
ar
X

iv
:1

10
9.

46
09

v1
 [

cs
.N

E
]

21
 S

ep
 2

01
1

1

memristive fuzzy edge detector

Farnood Merrikh-Bayat, Saeed Bagheri Shouraki

Abstract

Fuzzy inference systems always suffer from the lack of efficient structures or platforms for their hardware

implementation. In this paper, we tried to overcome this problem by proposing new method for the implementation

of those fuzzy inference systems which use fuzzy rule base tomake inference. To achieve this goal, we have

designed a multi-layer neuro-fuzzy computing system basedon the memristor crossbar structure by introducing

some new concepts like fuzzy minterms. Although many applications can be realized through the use of our

proposed system, in this study we show how the fuzzy XOR function can be constructed and how it can be used to

extract edges from grayscale images. Our memristive fuzzy edge detector (implemented in analog form) compared

with other common edge detectors has this advantage that it can extract edges of any given image all at once in

real-time.

I. INTRODUCTION

In the past decades, the integrated circuits (IC) industry has successfully followed Moores Law [1].

However, Complementary Metal Oxide Semiconductors (CMOS)scaling is approaching a physical and

economical limit. To effectively extend Moores law, in addition to pushing the limit of lithography

for smallest possible devices, there is a great need for morepowerful devices, disruptive fabrication

technologies, alternative computer architecture and advanced materials, etc.

One possible way to extend this law beyond the limits of transistor scaling is to obtain the equivalent

circuit functionality using an alternative computing scheme. Nowadays, most of the currently working

computing systems like Digital Signal Processors (DSPs) and Field Programmable Gate Arrays (FPGAs)

are constructed based on two basic concepts; they use digital logic to perform computing or decision

making tasks and they work in discrete form. The former results in a separation of memory and computing

units [2] and inefficient computation while the later one leads to slow and high area-consuming systems.

Such computing paradigms usually suffer from the constant need of establishing a trade-off between

F. Merrikh-Bayat and S. Bagheri Shouraki are with the Department of Electrical Engineering, Sharif University of Technology, Tehran,
Iran, e-mails: f merrikhbayat@ee.sharif.edu and bagheri-s@sharif.edu.

http://arxiv.org/abs/1109.4609v1

2

flexibility and performance. They also introduce limited numerical precision both in the input signals and

the algorithmic quantities. For example, input signals areusually quantized to limited numeric precision in

A/D converters. In addition, the arithmetic operations arecarried out with limited computational precision

and the results are rounded or truncated to a specific limitedprecision [3], [4], [5].

In recent years, particularly after the publication of the paper [6] in 1 May 2008, we have seen

considerable scientific and technological progress in the field of memristive computing systems. This

great interest in these systems is mostly due to their potential in overcoming most of the aforementioned

challenges in front of today’s digital systems which has nominated them as an alternative computing

scheme. For example, it has been demonstrated that these systems can be constructed much denser

and faster through the use of nano-crossbar technology and they consume much less energy than their

counterparts [7]. However, almost all of these systems was again constructed based on the concepts of

traditional digital logic.

Recently, we showed that it is possible to design a memristive soft computing system [8] with learning

capabilities which uses fuzzy logic instead of digital logic to do its computations. In addition to be build

on fuzzy logic’s concepts, it was implemented in analog formand therefore it was very fast and completely

consistent with the analog nature of memristor. Moreover, our proposed neuro-fuzzy computing system

had this advantage that in its hierarchical structure, memory units were assimilated with computational

units like what we have in human brain. Now, in this paper, we will show another way to implement

fuzzy inference systems that use fuzzy rule base to make inference by introducing new concepts likefuzzy

minterms. Although this analog multi-layer neuro-fuzzy system which is somehow inspired from our earlier

work can be used in so many image processing tasks, here we only concentrate on the application of edge

detection from grayscale images. For this purpose, at first we will describe the fuzzy XOR function by

fuzzy rule base. Then, this fuzzy function will be constructed through our multi-layer neuro-fuzzy system

and then will be applied to consecutive pixels of the input grayscale image to extract edges from it. As

simulation results indicate, our proposed method extractsmuch sharper and meaningful edges compared

with traditional edge detecting algorithms even in noisy environment. However, the main benefit of our

fuzzy edge detector is for its efficient hardware implementation in analog form. Actually, this is because

of this advantage that this structure can detect all horizontal and vertical edges in grayscale images

simultaneously in real-time. Finally, it should be noted that since our computing system is constructed

by the use of memristor crossbars, it can be simply reconfigured even during its working time by the

3

reprogramming of memristors in crossbars.

This paper is organized as follows. The working procedure ofmemristor crossbar structures and their

application in the hardware implementation of artificial neural networks are described in Section II. The

process of constructing binary XOR function by using the network proposed by McCulloch-Pitts and the

problem of thresholding in these networks are demonstratedin Section III. Section IV is devoted to the

explanation of our proposed multi-layer neuro-fuzzy computing system designed for the implementation of

those fuzzy inference systems which use fuzzy rule base to make inference. Application of the constructed

fuzzy XOR function in detecting edges from grayscale imagesis presented in Section V. Eventually, some

experimental results are presented in Section VI, before conclusions in Section VII.

II. M EMRISTOR CROSSBARS

After the first experimental realization of the fourth fundamental circuit element,i.e. memristor, in its

passive form [6], whose existence was previously predictedin 1971 by Leon Chua [9], many researches are

seeking its applications in variety of fields such as neuroscience, neural networks and artificial intelligence.

