ARG

Competitive Analysis of Minimum-Cut Maximum
Flow Algorithms in Vision Problems

Barak Fishbain, Dorit S. Hochbaum and Stefan Mueller

Abstract—Rapid advances in image acquisition and storage max-flow problems within the scope of vision problems. The
technology underline the need for algorithms that are capale study consists of a benchmark of an extensive data set which
of solving large scale image processing and computer-visio ;- des standard and non-standard vision probléms([9], [1

problems. The minimum cut problem plays an important role - L .
in processing many of these imaging problems such as, image The algorithms compared within the scope of this study

and video segmentation, stereo vision, multi-view reconsiction ~ are: (i) thePush-RelabelPRF, algorithm devised by Goldberg
and surface fitting. While several min-cut/max-flow algorihms and Tarjan [[I1]; (ii) the Hochbaum’pseudoflowalgorithm,

can be found in the literature, their performance in practice HPF [12]; (iii) Boykov’s and Kolmogorov'ssugmenting paths

has been studied primarily outside the scope of computer vign. algori . ; , :
i X gorithm, BK, [13]; and (iv) Goldberg'partial augment-
We present here the results of a comprehensive computatioha relabel PAR, algorithm [14].

study, in terms of execution times and memory utilization, 6 " o
the four leading published algorithms, which optimally sole The study of these algorithms within the scope of computer-
the s-t cut and maximum flow problems: (i) Goldberg’s and vision was reported in[[13]/[[14]. The first,_[13], compares
Tarjan’s Push-Relabel(ii) Hochbaum’s pseudoflow iii) Boykov's the BK algorithm only to PRF, and for a limited set of

and Kolmogorov's augmenting pathsand (iv) Goldberg's partial j,qtances. The latter reporf, [14], used the same limitad se

augment-relabel Our results demonstrate that while theaugment- .
ing paths algorithm is more suited for small problem instances of instances, and compared PRF and PAR to HPF. The

or for problems with short paths from s to ¢, the pseudoflow COmparison provided in_[14] to HPF is however not valid,
algorithm, is more suited for large general problem instanes and as it did not use the updated publicly available softwaraeHe
utilizes less memory than the other algorithms on all problen we provide, for the first time, a comprehensive review of all
instances investigated. these algorithms and a detailed comparison of several &spec
Index Terms—Flow algorithms; Maximum-flow; Minimum- of their performance, including a breakdown of the run-gme
cut; Segmentation; Stereo-vision; Multi-view reconstrudion; Sur- gnd memory requirements_ The breakdown of the run-times for
face fitting the different stages of the algorithm: initialization, fnmm
cut computation and flow recovery, is important as the logic
l. INTRODUCTION of the software is allocated differently by these algorishm
o]) to these stages. For example, while the initialization pssc
HE minimum cuproblem (min-cut) and its dual, theax- i, the BK and HPF algorithms only reads the problem file
1 imum flowproblem (max-flow), are classical combinatoyq injtiate the corresponding graphs, the implementaion
rial optimization problems with applications in numerowsas o pRF incorporates an additional logic into this stagg, e.
of science and engineering (for a collection of applicaioh goting the arcs of each node. This extends the execution
min-cut and max-flow se¢[1]). time of the initialization phase, and as a result of the entir
Rapid advances in image acquisition and storage technologyorithm. While our experiments show that this time is
have increased the need for faster image processing &fithificant, it was disregarded in the previous reports iictvh
computer-vision algorithms that require lesser memorylevhiye initialization execution time was not considered ag pér
bging capable of handling Iarge_scale imaging problems. The algorithm’s running times. In addition, for many corgut
min-cut problem takes a prominent role in many of thesgsion applications only the min-cut solution is of importe.
imaging problems, such as image and video segmentatigfyys there is no need to recover the actual maximum flow in
[2], [Bl, co-segmentation[[4], stereo visionl [5], multiewi o rger to solve the problem. The breakdown of the execution
reconstruction,[[6],[]7], and surface fittingl [8]. ~times allows to evaluate the performance of the algorithons f
Several min-cut/max-flow algorithms can be found in thgese relevant computations by taking into account only the
combinatorial optimization literature. However, theirrioe- jnitialization and minimum-cut times.
mance in practice has been studied primarily outside thegyr results demonstrate that while the BK algorithm is more
scope of computer vision. In this study we compare, in termagited for small problem instances or for problems with shor
of execution times and memory utilization, the four leadingaths froms to ¢, the HPF algorithm, is more suited for large
published algorithms, which solve optimally the min-cutlangeneral problem instances and utilizes less memory than the
—_ other algorithms on all problem instances investigated.
(hfc'hbaui'fg)?:g:_berégg%ﬁ? e::: '%ﬁdtuh)e De?,2d0f m?mss'Engir';%Cﬂ?%aum The paper is organized as follows: Sectidn Il describes the
and Operational Research at the University of CalifornierkBley, Etcheverry algorithms compared in this study. The experimental seup i
Hall, University of California Berkeley, CA 94720 presented in Sectidn]Il, followed by the comparison result
S. Mueller (ste.mu@arcor.de) is with the Combinatorial i@ation & . . - . .
Graph Algorithms group at the Technische Universitaet iBetbermany which are detailed in Section 1V. Secti¢n V concludes the
Manuscript received date; revised date. paper.

