, all
vertical edges in the entire image can be extracted. At theedane, by rotating the image by 90 degrees
and repeating the same procedure, horizontal edges cantitaeted as well. Note that since the circuit

of Fig.[3 or Fig.[4 is in analog form, it can detect edges (dazyumference) in real-time.

VI. SIMULATION RESULTS

In this section, we will illustrate the efficiency and applidlity of our proposed method (for the
hardware implementation of fuzzy inference systems likeftlzzy XOR function) by performing several
experiments. In all of the following simulations, the sture of Fig.[4 is used with the same pre-

programmed membership functions on the crossbars witlethoserical specifications given in the inset
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of the figure. In addition, since outputs of the system maybeobounded between 0 and 255 (as required
by the grayscale images), output images are mapped to tige tzefore presenting in this paper. However,
it should be noted that it would be easy to modify the spedifioa of the system of Fid.l 4(g.opamps
gains, shapes of the membership functions and etc.) in eéodirce it to create outputs between 0 and
255. Moreover, to remove probable noises in input imagésnplts are smoothed with the Gaussian
smoothing filter before being applied to the system.

The results of the first conducted simulation is presentdeign3. In this simulation, the image shown
in Fig.[5(a) is applied to the system of Fig. 4 as an input angaeted horizontal and vertical edges
are presented in Figk. 5[b) ahd %(c) respectively. By mgrtiese two images, one single image can be
obtained as a final result of our proposed edge detectiomitiigo Figurel 5(d) shows this image for the
given input image of Figl. 5(h) which is obtained simply by imddtwo images of Figq. 5(p) arid 5(c).
This figure shows that our proposed circuit can effectiveliraet edges from grayscale images. It also
indicates that output images of this structure all have piheperty that their intensities at any point are
directly proportional to the strength of the existing edgéshat point in the original input images. Note
that since outputs of the system of Hif. 4 are always nontiveg@ecause they are of a kind of confidence
degrees), horizontal and vertical edges can be directlynsonwithout any concerns and therefore the
application of the Manhattan distance measure is not nagessiymore. In order to have better view
about the performance of the proposed method, the resuiedirst two steps of the canny edge detection
algorithm [22],i.e. smoothing and finding gradientapplied to the image of Fid. 5(a) is shown in Fig.
G(e). By comparing Fid. 5(H) with Fif. 5(e), it can be infefthat although the input image is smoothed,
our structure has produced sharper edges than its couriterghe canny edge detection algorithm. In
addition, especially in those areas of Hig. b(a) where thegenis uniform, unwanted detected edges are
abundant and visible in Fi§. 5{e) which is not the case in [b{g). Note that our proposed method has
also this advantage versus most of other edge detectingthlgs that as demonstrated in this paper, it
can be implemented efficiently in analog form and thereforean easily operate in real-time. Finally,
Fig.[5(f) shows the fuzzy inference surface of the systemi@f[f which is obtained by applying different
values of input variables (between 0 and 255) to the systemnpéotting its outputs versus these input
values. In this figure, the overall behavior and shape of tizeyf XOR function is clearly observable: in
those areas where input variables have similar valuesi§itae similar intensities), output of the system

is near to zero. However, by the increase of the differencevd®en values of input variables, output of
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Fig. 5. simulation results of the first conducted experiméa} Input image. (b) Extracted horizontal edges by using roethod. (c)
Extracted vertical edges by our proposed system. (d) Fiagdud of our fuzzy XOR function. (e) Extracted edges by apmythe first two
steps of the canny edge detection algorithm. (f) Fuzzy érfee surface of the system of Hig. 3.

the system begins to approach its upper boured,255. Although this figure is obtained by using the
x? activation function for neurons of the second hidden layfethe circuit of Fig.[4, our experiments

showed that using other similar activation functions likeor 27 has little impact on the shape of this
fuzzy inference surface. It is also interesting to know thgtthe use of Mamdani’s fuzzy inference
method [23] or Takagi-Sugeno-Kang method of fuzzy infees{@4], [25], it is not possible to create

such a surface from the aforementioned fuzzy rule basesidegcthe fuzzy XOR function.

In the next simulation, we used two different images as antiapd applied our proposed structure to
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extract edges from them. These input images are shown ir6kag.and Fig[ 6(g). Extracted edges from
these figures by using our method and structure are presentéd.[6(b) and Fig[ 6(h) and the result of
applying the first two steps of the canny edge detection dlgorto these input images are demonstrated
in Fig.[6(c) and Fig[ 6(]). To illustrate the stability andrflrmance of our memristive fuzzy XOR system
in noisy environment, detected edges from noisy images @f@{d) and Fig[ 6(j) which are obtained by
adding Gaussian white noise of mean 0 and variance 0.03 tth images are shown in Fig. 6(e) and Fig.
[6(K). To have better comparison, the result of applying tmeathing and finding gradients steps of the
canny edge detection algorithm to these noisy images asepied in Fig[ 6(f) and Fig. 6[l). From the
result of this simulation, it can be inferred that althouglr proposed edge detection method only uses

information of two neighbor pixels, it performs acceptablyainst noisy images.

VIlI. CONCLUSION

In this paper we proposed a new hardware based on memrisgshbar structure to implement a fuzzy
edge detector algorithm. For this purpose, at first we espiefuzzy XOR function in the form of fuzzy
rule base and then implemented the antecedent parts of thieseon memristor crossbars through the
newly introduced concept.e. fuzzy minterms. Then, this fuzzy XOR function is applied tmsecutive
pixels of the input grayscale image to extract edges fror8ithulation result showed that our fuzzy edge
detector can effectively extract edges even in noisy enuent. It also has this advantage that it can
extract edges of any given image all at once in real-timeallinit is worth to mention that although in
this study we concentrated on the application of edge detedt is obvious that our proposed structure
can be used for the implementation of other fuzzy infererystesns which use fuzzy rule base to make

inference.