It has become clear that this passive element can have many potential applications such as creation of

analog neural network and emulation of human learning [10],building programmable analog circuits [11],

[12], constructing hardware for soft computing tools [13],implementing digital circuits [14] and in the

field of signal processing [15], [16].

From the mathematical model of memristor (for example the one reported by HP [6]), it can be

concluded that passing current from memristor in one direction will increase the memristance of this

passive element while changing the direction of the appliedcurrent will decrease its memristance. In

addition, passing current in one direction for longer period of time will change the memristance of the

memristor more. Moreover, by stopping the current from passing through the memristor, memristance of

the memristor will not change anymore. As a result, memristor is nothing else than the analog variable

resistor where its resistance can be properly adjusted by changing the direction and duration of the applied

voltage. Therefore, memristor can be used as a simple storage device in which analog values can be stored

as a memristance instead of voltage or charge.

A crossbar array basically consists of two sets of conductive parallel wires intersecting each other

perpendicularly. The region where a wire in one set crosses over a wire in the other set is called a

crosspoint (or junction). Crosspoints are usually separated by a thin film material which its properties

such as its resistance can be changed for example by controlling the voltage applied to it. One of such

4

Fig. 1. A typical memristor crossbar.

devices is memristor which is used in our proposed circuits in this paper. Figure 1 shows a typical

memristor crossbar structure. In this circuit, memristorswhich are formed at crosspoints are depicted

explicitly to have better visibility. In this crossbar, memristance of any memristor can simply be changed

by applying suitable voltages to those wires that memristoris fabricated between them. For example,

consider the memristor located at coordinate (1, 1) (crossing point of the first horizontal and the first

vertical wires) of the crossbar. Memristance of this memristor can be decreased by applying a positive

voltage to the first vertical wire while grounding the first horizontal one (or connecting it to a negative

voltage). Dropping positive voltage across one memristor will cause the current to pass through it and

consequently, memristance of this passive element will be decreased. In a similar way, memristance of this

memristor can be increased by reversing the polarity of the applied voltage. As stated before, application

of higher voltages for longer period of time will change the memristance of the memristor more. This

means that the memristance of any memristor in the crossbar can be adjusted to any predetermined value

by the application of suitable voltages to specific row and column of the crossbar.

To summarize, memristor crossbar is a 2-dimensional grid that analog values can be stored in its

crosspoints through the memristance of the memristors. Consequently, it seems that the memristor crossbar

is a perfect structure to construct and store 2-dimensionalweight matrix of neural networks [17], [18] as

used in these paper as well.

III. U SING ARTIFICIAL NEURAL NETWORKS TO CONSTRUCT A BINARYXOR FUNCTION AND THE

PROBLEM OF THRESHOLDING IN THESE NETWORKS

Since our goal is to propose a simple structure for the fuzzy XOR function, it will be very useful to

see how binary XOR gate is implemented in primary artificial neural networks. For this purpose, consider

one of the simplest networks proposed by McCulloch-Pitts in1943 [19], [20] for the implementation of

logical XOR gate which is depicted in Fig. 2(a) for convenience. In this figure, each neuron with binary

5

activation receives a number of inputs (either from original data or from the output of other neurons in

the networks). Each of these inputs comes via a connection that has a strength (or weight); these weights

correspond to synaptic efficiency in a biological neuron. Ineach neuron, the weighted sum of inputs is

formed and then a simple hard thresholding function is applied to the sum to produce the output result

of the neuron. In the network of Fig. 2(a), all neurons exceptneurons of the input layer have a threshold

value of 2 (as written near to them on the figure) which means that when their total input (weighted sum

of inputs) becomes more than 2, their output will be set to logic 1. Otherwise, their response will become

equal to logic 0. As a result, this network performs the logical XOR function on two binary inputs,i.e.

x1 andx2, and creates binary outputy.

Note that in the network shown in Fig. 2(a), each neuron with its corresponding connection weights

performs a simple logic function. For example, in the hiddenlayer, neuronz1 with connection weights of

w11 andw21 creates logic functionx1x2 (x1 AND NOT x2) while the neuronz2 with connection weights

of w12 andw22 builds logic functionx1x2 (x2 AND NOT x1). Also, in the output layer, neurony with

connection weights ofw13 andw23 creates the logical OR function on the outputs of neuronsz1 andz2.

Therefore, the overall network of Fig. 2(a) performs the following logic function on its inputsx1 andx2:

y = x1 XOR x2 = x1 ⊕ x2 = x1x2 + x2x1 = (x1 AND NOT x2) OR (x2 AND NOT x1) (1)

or equivalently it can be expressed as:

y = (x1 ∧ ¬x2) ∨ (x2 ∧ ¬x1) (2)

Based on these equations, it can be said that the neural network of Fig. 2(a) implements the logical XOR

function in thesum of productsform. However, this network compared with traditional digital circuits

has this advantage that by some modification, it can have learning capability.

Note that we have written Eq. (1) in the form of Eq. (2) to show the probable similarities between

tasks which are done in traditional neural networks with those tasks that fuzzy logic usually performs.

For this purpose, we can interpret the working procedure of the network of Fig. 2(a) in another way.

Figure 2(b) shows the same network but in a different form. Inthis figure, connection weights between

layers are implemented through the nano-crossbar structures. A complete description of the procedure of

the construction of synaptic weights through the usage of memristor crossbar is provided in [13] and [8].