A. A graph representation of a vision problem and fi; < w;; or (j,1) € Ay and f;; > 0. For (i,7) € Ag,

A vision problem is typically presented on an undirecteti® residual capacity of arg, j) with respect to the flow
graphG = (V, E), whereV is the set of pixels andz are 1S ¢j; = Uij — fij, and the residual capacity of the reverse arc
the pairs of adjacent pixels for which similarity informai (j, %) is C{l = fij. Let A7 denote the set of residual arcs with
is available. The4-neighbors setup is a commonly usedespect to flowf in G, which consists of all arcs or reverse
adjacency rule with each pixel havidgheighbors — two along arcs with positive residual capacity.
the vertical axis and two along the horizontal axis. Thisiget A preflowis a relaxation of a flow that satisfies capacity
forms a planar grid graph. Tleneighbors arrangement is alscconstraints, but inflow into a node is allowed to exceed the
used, but then the planarity of the graph is no longer presbrvOU'[ﬂOW. Theexcessof a nodev € V is the inflow into that
and complexity of various algorithms increases, sometimagde minus the outflow denoted byv) = 3=, ca., fuo —
significantly. Planarity is also not satisfied fdrdimensional >_(, ,)c ., fow- Thus a preflow may have nonnegative excess.
images or video. In the most general case of vision problems,x pseudoflowis a flow vector that satisfies capacity con-
no grid structure can be assumed and thus the respectiv@r@raims but may violate flow balance in either directiorilGw
are not planar. Indeed, the algorithms presented here do @ a node needs not to be equal outflow). A negative excess
assume any specific property of the graph they work for is called adeficit
general graphs.

The edges in the graph representing the image csimy)
ilarity weights. There is a great deal of literature on how 8- 1he Push-relabel Algorithm
generate similarity weights, and we do not discuss thiseissu In this section, we provide a sketch of a straightforward im-
here. We only use the fact that similarity is inversely imsiag Plementation of the algorithm. For a more detailed desoript
with the difference in attributes between the pixels. Imteiof see [1], [11].
the graph, each eddg, j} is assigned a similarity weight; Goldberg’s and Tarajen’s push-relabel algorithmi [11], PRF
that increases as the two pixeland; are perceived to be moreworks withpreflows where a node with strictly positive excess
similar. Low values ofw;; are interpreted as dissimilarity.is said to beactive Each node is assigned a label(v) that
In some contexts one might want to generdissimilarity satisfies (i)/(t) = 0, and (i) ((u) < £(v)+1if (u,v) € AT A
weights independently. In that case each edge has two weigfﬁSiql_la| arqu, v) is .said to baadmissibleif £(u) = £(v) + 1.

w;; for similarity, anda;; for dissimilarity. Initially, s's label is assigned to be, while all other nodes

are assigned a label of Source-adjacent arcs are saturated

B. Definitions and Notation creating a set of source-_adjagent active node_s (all othdae_emo
have zero excess). An iteration of the algorithm consists of

Let G, be a graph(Vii, As), whereVi, =V U {s, 1} and ggjecting an active node I, and attempting to push its excess
Ag = AUA,UA; in which A, and A; are the source-adjacenty jis neighbors along an admissible arc. If no such arc ®xist
and sink-adjacent arcs respectively. The number of n3des the node's label is increased Hy The algorithm terminates
is denoted by:, while the number of arcgd,;| is denoted by yith a maximum preflow when there are no active nodes with
m. Aflow f'={fij}ijea., is said to bdeasibleif it satisfies |gpe| |ess tham. The set of nodes of labet then forms

() Flow balance constraints: for eacly € V., the source set of a minimum cut and the current preflow is

Dpean fii = (e, fiv (e, inflow() = maximum in that it sends as much flow into the sink node as
outflow(j)), and possible. This ends Phaseof the algorithm. In Phasg, the

(if) Capacity constraints: the flow value is between the lowgygorithm transforms the maximum preflow into a maximum

bound and upper bound capacity of the arc, g.,< flow by pushing the excess back folIn practice, Phase is
fij < ui;. We assume henceforth w.l.o.g thagf = 0. much faster than Phage A high-level description of the PRF

The maximum flowor max-flow problem on a directed algorithm is shown in Figurgl 1.
capacitated graph with two distinguished nodes—a sourde an The generic version of the PRF algorithm runstn?m)

a sink—is to find a feasible floyi* that maximizes the amounttime. Using the dynamic trees data structure of Sleator and
of flow that can be sent from the source to the sink whil@arjan [16], the complexity is improved t®(nmlog %)
satisfying flow balance constraints and capacity congsain [11]. Two heuristics that are employed in practice signifiba

A cut is a partition of nodesS UT = V with s € improve the run-time of the algorithnGap relabelingand
S,t € T. Capacity of a cut is defined by(S,7) = Global relabeling(see [11], [17] for details).