REFERENCES

[1] G.E. Moore, “Cramming more components onto integratiecuds,” Electron Magazine, vol. 38, pp. 114-117, 1965.

[2] M. Versace, and B. Chandler, “The Brain of a New Machin&EE Spectrum, vol. 47, No. 12, pp. 30-37, 2010.

[3] J.M. Cioffi, “Limited-precision effects in adaptive fting,” IEEE Transactions on circuits and systems, CAS-3821833, 1987.

[4] S. Haykin, “Adaptive Filter Theory,” Prentice-Hall, send edition, 1991.

[5] J.R. Treichler, C.R. Johnson, and M.G. Larimore, “Theand Design of Adaptive Filters,” Wiley Interscience, Newrl, 1987.

[6] D.B. Strukov, G.S. Snider, D.R. Stewart and R.S. WillgriThe missing memristor found,” Nature, vol. 453, pp. 89—8 May 2008.

[7] G. Snider, R. Amerson, D. Carter, H. Abdalla, M.S. QuiedhLeveille, M. Versace, H. Ames, S. Patrick, B. ChandterGGorchetchnikov,
E. Mingolla, “From Synapses to Circuitry: Using Memristiddemory to Explore the Electronic Brain,” IEEE Computer, va4, no.

2, pp. 21-28, February 2011.



20

[8] F. Merrikh-Bayat and S. Bagheri Shouraki, “MemristiveeilNo-Fuzzy System,” submitted to IEEE Transactions oneByst man and
Cybernetics—Part:B (available at: http://arxiv.org/ab98.5133), 2011.

[9] L.O. Chua, “Memristor - the missing circuit element,”HE Trans. on Circuit Theory, vol. CT-18, no. 5, pp. 507-51971L

[10] Y.V. Pershin, S.L. Fontaine, and M.D. Ventra, “Memiist model of amoeba’s learning,” Phys. Rev. E, vol. 80, p.928] 2009.

[11] Y. V. pershin, and M.D. Ventra, “Practical Approach tooBrammable Analog Circuits With Memristors,” IEEE Tracans on
Circuits and Systems I: Regular Paper, Vol. 57, No. 8, pp.73&864, Aug. 2010.

[12] F. Merrikh-bayat, and S. B. Shouraki, “Memristor-bdsércuits for performing basic arithmetic operations,b&&dia-Computer Science
Journal, Vol. 3, pp. 128-132, 2011.

[13] F. Merrikh-bayat, and S. B. Shouraki, “Memristor Croasbased Hardware Implementation of IDS Method,” acakpte | EEE
Transaction on Fuzzy Systems.

[14] P. Kuekes, “Material Implication: digital logic with emristors,” Memristor and Memristive Systems Syymposi@inNovember 2008.

[15] B.L. Mouttet, “Proposal for Memristors in Signal Prasing,” Nano-Net Conference, Vol. 3, pp. 11-13, Sept. 2008.

[16] F. Merrikh-Bayat, and S. B. Shouraki, “Mixed analogjtil crossbar-based hardware implementation of signiskg8 adaptive filter,”
Analog Integrated Circuits and Signal Processing, vol.8,13 pp. 41-48, 2011.

[17] A. Afifi, A. Ayatollahi, F. Raissi, “Implementation of blogically plausible spiking neural network models on thenmistor crossbar-
based CMOS/nano circuits,” European Conference on Cificuéory and Design (ECCTD 2009), pp. 563-566, 2009.

[18] G. S. Snider, “Spike-timing-dependent learning in mistive nanodevices,” IEEE International Symposium on d&male Architectures
(NANOARCH 2008), pp. 85-92, 12-13 June 2008.

[19] W. McCulloch and W. Pitts,, “A Logical Calculus of Ideémmanent in Nervous Activity,” Bulletin of Mathematical &physics, vol.
5, pp. 115-133, 1943.

[20] L. Fausett, “Neural Networks: Architectures, Algbits and Applications,” Prentice Hall, 1994.

[21] B. Kosko, “Neural Networks and Fuzzy Systems: A DynaahiSystems Approach to Machine Intelligence,” Prenticel H&92.

[22] J. Canny, “A Computational Approach to Edge DetectidBEE Transactions on Pattern Analysis and Machine Irgetiice, vol. 8,
no. 6, pp. 679-698, Nov. 1986.

[23] E. H. Mamdani, and S. Assilian, “An Experiment in Lingtic Synthesis with a Fuzzy Logic Controller,” Internatidnlournal of
Man-Machine Studies, vol. 7, no. 1, pp. 1-13, 1975.

[24] M. Sugeno and G. T. Kang,, “Structure Identification afzEy Model,” Fuzzy Sets System, vol. 28, pp. 15-33, 1988.

[25] T. Takagi and M. Sugeno, “Fuzzy Identification of Systeand its Applications to Modeling and Control,” IEEE Tractsans on
Systems, Man and Cybernetics, vol. 15, pp. 116-132, Jarb.198


http://arxiv.org/abs/1008.5133

21

(k)

Fig. 6. simulation results of the second conducted expetin(@ and g) Input images. (b and h) Extracted edges by usingpmposed

structure. (c and i) Extracted edges by applying the first steps of the canny edge detection algorithm. (d and j) Inmatges degraded
by Gaussian noise. (e and k) Extracted edges from noisy impuising our proposed structure. (f and |) Extracted edga® fnoisy input

by applying the first two steps of the canny edge detectioor#hgn.
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