Let’s denote those connection weights which are located between the input and the hidden layer by a

2× 2 matrix S and those connection weights which are located between the hidden and the output layer

6

(a) (b)

(c)

Fig. 2. (a) The artificial neural network proposed by McCulloch-Pitts for the implementation of logical XOR function. (b) The same
network of Fig. 2(a) redrawn by the usage of nano-crossbar structures. (c) This figure shows that the connection weight matrix can be treated
as a fuzzy relation. In this case, activation of one concept at the input layer will select one column of the fuzzy relationas an output.

by a 2 × 1 vectora. In addition, let’s assume that each neuron in the network represents one numerical

or linguistic concept. For example, in the network of Fig. 2(b), the output neuron may represent concepts

like “red”, “small”, “age=23” and etc. In this case, it can besaid that when the output of one neuron

becomes active (logic 1), it shows that its corresponding concept is happened. Therefore, by this way we

have changed the meaning of the output of neurons. In the other words, we have assumed that the output

of each neuron at any time shows our confidence degree about the occurrence of the concept assigned

to that neuron. Consequently, by considering the working procedure of the network of Fig. 2(b) in this

way, it becomes clear that signals which are propagating in the network will be in the form of confidence

or membership degrees. In this case, the connection weight matrix S and the connection weight vector

a will somehow have the role of fuzzy relations in fuzzy inference systems [8]. To clarify this matter

further, consider the following example. Assume that the inputs of the McCulloch-Pitts neural network of

7

Fig. 2(b) arex1 = 0 andx2 = 1 where for this configuration of inputs, the output of the system should

be y = 1 (remember that this network implements the logical XOR function). Figure 2(c) shows the first

step in which inputs are applied to the network. Settingx2 to logic 1 means that the confidence degree

about the occurrence of that concept which is assigned to neuron x2 is 1 or equivalently 100 percent. On

the other hand, by settingx1 to logic 0 we say that we are absolutely sure that the concept assigned to

neuronx1 has not happened or our confidence degree about the occurrence of this concept is zero. Based

on the current output values of neuronsx1 andx2, input of neuronsz1 and z2 can be computed which

will be equal to -1 and 2 respectively as shown in Fig. 2(c) as well. Note that if we put these two values

in a vector like [−1 2]T , it will become equal to the second column of matrixS which can be also

obtained through the simple vector to matrix multiplication as follows:

[−1 2]T = S × [0 1]T =

2 −1

−1 2

× [0 1]T (3)

where in this equation,[0 1]T is the outputs of neuronsx1 andx2 in a vector form. Now, if we assume

that matrixS is a fuzzy relation connecting vector variablesx = [x1 x2] andz = [z1 z2], then the vector

to matrix multiplication of Eq. (3) will be equal to the sum-product fuzzy inference method [21]. Again,

inputs of neuronsz1 andz2 will have the role of confidence degrees. For instance, when in this example

the input of neuronz2 becomes 2, it means that the confidence degree that the occurrence of the concept

assigned to neuronx1 may result in the occurrence of the concept assigned to neuron z1 is high. On the

other hand, when the input of neuronz2 is -1, it means that those concepts which are assigned to neurons

x2 andz2 are independent from each other and we do not have belief thatthe firing of neuronx1 results in

the firing of neuronz1. In the other words, firing of neuronx1 activates neuronz2 with higher confidence

degrees,i.e. 2, compared with other neurons which are located in the same layer.

In the next step, each neuron puts a threshold on its input. There are two main reasons behind this

thresholding task in traditional neural networks. First, by this way it is possible to force output of neurons

to be bounded between two specific values (in the special caseof the hard thresholding of this example,

output of neurons will be either 0 or 1). Second, thresholding of the outputs of neurons will eliminate

those neurons which have low output value and therefore inserts nonlinearities to the system. As a result,

these neurons cannot affect the rest of the network while theeffect of those neurons which their outputs

are above the threshold value will be strengthened. However, this thresholding task has a simple problem:

what should be the threshold value? In traditional neural network it is common to determine the threshold

8

value through the training process. Now, let’s see how this thresholding task can be modified in networks

that deal with confidence degrees (as explained before) without degrading the performance of the network

significantly. In fuzzy logic, it is well-known that confidence or membership degrees are always non-

negative and there is no necessity for the height of fuzzy sets or numbers to be equal to one. Therefore, in

networks which are working with confidence degrees, insteadof common thresholding functions such as

a binary or bipolar sigmoid function, other functions can beused. However, these functions should have

the aforementioned property: output of neurons with higheroutput value should be strengthened more

than those neurons which have lower output value. For example, one of such functions isf(x) = xn

wheren can be any real number greater than 1. It is clear that using these functions instead of common

threshold functions can have this benefit that they do not have any variable parameter to be determined

like the threshold value.

Based on the explanations provided in this section, we will modify the network of Fig. 2(b) to create a

new structure as the hardware implementation of fuzzy XOR function which is capable of working with

signals of a kind of confidence degree.

IV. FUZZY EXCLUSIVE OR (XOR) FUNCTION AND ITS MEMRISTOR CROSSBAR-BASED HARDWARE

IMPLEMENTATION

In this section, we want to present a new way to build fuzzy logic functions specially the fuzzy Exclusive

OR (XOR) gate. Actually, we want to show how a fuzzy version ofthe McCulloch-Pitts network shown

in Fig. 2(a) can be constructed. First of all, note that the fuzzy XOR function between input variablesx1

andx2 can be expressed through the following fuzzy rule base:

IF x1 is small AND x2 is small THEN y is small

IF x1 is small AND x2 is big THEN y is big

IF x1 is big AND x2 is small THEN y is big

IF x1 is big AND x2 is big THEN y is small

It is clear that any other fuzzy system which is expressed based on fuzzy rule base can be constructed

in a similar way by utilizing our proposed method as described below.