Dies,jer (i.j)eA Wij- The minimums-t cut problem, hence- In the highest label and lowest label variants, an activeenod
forth referred to as thenin-cutproblem, defined on the abovewith highest and lowest labels respectively are chosen for
graph, is to find a bi-partition of nodes—one containing thgrocessing at each iteration. In the FIFO variant, the activ
source and the other containing the sink—such that the smwdes are maintained as a queue in which nodes are added
of capacities of arcs from the source set to the sink settes the queue from the rear and removed from the front for
minimized. In 1956, Ford and Fulkersdn [15] established thocessing. In practice the FIFO - highest label variant is
max-flow min-cut theoremwhich states that the value of areported to work besi{[11]. This variant of the algorithm is
max-flow in any network is equal to the value of a min-cut.also referred to as HPR. While, in this paper the highest

Given a capacity-feasible flow, hence a flow that satisfiésbel variant was used, it is referred to as PRF to indicadé th
(i), an arc(z,j) is said to be aesidual arcif (i,5) € A, this is the PRF algorithm.

II. MIN-cUT/ MAX-FLOW ALGORITHMS

/*
Generic push-relabel algorithm for maximum flow.
*/

procedure push-relabélV;, Ay, c):
begin
Set the label of to n and that of all other nodes 1@
Saturate all arcs im;
while there exists an active nodec V' of label less tham do
if there exists an admissible afe,v) do
Push a flow ofmin{e(u),cf,} along arc(u,v);
else do
Increase label of; by 1 unit;
end

Fig. 1. High-level description of Phase | of the generic pralhbel algorithm. The nodes with label equalricat termination form the source set of the
minimum cut.

B. The Hochbaum’s Pseudo-flow Algorithm for an admissible arc from bowest labeledhodew in this

The Hochbaum's Pseudoflow algorithm, HPE,][12] wagomponent. Choosing a lowest labeled node for processing
motivated by an algorithm of Lerchs and Grossmian [18] f&nsures that an admissible arc is never between two nodes of
the maximum closure problem. The pseudoflow algorithth€ same component. .
has a strongly polynomial complexity @(nmlog ”_2) [@] By construction (Sed:D-Z]), the root is the lowest labeled
Hochbaum’s algorithm was shown to be fast inmthe@ [1 ode in a component and node labels are non-decreasing with

and in practice[[17] for general benchmark problems. their distance from the root of the component. Thus, all the
Each node iny € V is associated with at most oerrent lowest labeled nodes within a component form a sub-tree

arc, currArc(v) = (w,v), in Af; the correspondingurrent rooted at the root of the component. Once an active component

node of v is denoted bycurrNode(v) = w. The algorithm is identified, all the lowest labeled nodes within the congrdn
also associates with each node withramt that is defined a@ré examined for admissible arcs by performing a depth-first
constructively as follows: starting with node generate the Séarch in the sub-tree starting at the root. o
sequence of node§y, vy, vs, ..., v,} defined by the current If an admissible argw, v) is found, amergeroperation is
arcs(vy,v), (v2,v1), - . ., (vy,v,—1) until v, has no current arc. performed. The merger operation consists of pu;hn_wg theeent
Such root node, always exists[17]/[19]. Let the unique rootéXcess ofroot(w) towardsroot(v) along the admissible path
of nodew be denoted byoot(v). Note that if nodev has no and updating the excesses and the arcs in the current forest.
current arc, themoot(v) = v. A schematic description of the merger operation is shown in

The HPF algorithm is initiated with any arbitrary initial Figure[2. The pseudocode is given in Figlfe 3.
pseudoflow(i.e, flow vector that may violate flow balance
in either direction) that saturates source adjacent ank- sin
adjacent arcs. Such initial pseudoflow can be generated, for
example, by saturating all source-adjacent and sink-adjac
arcs, A, U A, and setting all other arcs to have zero flow.
This creates a set of source-adjacent nodes with excess, an
a set of sink-adjacent nodes with deficit. All other arcs have
zero flow, and the set of initial current arcs is empty. Thus,
each node is a singleton component of the forest for which it
serves as a tree and the root of the tree.

The algorithm associates each nade V with a distance
label d(v). A residual arc(w,v) is said to beadmissibleif
d(w) = d(v) + 1 . . . Fig. 2. (a) Components before merger (b) Before pushing fltonga

A node is said to bactiveif it has strictly positive excess. admissible path from; to r; (c) New components generated when @rg v)
Given an admissible arav, v) with nodesw andv in different leaves the current forest due to insufficient residual dapac

components, amadmissible paths the path fromroot(w) to
root(v) along the set of current arcs fromot(w) to w, the If no admissible arc is foundj(w) is increased byl unit
arc (w, v), and the set of current arcs (in the reverse directiofr all lowest label nodes in the component. The algorithm
from v to root(v). terminates when there are no active nodes with labeb.

An iteration of the HPF algorithm consists of choosing aAt termination alln labeled nodes form the source set of the
active component, with root node label n and searching min-cut.

Admissible arc

(@ (b) ()

The active component to be processed in each iteration ¢arthe other tree. Thus, an augmenting path frféno 7" was
be selected arbitrarily. There are two variants of the pseudund.
oflow algorithm: (i) the lowest label pseudoflow algorithmAugmentation Upon finding the augmenting path, the maxi-
where an active component with the lowest labeled root isum flow possible is being pushed frosrto ¢t. This implies
processed at each iteration; and (ii) the highest laber#lign, that at least one edge will be saturated. Thus, for at least on
where an active component with the highest labeled root nodede in the treed’s and 7 the edge connecting it to its
is processed at each iteration. parent is no longer valid. The augmentation phase may split

The first stage of HPF terminates with the min-cut and the search tree€s and7’; into forests. Nodes for which the
pseudoflow. The second stage converts this pseudoflow tedges connecting them to their parent become saturated are
maximum feasible flow. This is done How decomposition calledorphans
Hence representing the flow as the sum of flows alongAaloption In this stage the tree structure @i and 7rr is
set of s-t paths, and flows along a set of directed cyclesestored. For each orphan, created in the previous stage, th
such that no two paths or cycles are comprised of the samalgorithm tries to find a new valid parent. The new parent
set of arcs ([[20], pages 79-83). This stage can be donesimould belong to the same sé&is or T, as the orphan node
O(mlogn) by flow decomposition in a related network, [12]and has a non-saturated edge to the orphan node. If no parent
Our experiments, like the experiments [n][17], indicatet th&s found, then the orphan node and all its children become
the time spent in flow recovery is small compared to the tinfeee and the tree structure rooted in this orphan is dischrde
to find the min-cut. This stage terminates when all orphan nodes are connected to

a new parent or are free.
, , . . The algorithm terminates when there are no more active
C. Boykov's and Kolmogorov's Augmenting Paths Algor'th"ﬁodes and the trees are separated by saturated edges.hEhus, t

Boykov's and Kolmogorov's augmenting paths algorithmmaximum flow is achieved and the corresponding minimum-
BK, [13] attempts to improve on standard augmenting pathut is S = 7's andT = Tr.
techniques on graphs in vision. Given th@y is the capacity It is interesting to note that there are two speed-ups for the
of a minimum cut, the theoretical complexity of this algbnt BK-algorithm. The first one is an option to reuse search trees
is O(mn?|C|). Similarly to Ford—Fulkerson’s algorithm [1L5], from one maxflow computation to the next as described in
the BK algorithm’s complexity is only pseudo-polynomial. | [21]]. This option does not apply in our setting as the inséanc
this it differs from the other algorithms studied here, il oare not modified. The other speed-up is due to capacity scalin
which have strongly polynomial time complexity. Despite of22]. We would have liked to test this version but we are not
that, it has been demonstrated|in][13] that in practice ort a sevare of any publicly available implementation.
of vision problems, the algorithm works well.

At heart of the augmenting paths approach is the use Bf
search trees for detecting augmenting paths froto ¢. Two '
such trees, one from the sourcg;, and the other from the
sink, Tr are constructed, wherEs N T+ = (0. The trees are
constructed so that iffs all edges from each parent node t
its children are non-saturated and’ifx, edges from children
to their parents are non-saturated.

Nodes that are not associated with a tree are cdties

Nodes that are not free can be taggedaasve or passive - X i))
Active nodes have edges to at least one free node WHﬁeadmlssmle if the label of its associated nodes is equal,

passive nodes have no edges connecting them to a free nﬂl&ﬁ) = d(y). At each |terat|qn, the algorlthm maintains a
Consequentially trees can grow only by connecting, thr(mg}‘Path_frc,)mS tov e V and tne; to extend it. I has an
non-saturated edge, a free node to an active node of the t&Nissible arc(v,), the path is extended to. If no such
An augmenting path is found when an active node in either fMissible arciis found, the algorithm shrinks the path,ingak

the trees detects a neighboring node that belongs to the ofte predece_ssor_o;fon the path the Cl_”rent nqde and relabels
tree. v. At each iteration, the search terminates eithep i ¢, or

At the initialization stage the search tré; contains only I the length of the path reaches some predefined vaiuer

the source nodes and the search tre& contains only the if v, the current node has no outgoing admissible arcs. For
- r k = ©(y/m), PAR has a complexity o (n?/m) [14]

sink nodet. All other nodes are free. (v/m), plexity o®(n”y/m) .

Each iteration of the algorithm consists of the followin In order to achieve better performance in practice, the same
three stages: ap and global heuristics mentioned in Secfion]ll-A, for PRF

Growth In this stage the search tre€s and T expand. For can be applied here for the PAR algorithm.

all active nodes in a tre€)s or T, adjacent free nodes, which

are connected through non-saturated edge, are searchesk Th . EXPERIMENTAL SETUP

free nodes become members of the corresponding search tre&#he PRF, HPF and theBK algorithms are compared here by
The growth stage terminates when the search for an actiumning them on the same problem instances and on the same
node from one tree, finds an adjacent (active) node that gslomardware setup. The run-times of the highest level variént o

The Partial Augment-Relabel

The Partial Augment-Relabel algorithm, PAR, devised by
Goldberg, [[14] searches for the shortest augmenting path an
dt maintains a flow (rather than a pseudoflow or preflow). A
relabeling mechanism is utilized by the algorithm to find the
augmenting paths.