Based on the explanations provided in Section III, we have proposed a memristor crossbar-based

hardware for the fuzzy XOR function. This hardware is shown in Fig. 3. The circuit of Fig. 3 consists of

three different parts which are the fuzzification, the fuzzyminterm creating and the aggregation units. In

the next three subsections, the working procedure of each ofthese parts is explained.

9

Fig. 3. Our proposed structure for the hardware implementation of the fuzzy XOR function.

A. The fuzzification unit

Since inputs and outputs of most of currently working systems are crisp, we need to find a way to

convert them to their corresponding fuzzy numbers before using them in our structure. Consequently, the

first part of the circuit of Fig. 3 (from the input layer to the first hidden layer specified by a gray dashed

rectangle) is intended for this purpose.

In the antecedent parts of the fuzzy rule base describing theworking procedure of the fuzzy XOR

function, two different concepts or fuzzy sets are considered for each of the input variables which

are “small” and “big”. At any time, based on the observed values for input variables, some of these

concepts become active with different strengths. For example, when input variablex1 has its maximum

value, its corresponding “small” and “big” concepts shouldbecome active with minimum and maximum

possible strengths or confidence degrees respectively. Forthis reason, we have considered two distinct

input terminals for each of the input variables in the fuzzification unit of the circuit of Fig. 3; one for

10

concept “xi is big” and one for concept “xi is small” where in this structurei can be either 1 or 2.

In this case, each of these input terminals will specify one individual concept and those values that we

apply to them will somehow determine our confidence degrees about the occurrence of these assigned

concepts for given input data. Actually, in this way, we treat input data as confidence degrees and not

as a meaningless value of crisp variables. Therefore, in thecircuit of Fig. 3, input and output values

of the system are of a kind of membership or confidence degreesand it is the combination of these

values and those concepts which are assigned to input and output neurons that creates fuzzy numbers.

For example in the application of edge detection, the first and the second input neurons of the system of

Fig. 3 will represent concepts “brightness of the first inputpixel” and “darkness of the first input pixel”

respectively. In this case, when intensity values of pixelsare applied to these neurons as an input, they

will be interpreted as the confidence degree of those aforementioned concepts. Therefore, henceforward

when the intensity value of one pixel is 255, it will not show the brightness of the pixel anymore but it

will demonstrate that our confidence degree about the brightness of this pixel is maximum or 255. On

the other hand, applying 255 to the input neuron which is the representative of the concept “darkness on

the first input pixel” means that our confidence degree about the darkness of this pixel is maximum and

no other pixel in the image can be darker than this one. Therefore, it should become clear that in our

network, applied input and generated output values do not have any meaning by themselves alone and

they only specify the strength of the activation of those concepts which are assigned to neurons.

Since the two fuzzy sets defined on the universe of discoursesof input variables,i.e. “small” and “big”,

are dependent on each other (because when one variable is not“big” it will be “small”), values which

are applied to their corresponding input terminals should be dependent as well. For this purpose, in the

structure of Fig. 3, we apply the current value of variablexi to the input terminal representing concept

“xi is big” and its complement which is defined asxmax
i − xi wherexmax

i is the maximum value that

variablexi can take to the other input terminal representing concept “xi is small”. By this trick, when

the value of variablexi is small, applied value to the input terminal representing concept “xi is small”

will be high showing that our confidence degree about the validity of the concept “xi is small” is high.

Similarly, in the application of edge detection, intensityvalue of pixel will be directly applied to input

terminal representing concept “pixel is bright” and its negative (255 minus the intensity value of the pixel)

will be applied to input terminal representing concept “pixel is dark”.

Now that we have proposed a method to construct fuzzy concepts at the input stage of our system, it

11

is time to define the shape of the membership functions of these fuzzy sets (concepts). For this purpose,

a simple preprogrammed memristor crossbar structure is considered in the fuzzification unit of the circuit

of Fig. 3 which is inspired from the first layer of the network of Fig. 2(b). In this memristor crossbar

structure, the first two vertical wires somehow acts as a universe of discourse of variablex1 while the

next two vertical wires represent the universe of discourseof the other variable,i.e. x2. In this case,

preprogrammed weights at crosspoints of the crossbar will have the role of the membership functions

of the fuzzy sets defined on the universe of discourses of input variables. In fact, it is the configuration

and value of these weights that specify the shape of these membership functions. For example, In the

fuzzification unit of the circuit of Fig. 3, weights on the first and second columns of the crossbar define

the shape of the membership functions of fuzzy sets “big” and“small” respectively on the universe of

discourse of variablex1. The shape of these membership functions that we have considered in this sample

circuit is depicted in the left side of the crossbar while their numerical specifications are presented in the

inset of the figure. Note that by the reprogramming of memristors at crosspoints of the crossbar, shapes

of these membership function and their support can be simplychanged. We have a similar case for input

variablex2. It is evident that any number of fuzzy sets with any arbitrary membership functions can be

implemented in a similar way.