The algorithm starts at and searches for admissible, non-
saturated, arcs in a depth-first search manner. An(arg)

/*
Min-cut stage of HPF algorithm.
*/
procedure HPF (Vy;, Ay, ©):
begin
Simplelnit (A, Ay, ©);
while 3 an active componerif’ with root », whered(r) < n, do

w1
while w # (do
if 3 admissible arqw,v) do
Merger foot(w), - ,w,v, - ,root(v));
w <« ;
else do
if 3y € T : (current(y) = w) A (d(y) = d(w)) do

w < Y,
else do{relabel}
d(w) < d(w) + 1;
w < current(w);
end

Fig. 3. The min-cut stage of the HPF algorithm. At terminatal nodes in labek components are the source set of the min-cut.

the PRF algorithm and of PAR are reported(in|[14] for a subsgown the run-times provides insight into the algorithms’
of the problems used here. Since the source code for the PA&formance and allows for better comparison. Since foryman
implementation is not made available, the PAR performasicedomputer-vision applications only the min-cut solutionois
evaluated here through the speedup factor of PAR with réspaunportance (e.g.[[2],[14]1=17],[127]1E[36]), the most releta
to the highest level variant of the PRF algorithm for eackvaluation is of the initialization and min-cut times.

instance reported in the above paper.

As suggested by Chandran and Hochbaum [17] we use Computing Environments
the highest label version for the HPF algorithm. The latest
version of the code (version 3.23) is available [af] [23]. T)—E

highest level variant of the PRF algorithm is considered B level 2 cache and 32 GB RAM. The operating system was
have the best performance in practicel[24]. We use the highe@NU/Linux kernel release 2.6.18—53.e|. The code of all ¢hre

level PRF implementation Version 3.5, [25]. Note that thelgorithms, PRF, HPF and BK, was compile with gcc 4.1.2

latest implementation of the Push-Relabel method is dgtu . ; o2
denoted by HIPR, which indicates that the highest-labzgjr the x86 64-redhat-linux platform with-O4 optimization

version is used. We refer to it as PRF, to indicate that i . .
. . . One should note that the relatively large physical memory
is the same algorithm which was reported inl[24]. For the . .

of the machine allows one to avoid memory swaps between

BK algorlthm, a Ilbrary |mplementat|on was u§da__|[26]. Ir}he memory and the swap-file (on the disk) throughout the
order to utilize the library for solving problems in DIMACSexecution of the algorithms. Swaps are important to avoid

format, a wrapping code, wrapper, was written. This WIaPP&ce when the machine’s physical memory is small with re-

reads the DIMACS files and calls the library’s functions for S . .
. . ect to the problem’s size, the memory swap operation might
constructing and solving the problem. The part that reads t . . -
. . L ake place very often. These swapping times, the wait times
DIMACS files, under the required changes, is similar to t .
. . . r the swap to take place, can accumulate to a considerably
code used in the HPF implementation. One should note that {he : . A
S) . . ong run-times. Thus, in these cases, the execution tines ar
compilation’s setup and configuration of the library haveadr . . :
S iased due to memory constraints, rather than measuring the
effect on the actual running times of the code. In our tess t . ; . -
o . . . algorithms’ true computational efficiency. Therefore wesh
shortest running times were achieved using the following-co . .
large physical memory which allows for more accurate and

pilation line g++ -w -04 -o <output_file name> . . S
unbiased evaluation of the execution times.
—DNDEBUG —-DBENCHMARK graph.cpp maxflow.cpp

<wrapper_implementation_file>.

Our experiments were conducted on a machine with 886
ual-Core AMD Opteron(tm) Processor at 2.4 GHz with 1024

Every problem instance was rdntimes and we report the B- Problem Classes
average time of the three runs. These are reported for tee thr The test sets used consist of problem instances that arise as
different stages of the algorithm (Initialization, CompWin- min-cut problems in computer vision, graphics, and biomedi
Cut and Flow recovery). As detailed in sectidn |, breakingal image analysis. All instances were made available from

the Computer Vision Research Group at the University é&fom different perspectives. The reconstruction problsnoi
Western Ontario [9]. The problem sets used are classified imtonstruct a 3D image by mapping pixels from the 2D images
four types of vision tasks: Stereo vision, SegmentationitiMu to voxels complex in the 3D space. The most intuitive example
view reconstruction; and Surface fitting. These are dataile for such a complex would be a rectangular grid, in which the
sectiond IMI-B1 througlh TII-BB. The number of nodesand space is divided into cubes. In the examples used here a finer
the number of arcsn for each of the problems are given ingrid, where each voxel is divided into 24 tetrahedral by six
Table[]. planes each passing through a pair of opposite cube edges, is

1) Stereo Vision:Stereo problems, as one of the classicalsed (See[[38] for details). Two sequences are used in this
vision problems, have been extensively studied. The goal @dfss,CamelandGargoyle Each sequence was constructed in
stereo is to compute the correspondence between pixelstluee different sizes (referred to as small, middle andelarg
two or more images of the same scene. we useVéreus [41]. Representing frames are presented in Figlre 5.
Sawtooth5] and theTsukubd28] data-sets. These sequences
are made up of piecewise planar objects. Each of the stereo
problems, used in this study, consists of an image sequence,
where each image in the sequence is a slightly shifted wersio
of its preceding one. A corresponding frame for each seqenc
is given in Figurd }.