Now, lets see how the fuzzification unit of our proposed system works. To clarify the working procedure

of this unit, consider the following simple case. Assume that the current values of input variablesx1 and

x2 arexobs
1

andxobs
2

respectively. In this case, similar to what we had in SectionIII, output column vector

of the fuzzification unit,i.e. vfuzzification, can be written as:

vfuzzification = xobs
1

s1 +
(

xmax
1

− xobs
1

)

s2 + xobs
2

s3 +
(

xmax
2

− xobs
2

)

s4 (4)

wheresi for i = 1, 2, 3, 4 is the column vector representing predetermined weights onthe ith column of

the crossbar located between the input and the first hidden layer andxmax
i for i = 1, 2 is the maximum

value that input variablexi can take. However, since weights are programmed on the first two columns

of the crossbar in a way that they do not have overlap with weights on the next two columns, it can be

said that upper rows of this crossbar creates the weighted sum of the membership functions defined on

the universe of discourse of input variablex1 while lower rows of the crossbar generates the weighted

sum of those membership functions which are defined on the universe of discourse of input variablex2.

Therefore, on the upper rows of the first hidden layer (outputof the fuzzification unit) we will have a

fuzzy number with the membership function ofxobs
1

s1 +
(

xmax
1

− xobs
1

)

s2 corresponding to the applied

12

crisp input valuexobs
1

and on the lower rows we will have a fuzzy number with the membership function

of xobs
2

s3 +
(

xmax
2

− xobs
2

)

s4 corresponding to the applied crisp input valuexobs
2

.

To summarize, the role of the fuzzification part of the circuit is to convert the crisp input numbers

to their corresponding fuzzy numbers where the shape of these fuzzy numbers are specified through the

weights which are programmed on columns of the crossbar. Finally, note that output of this part of the

circuit are from a kind of membership degrees and therefore they are always non-negative.

B. the fuzzy minterm creating unit

That part of the network of Fig. 3 which is located between thefirst and the second hidden layer

and specified by a grayscale dashed rectangle is called the fuzzy minterm creating unit. The main role

of this part of the circuit is to compare the created fuzzy numbers by the fuzzification unit with some

patterns which are programmed on the columns of the crossbar. In fact, this section of the proposed

system performs a dot product between input fuzzy numbers (output of the first hidden layer) and the

weight vectors which are formed on columns of the middle crossbar. Therefore, it somehow measures

the available similarities between input fuzzy numbers andpre-programmed weights on columns of the

crossbar.

However, the fuzzy minterm creating unit actually does something more than a simple dot product

between vectors. To make it more clear, consider the first (the left-most) column of the crossbar in this

unit. The output of its corresponding neuron (connected to this column) will be maximum only when the

both of input variables,i.e. x1 andx2, have their maximum values (Note that in this structure, we always

have this condition that both of the input variables and weight vectors are non-negative). Therefore, it can

be said that this column of the crossbar implements the antecedent part of the following fuzzy rule:

IF x1 is big AND x2 is big THEN x1 ⊕ x2 is small

and output of its corresponding neuron for any observed inputs will show the result of the evaluation

of the antecedent part of this rule for this given data. Sinceinputs of this unit of the system are fuzzy

numbers and this column of the crossbar somehow implements the AND function between input variables

themselves and not their complements, we can assume that it creates the first fuzzy minterm,i.e. minterm

number 0. Similar to Boolean minterms, this minterm will take its maximum output value if and only if

both of its input variables have their maximum values (or equivalently when both of them are “big”). In

a similar way, the second column of the crossbar clearly implements the antecedent part of the following

fuzzy rule:

13

IF x1 is big AND x2 is small THEN x1 ⊕ x2 is big

which its output can be considered as the second fuzzy minterm between input variables (minterm

number 1). This is because of the fact that this column implements the AND function between the

variablex1 (or concept “x1 is big”) and the complement of the second variablex2 (or concept “x2 is

small”). Therefore, for any different configuration of two parts of the antecedent parts of the rules, one

distinct fuzzy minterm will be constructed. These fuzzy minterms have this property that at anytime and

based on input data, all of them will be active with differentstrengths but only one of them will have

higher output value compared with other minterms. As a result, by this way we can recognize which

concepts have been happened simultaneously.

Now, let’s assume that specific inputs are applied to the system and we want to evaluate the antecedent

part of each of these rules for these inputs. In the other words, for these inputs, we want to determine

the strength of the activation of each of these fuzzy minterms. Actually, this evaluation task is the second

main duty of the fuzzy minterm creating unit which is done in this part of our system through the dot

product of the membership functions of the created fuzzy numbers (outputs of the first hidden layer) and

weight vectors programmed on the columns of the crossbar.

Finally, note that based on the provided explanations aboutthe thresholding task in artificial neural

networks, the activation function of the output neurons of the fuzzy minterm creating unit is considered to

bexn to magnify the difference between outputs of neurons of thislayer. However, the role of this kind of

activation function can be interpreted in another way; it somehow emulates the role of the AND operation

between two parts of the antecedent of fuzzy rules. Note thatwe usually connect parts of the antecedent

by a conjunction (‘AND’) to have a simple way to know when these two parts happen simultaneously. If

these two parts happen at the same time, the evaluation result of the corresponding rule will be higher than

any other rules. By the use of thexn (n > 1) we will have the same condition. In this case, evaluation

result of those rules (fuzzy minterms) which have only one active part in their antecedent will be much

less than the evaluation result of the rule which both parts of its antecedent are active at the same time.

Actually, here we tied to reveal the similarities between fuzzy rule bases and truth tables in digital logic.