Often the best correspondence between the pixels of the
input images is determined by solving a min-cut problem
for each pair of images in the set. Thus in order to solve
the stereo problem, one has to solve a sequence of min-cut
sub-problems all of approximately the same size. Prewousl|
reported run-times of these stereo probl@ [13], [14] disetl, Fig. 5. Multi-view test sequences (sourgé [9])
for each problem, only the summation of the run-times of its
min-cut sub-problems. Presenting the summation of the run-3) Surface fitting:3D reconstruction of an object’s surface
times of the SUb-prOblemS as the time for SOIVing the entlfﬂ)m sparse points Containing noise, outliers, and gap&m a
problem assumes linear asymptotic behaviour of the rueginpne of the most interesting problems in computer vision.
with respect to the input size. This aSSUmption has not be@ﬂder this class we present a Sing|e test instaf‘BBnny"
justified. The run-times here, for the stereo problems, af€ee Fig[), constructed in three different sizes. The esecg
reported as thaveragetime it takes the algorithm to solvejs part of the Stanford Computer Graphics Laboratory 3D
the min-cut sub-problem. Scanning Repository [10] and consists 22,272 scanned

Each of the stereo min-cut sub-problems aims at matchipgints. The goal then to reconstruct the observed object by
corresponding pixels in two images. The graphs consist @btimizing a functional that maximizes the number of data
two 4-neighborhood grids, one for each image. Each nodswints on the 3D grid while imposing some shape priors
on every grid, has arcs connecting it to a set of nodes on thigher on the volume or the surface, such as spatial occypanc
other grid. For each of the stereo problems there are twastypst surface ared [29]. The "bunny” corresponding graphs, on
of instances. In one type, indicated by KZ2 suffix, each nogghich the min-cut problem is solved, are characterized by
in one image is connected to at most two nodes in the othgirticularly short paths from to ¢ [29].
image. In the second type, indicated by BVZ suffix, each node
in one image is connected to up to five nodes in the second
image.

Camel Gargoyle

Originallmage ReconstructedSur face

Sawtooth Fig. 6. Bunny Problem Instance - Surface fitting (soufce)[10]
Fig. 4. Stereo test sequences (souice [9]) 4) Segmentation:Under this group4 test sets, referred
to as’Liver” , "adhead”, "Babyface” and "bone” are used.

2) Multi-view reconstruction: A 3D reconstruction is a Each set consists of similar instances which differ in the
fundamental problem in computer vision with a significangraph size, neighborhood size, length of the path between
number of applications (for recent examples $ée [6], [7])l3 s and ¢, regional arc consistency (noise), and arc capacity
Specifically, graph theory based algorithms for this problemagnitude [[4R]. For all instances used in this group, the
were reported in[38]£[40].The input for the multi-view ee sufficesn and ¢ represent the neighborhood type and max-
struction problem is a set of 2D images of the same scene tak@&um arc capacities respectively. For exampgdene.n6.c10

andbabyface.n26.c1Q@orrespond to & neighborhood and a difference) with respect to BK an&.62 (101.39 seconds
maximum arc capacity aof0 units and &6 neighborhood with difference) with respect to PRF.

maximum arc capacity of00 units respectively. The different A total of 51 problem instances were tested within the scope
boneinstances differ in the number of nodes. The grid oof this study. The HPF algorithm was shown to be better
the 3 axes x,y and z was made coarser by a factor of 2 mn37 problem instances. The BK algorithm achieved better
each, thus bon&y, means that the original problem (bonejesults over the otheld problems. The average run-times and
was decimated along the x,y axes and il j& of its original slowdown factors of these two subsets are given in Table II.
size; bonexyz means that the original problem was decimated

along the x,y and z axes and it ig8 of its original size. TABLE Il

AVERAGE RUNNING TIMES AND SLOWDOWN FACTORS

IV. RESULTS _ [PRF [HPF [BK
) HPF is better (37 problem instances)
A. Run-times Ave. run-time || 184.87 | 72.25| 99.69
Ave. slowdown 2.6 1 1.39

In this study, the comparison of the PRF’s, HPF's and BK’s

run-times are indicated for the three stages of the algusth BK is better (14 problem instances)