C. The aggregation unit

The last part of the circuit of Fig. 3 is the aggregation unit located between the second hidden layer

and the output layer. The main role of this unit is to aggregate consequence parts of the rules based on

their evaluation results. In our proposed structure, this process is done by summing outputs of those rules

14

(neurons) which have the same consequence part. Therefore,we will have one output per each different

consequence part (concept) in fuzzy rule base. Here, some differences are visible between our proposed

inference system and other common inference methods. Firstof all, we have used a summation operator

as a triangular conorm to aggregate fuzzy rules. Second, since our primary goal was to construct a system

with fuzzy input and fuzzy output terminals, no defuzzification unit is intended at the output stage of the

system. Consequently, as mentioned before, at the output stage of our system, instead of one simple crisp

output, we will have one output per each distinct consequence part (output concept). Herein, it should

be noted that similar to other t-conorm operators, the result of this summing operation is of a kind of

membership degrees which determines confidence degrees about the validity of those concepts which

are assigned to output neurons. For example, in the network depicted in Fig. 3, the first output neuron

represents concept “x1 ⊕ x2 is big”. In this case, by the increase of the output of this neuron, our belief

about the occurrence of the concept “x1 ⊕ x2 is big” which is assigned to this neuron increases as well.

Since the concept “x1 ⊕ x2 is big” is the consequence part of these following rules:

IF x1 is big AND x2 is small THENx1 ⊕ x2 is big

IF x1 is small AND x2 is big THEN x1 ⊕ x2 is big

which are constructed on the second and the third columns of the crossbar of the fuzzy minterm creating

unit, outputs of their corresponding neurons are summed together in the aggregation unit to create a single

output neuron for representing concept “x1⊕x2 is big”. In this case, when the value of the XOR function

between input variablesx1 and x2 is high (x1 and x2 differ significantly), output of this neuron will

be more than any other neurons at the output layer. As a result, since the output of this neuron in the

aggregation unit has a direct relationship with the result of the XOR function between input variables, it

can be simply considered as a final output of the system. Therefore, unlike to traditional fuzzy systems

which usually consider the own concepts such as “y=1” or “y=10” as their final outputs, output of our

system is the confidence degrees of these concepts.

Finally, it should be emphasized that for each output concept in the circuit of Fig. 3, we have considered

only one single row (output). This is because of the fact thatby this way, the output of the system will

become a single number. However, it is clear that by increasing the number of rows for each concept and

programming them properly, it is possible to get fuzzy numbers for each output concept as well.

In the next section, we will describe how this circuit can be used as an image processing system to

extract edges from any given grayscale image.

15

V. APPLICATION OF THE CONSTRUCTED FUZZYXOR FUNCTION FOR DOING EDGE DETECTION IN

GRAYSCALE IMAGES

In this section, we want to show how our proposed fuzzy XOR gate can be applied to grayscale images

to extract edges from them. First of all, let’s look at the process of edge detection in binary images briefly.

In this kind of images, edges are located between pixels withdifferent intensities. In the other words,

wherever we have one black (with low intensity) and one white(with high intensity) pixel near each

other, we will have edge between them. Otherwise, when neighbor pixels have the same pixel values,

no edge will exist. Consequently, edges can be detected between neighbor pixels in binary images by

the application of the logical XOR function to them: when neighbor pixels have different intensities, the

output of the logical XOR function will be high (logic 1) which is the indicator of the existence of an

edge between these pixels.

Now, consider the case in which we have grayscale images instead of binary ones. In order to detect

edges in this kind of images, we need a simple function like the binary XOR gate but by this difference

that it should be able to work with continuous values insteadof binary numbers. On the other hand, this

function should also have the following simple property: when both of input pixels have similar intensities,

output of this function should be near zero but by the increase of the difference between the intensities

of input pixels, the output of this function should increaseas well. Therefore, output of this function or

system should be directly proportional to the difference between the intensity values of input pixels. If we

can design and build a function with these properties, then we can apply it to the consecutive pixels of

the input grayscale image and get an image as the output result where in that image edges are specified

proportional to their strengths: stronger edges have higher pixel values than weaker ones. One of such

systems which has this property is our proposed circuit depicted in Fig. 3. It generates low(high) output

when its input variables have similar(different) values. That is why we have called our proposed system

in Section IV “fuzzy XOR gate”. It is clear that in this structure, unlike binary XOR function, input and

output variables can be continuous. However, our proposed fuzzy XOR structure has this advantage that

it can extract all horizontal or vertical edges simultaneously. This is because of the fact that it is possible

to use several of these fuzzy XOR gates at the same time. Without the loss of generality, Fig. 4 shows the

process of extracting edges from three neighbor pixels. In this circuit, two fuzzy XOR gates are merged

to each other to optimize the overall system. In the output layer, we have one output per each pair of

consecutive pixels showing the result of the fuzzy XOR function for these pixels. By adding more fuzzy

16

Fig. 4. The result of merging two fuzzy XOR systems of Fig. reffuzzyXOR to extract edges from three consecutive pixels.

XOR gates to this system in a same manner, we can construct a structure which can extract all vertical

edges in one row of the image simultaneously. By using similar circuits for other rows of the image, all

vertical edges in the entire image can be extracted. At the same time, by rotating the image by 90 degrees

and repeating the same procedure, horizontal edges can be extracted as well. Note that since the circuit

of Fig. 3 or Fig. 4 is in analog form, it can detect edges (do fuzzy inference) in real-time.

VI. SIMULATION RESULTS

In this section, we will illustrate the efficiency and applicability of our proposed method (for the

hardware implementation of fuzzy inference systems like the fuzzy XOR function) by performing several

experiments. In all of the following simulations, the structure of Fig. 4 is used with the same pre-

programmed membership functions on the crossbars with those numerical specifications given in the inset

17

of the figure. In addition, since outputs of the system may notbe bounded between 0 and 255 (as required

by the grayscale images), output images are mapped to this range before presenting in this paper. However,

it should be noted that it would be easy to modify the specifications of the system of Fig. 4 (e.g.opamps

gains, shapes of the membership functions and etc.) in orderto force it to create outputs between 0 and

255. Moreover, to remove probable noises in input images, all inputs are smoothed with the Gaussian

smoothing filter before being applied to the system.

The results of the first conducted simulation is presented inFig. 5. In this simulation, the image shown

in Fig. 5(a) is applied to the system of Fig. 4 as an input and extracted horizontal and vertical edges

are presented in Figs. 5(b) and 5(c) respectively. By merging these two images, one single image can be

obtained as a final result of our proposed edge detection algorithm. Figure 5(d) shows this image for the

given input image of Fig. 5(a) which is obtained simply by adding two images of Figs. 5(b) and 5(c).

This figure shows that our proposed circuit can effectively extract edges from grayscale images. It also

indicates that output images of this structure all have thisproperty that their intensities at any point are

directly proportional to the strength of the existing edgesat that point in the original input images. Note

that since outputs of the system of Fig. 4 are always non-negative (because they are of a kind of confidence

degrees), horizontal and vertical edges can be directly summed without any concerns and therefore the

application of the Manhattan distance measure is not necessary anymore. In order to have better view

about the performance of the proposed method, the result of the first two steps of the canny edge detection

algorithm [22], i.e. smoothing and finding gradients, applied to the image of Fig. 5(a) is shown in Fig.

5(e). By comparing Fig. 5(d) with Fig. 5(e), it can be inferred that although the input image is smoothed,

our structure has produced sharper edges than its counterpart in the canny edge detection algorithm. In

addition, especially in those areas of Fig. 5(a) where the image is uniform, unwanted detected edges are

abundant and visible in Fig. 5(e) which is not the case in Fig.5(e). Note that our proposed method has

also this advantage versus most of other edge detecting algorithms that as demonstrated in this paper, it

can be implemented efficiently in analog form and therefore it can easily operate in real-time. Finally,

Fig. 5(f) shows the fuzzy inference surface of the system of Fig. 3 which is obtained by applying different

values of input variables (between 0 and 255) to the system and plotting its outputs versus these input

values. In this figure, the overall behavior and shape of the fuzzy XOR function is clearly observable: in

those areas where input variables have similar values (pixels have similar intensities), output of the system

is near to zero. However, by the increase of the difference between values of input variables, output of

18

(a) (b)

(c) (d)

(e) (f)

Fig. 5. simulation results of the first conducted experiment. (a) Input image. (b) Extracted horizontal edges by using our method. (c)
Extracted vertical edges by our proposed system. (d) Final output of our fuzzy XOR function. (e) Extracted edges by applying the first two
steps of the canny edge detection algorithm. (f) Fuzzy inference surface of the system of Fig. 3.

the system begins to approach its upper bound,i.e. 255. Although this figure is obtained by using the

x2 activation function for neurons of the second hidden layer of the circuit of Fig. 4, our experiments

showed that using other similar activation functions likex4 or x7 has little impact on the shape of this

fuzzy inference surface. It is also interesting to know thatby the use of Mamdani’s fuzzy inference

method [23] or Takagi-Sugeno-Kang method of fuzzy inference [24], [25], it is not possible to create

such a surface from the aforementioned fuzzy rule bases describing the fuzzy XOR function.

In the next simulation, we used two different images as an input and applied our proposed structure to

19

extract edges from them. These input images are shown in Fig.6(a) and Fig. 6(g). Extracted edges from

these figures by using our method and structure are presentedin Fig. 6(b) and Fig. 6(h) and the result of

applying the first two steps of the canny edge detection algorithm to these input images are demonstrated

in Fig. 6(c) and Fig. 6(i). To illustrate the stability and performance of our memristive fuzzy XOR system

in noisy environment, detected edges from noisy images of Fig. 6(d) and Fig. 6(j) which are obtained by

adding Gaussian white noise of mean 0 and variance 0.03 to input images are shown in Fig. 6(e) and Fig.

6(k). To have better comparison, the result of applying the smoothing and finding gradients steps of the

canny edge detection algorithm to these noisy images are presented in Fig. 6(f) and Fig. 6(l). From the

result of this simulation, it can be inferred that although our proposed edge detection method only uses

information of two neighbor pixels, it performs acceptablyagainst noisy images.

VII. CONCLUSION

In this paper we proposed a new hardware based on memristor crossbar structure to implement a fuzzy

edge detector algorithm. For this purpose, at first we expressed fuzzy XOR function in the form of fuzzy

rule base and then implemented the antecedent parts of theserules on memristor crossbars through the

newly introduced concept,i.e. fuzzy minterms. Then, this fuzzy XOR function is applied to consecutive

pixels of the input grayscale image to extract edges from it.Simulation result showed that our fuzzy edge

detector can effectively extract edges even in noisy environment. It also has this advantage that it can

extract edges of any given image all at once in real-time. Finally, it is worth to mention that although in

this study we concentrated on the application of edge detection, it is obvious that our proposed structure

can be used for the implementation of other fuzzy inference systems which use fuzzy rule base to make

inference.

REFERENCES

[1] G.E. Moore, “Cramming more components onto integrated circuits,” Electron Magazine, vol. 38, pp. 114–117, 1965.