Ave. run-time 185.96 | 53.53 | 48.00

(i) initialization, t;,;;; (i) minimum-cut, ¢,,;ncw; and (iii) Ave. slowdown | 3.03 | 1.18 1
maximum-flow,¢,,,.. Fiow. AS these data is unknown for the
PAR algorithm, the comparison of these three algorithmb wit
respect to PAR is a(_jdressed dlfferenftly, by running ERF on (a) Stereo (d) Segmentation
our setup and deducing the PAR run-times by multiplying th
measured PRF time by the speedup factor reported_in [14 ”:\Z; =il liver.n6c100 k.
This is explained in Sectidn IVB. e T - Jvern6clo b
As already indicated, the most relevant times in this Stud| e« « e "‘l’;;'r‘:ii(l’g e
are the times it takes each of the algorithms to complete t wweoie g =" N <jjiii
computation of the min-cut, thu§,;; + tmincut.- ThESe are | sawtotnsvz e bone.n6cl0 K
graphically presented in FiguEé 7 and detailed in Téble kb Th o 2 4 s bone.n26¢100 [
Slowdown Factgrreported in tabl€] | for each algorithm, for (b) Multi-View bone.n26c10 S
every problem instance, is the ratio of the time it takes th bone.xyz.n6c100)
. . .. gargoyle-sml | bone.xyz.n6c10 |
algorithm to complete the computation of the minimum-cu e b i
. o X i X gargoyle-med = one.xyz.n26¢100
divided by the minimum time it took any of the algorithms to| ...cyere = bonexyzn26c10 L
complete this computation. camesml | BK bone.xyz.xy.n6¢100
Figure [T(d) presents the run-times for the stereo visig emermes B 207 biemeryzxynGel
. , . . N bone.xyz.xy.n26c10
problem sets. The input's size, for these problems is sma| cmeHe E i
. bone.xyz.xy.n26c10 |
with respect the the other problem sets. For these smj o w0 40 ewf |
A !) X one.xyz.x.n6c100
problem instances, the BK algorithm is doing better than PRF (©) Surface Fittin bonexyzxnseio |||||[] BK
(with average Slowdown factor df.86, which corresponds 9 bone.xyz.x.n26c100 | &HPF
to average difference in the running time 20 Seconds) | bumvsm - bone.xyz.x.n26¢10 | £
and slightly better than HPF (slowdown factoriof4, which | >"™™ & « pR ARGl]
. . . bunny-Irg s bone.xy.n6c10 |
corresponds to a running time difference @24 Seconds). e boesy26ci00
For the Multi-view instances HPF presents better resulis th o o ;B boneaxyn26eto || [LLILLL
both algorithms with average slowdown factorsloi6 with bone.x.n6c100 &
respect to BK and.19 with respect to PRF. These correspond bone.x.n6c10 L,
to differences in the running times &b and 170 seconds bzne-x‘“zzzﬂl’g o
. . B n . . . one.x.nZ6c —
respectively. This is |IIusFrated_ in Flguriﬂ___7|(b). Flg_(c babyfacemsc100 1L
shows that the BK algorithm is more suitable for solving babyface.nsc1o |y
the surface fitting instances. This is attributed to the fhaat babyface.n26c100
these problems are characterized by particularly shopeghs. babyface.n26c10 ki,
In these instances, the slowdown factors of HPR and PRF adhead.n6c100 Wi
are 1.05 (correspond to an average differenceofeconds) hen -
and 4.06 (difference of 454 seconds). The running times aheadyasen
for the Segmentation problems class are depicted in Figure o 250 500 750 1000
[4(d). There are36 segmentation problems. In a subset5of

Segmemation problems BK achieved shorter running tim’es'Flig. 7. Initialization and Minimum-cut run-times in second§: (a) Stereo
this subset the BK'’s average slowdown factors i€ (9.24 problems[{H) Multi-view Problem§; {c) Surface Fittifig)] @egmentation
seconds difference) arl62 (106 seconds difference in the

running time) with respect to HPF and PRF respectively. OnIn order to allow for the comparison of the times it takes
the rest of the31 segmentation problems, HPF shows shorteach of the algorithms to complete the computation of only
running times with slowdown factors df18 (14.22 seconds the min-cut phase, the initialization run-times are présgimn