[2] M. Versace, and B. Chandler, “The Brain of a New Machine,”IEEE Spectrum, vol. 47, No. 12, pp. 30–37, 2010.

[3] J.M. Cioffi, “Limited-precision effects in adaptive filtering,” IEEE Transactions on circuits and systems, CAS-34(7):821833, 1987.

[4] S. Haykin, “Adaptive Filter Theory,” Prentice-Hall, second edition, 1991.

[5] J.R. Treichler, C.R. Johnson, and M.G. Larimore, “Theory and Design of Adaptive Filters,” Wiley Interscience, New York, 1987.

[6] D.B. Strukov, G.S. Snider, D.R. Stewart and R.S. Williams, “The missing memristor found,” Nature, vol. 453, pp. 80–83, 1 May 2008.

[7] G. Snider, R. Amerson, D. Carter, H. Abdalla, M.S. Qureshi, J. Leveille, M. Versace, H. Ames, S. Patrick, B. Chandler,A. Gorchetchnikov,

E. Mingolla, “From Synapses to Circuitry: Using MemristiveMemory to Explore the Electronic Brain,” IEEE Computer, vol. 44, no.

2, pp. 21–28, February 2011.

20

[8] F. Merrikh-Bayat and S. Bagheri Shouraki, “Memristive Neuro-Fuzzy System,” submitted to IEEE Transactions on Systems, man and

Cybernetics–Part:B (available at: http://arxiv.org/abs/1008.5133), 2011.

[9] L.O. Chua, “Memristor - the missing circuit element,” IEEE Trans. on Circuit Theory, vol. CT-18, no. 5, pp. 507–519, 1971.

[10] Y.V. Pershin, S.L. Fontaine, and M.D. Ventra, “Memristive model of amoeba’s learning,” Phys. Rev. E, vol. 80, p. 021926, 2009.

[11] Y. V. pershin, and M.D. Ventra, “Practical Approach to Programmable Analog Circuits With Memristors,” IEEE Transactions on

Circuits and Systems I: Regular Paper, Vol. 57, No. 8, pp. 1857–1864, Aug. 2010.

[12] F. Merrikh-bayat, and S. B. Shouraki, “Memristor-based circuits for performing basic arithmetic operations,” Procedia-Computer Science

Journal, Vol. 3, pp. 128–132, 2011.

[13] F. Merrikh-bayat, and S. B. Shouraki, “Memristor Crossbar-based Hardware Implementation of IDS Method,” accepted in IEEE

Transaction on Fuzzy Systems.

[14] P. Kuekes, “Material Implication: digital logic with memristors,” Memristor and Memristive Systems Syymposium,21 November 2008.

[15] B.L. Mouttet, “Proposal for Memristors in Signal Processing,” Nano-Net Conference, Vol. 3, pp. 11–13, Sept. 2008.

[16] F. Merrikh-Bayat, and S. B. Shouraki, “Mixed analog-digital crossbar-based hardware implementation of signsignLMS adaptive filter,”

Analog Integrated Circuits and Signal Processing, vol. 3, no. 1, pp. 41–48, 2011.

[17] A. Afifi, A. Ayatollahi, F. Raissi, “Implementation of biologically plausible spiking neural network models on the memristor crossbar-

based CMOS/nano circuits,” European Conference on CircuitTheory and Design (ECCTD 2009), pp. 563–566, 2009.

[18] G. S. Snider, “Spike-timing-dependent learning in memristive nanodevices,” IEEE International Symposium on Nanoscale Architectures

(NANOARCH 2008), pp. 85–92, 12-13 June 2008.

[19] W. McCulloch and W. Pitts,, “A Logical Calculus of IdeasImmanent in Nervous Activity,” Bulletin of Mathematical Biophysics, vol.

5, pp. 115–133, 1943.

[20] L. Fausett, “Neural Networks: Architectures, Algorithms and Applications,” Prentice Hall, 1994.

[21] B. Kosko, “Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence,” Prentice Hall, 1992.

[22] J. Canny, “A Computational Approach to Edge Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 8,

no. 6, pp. 679–698, Nov. 1986.

[23] E. H. Mamdani, and S. Assilian, “An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller,” International Journal of

Man-Machine Studies, vol. 7, no. 1, pp. 1–13, 1975.

[24] M. Sugeno and G. T. Kang,, “Structure Identification of Fuzzy Model,” Fuzzy Sets System, vol. 28, pp. 15-33, 1988.

[25] T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and its Applications to Modeling and Control,” IEEE Transactions on

Systems, Man and Cybernetics, vol. 15, pp. 116-132, Jan. 1985.

http://arxiv.org/abs/1008.5133

21

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 6. simulation results of the second conducted experiment. (a and g) Input images. (b and h) Extracted edges by using our proposed
structure. (c and i) Extracted edges by applying the first twosteps of the canny edge detection algorithm. (d and j) Input images degraded
by Gaussian noise. (e and k) Extracted edges from noisy inputby using our proposed structure. (f and l) Extracted edges from noisy input
by applying the first two steps of the canny edge detection algorithm.

	I introduction
	II Memristor crossbars
	III Using artificial neural networks to construct a binary XOR function and the problem of thresholding in these networks
	IV fuzzy Exclusive OR (XOR) function and its memristor crossbar-based hardware implementation
	IV-A The fuzzification unit
	IV-B the fuzzy minterm creating unit
	IV-C The aggregation unit

	V application of the constructed fuzzy XOR function for doing edge detection in grayscale images
	VI Simulation results
	VII conclusion
	References