Instance Run-times [Secs] Slowdown Factor
Name Nodes Arcs PRF HPF BK| PRF HPF BK
Stereo
sawtoothBVZ 173,602 838,635 1.55 0.76 0.62 | 250 1.23 1
sawtoothKZ2 310,459 2,059,158 4.05 1.87 152 | 266 1.23 1
tsukubaBVZ 117,967 547,69 1.09 0.50 041| 266 1.22 1
tsukubaKz2 213,144 1,430,508 3.42 1.33 1.06 | 3.23 1.25 1
venusBVZ 174,139 833,16 1.93 0.82 0.66 | 292 1.24 1
venuskKz2 315,972 2,122, 77 5.12 2.09 1.66 | 3.08 1.26 1
Multi-View
camel-Irg 18,900,002 93,749,846 558.65 143.96 225.53| 3.88 1 157
camel-med 9,676,802 47,933,324 240.30 67.61 83.43| 3.55 1 123
camel-sml 1,209,602 5,963,582 17.16 6.31 6.46 | 2.72 1 1.02
gargoyle-Irg 17,203,202 86,175,090 413.26 134.77 432.31| 3.07 1 321
gargoyle-med 8,847,362 44,398,548 196.26 56.24 226.43| 3.49 1 4.03
gargoyle-sml 1,105,922 5,604,568 12.26 5.00 13.86 | 2.45 1 277
Surface Fitting
bunny-Irg 49,544,354 300,838,741 1564.10 305.05 277.02| 556 1.10 1
bunny-med 6,311,088 38,739,041 129.05 3447 32.82| 3.93 1.05 1
bunny-sml 805,802 5,040,834 10.89 4.12 4.03| 270 1.02 1
Segmentation
adhead.n26c10 12,582,914 327,484,956970.74 344.31 407.42| 2.82 1 1.18
adhead.n26¢100 12,582,914 327,484,356971.20 362.49 476.04 | 2.68 1 131
adhead.n6¢c10 12,582,914 75,826,316 219.14 90.17 90.38 | 2.43 1 101
adhead.n6c100 12,582,914 75,826,316242.43 103.03 123.22| 2.35 1 1.20
babyface.n26¢10 5,062,502 131,636,370333.91 245.10 250.15| 1.36 1 1.02
babyface.n26¢100 5,062,502 131,636,370378.94 272.26 321.20| 1.39 1 1.18
babyface.n6c10 5,062,502 30,386,370 103.27 48.30 35.30| 293 1.37 1
babyface.n6c100 5,062,502 30,386,370 126.28 58.77 43.89| 2.88 134 1
bone.n26¢10 7,798,786 202,895,861 451.35 160.73 196.26 | 2.81 1 122
bone.n26¢100 7,798,786 202,895,861 472.34 168.09 198.73| 2.81 1 1.18
bone.n6c10 7,798,786 46,920,181 119.76 41.02 47.79| 2.92 1 117
bone.n6¢100 7,798,786 46,920,181 132.06 43.56 51.88 | 3.03 1 1.19
bone subx.n26c10 3,899,394 101,476,818 209.03 79.70 100.23| 2.62 1 126
bone subx.n26¢100 3,899,394 101,476,818 218.57 81.79 107.43| 2.67 1 131
bone subx.n6c10 3,899,394 23,488,918 64.17 20.89 26.57 | 3.07 1 127
bone subx.n6¢100 3,899,394 23,488,978 61.18 22.06 30.29 | 2.77 1 137
bone subxy.n26c10 1,949,698 50,753,434 99.59 39.51 48.25| 2.52 1 122
bone subxy.n26¢c100 1,949,698 50,753,434 101.13 40.00 51.04 | 2.53 1 1.28
bone subxy.n6c10 1,949,698 11,759,514 27.22 10.04 12.09| 2.71 1 120
bone subxy.n6¢100 1,949,698 11,759,514 27.66 10.56 13.62 | 2.62 1 1.29
bone subxyz.n26¢10 983,042 25,590,293 48.07 18.89 23.69| 2.54 1 125
bone subxyz.n26¢100 983,042 25,590,293 48.83 19.39 25.41 | 2.52 1 131
bone subxyz.n6c10 983,042 5,929,493 11.95 4.85 5.95 | 2.46 1 123
bone subxyz.n6¢c100 983,042 5,929,493 12.05 5.14 6.54 | 2.34 1 127
bone subxyz subx.n26¢10 491,522 12,802,789 22.96 9.36 11.27 | 2.45 1 120
bone subxyz subx.n26¢100 491,522 12,802,789 23.55 9.52 11.55 | 2.47 1 121
bone subxyz subx.n6¢c10 491,522 2,972,389 547 2.37 275 | 231 1 116
bone subxyz subx.n6¢100 491,522 2,972,389 5.56 2.47 2.89 | 2.25 1 117
bone subxyz subxy.n26¢c10 245,762 6,405,104 10.99 4.63 5.60 | 2.37 1 121
bone subxyz subxy.n26¢100 245,762 6,405,104 11.06 4.74 5.79 | 2.33 1 122
bone subxyz subxy.n6¢10 245,762 1,489,904 2.55 1.14 1.34| 2.24 1 118
bone subxyz subxy.n6c100 245,762 1,489,904 2.59 1.21 1.39| 2.14 1 115
liver.n26¢10 4,161,602 108,370,821 272.63 123.61 112.40| 243 1.10 1
liver.n26¢100 4,161,602 108,370,821 297.88 132.48 128.60| 2.32 1.03 1
liver.n6¢c10 4,161,602 25,138,821 82.11 35.24 32.02| 256 1.10 1
liver.n6¢100 4,161,602 25,138,821 96.38 40.36 43.60 | 2.39 1 1.08

TABLE |

VISION PROBLEMS GRAPH SIZES WITH COMBINEDINITIALIZATION AND MINIMUM -CUT RUN-TIMES AND THEIR CORRESPONDING SPEEDUP FACTORS
EACH PROBLEM' S FASTEST RUNTIME IS SET IN BOLDFACE. THE SPEEDUP FACTOR STATES HOW MUCH AN ALGORITHM RUNS COMPARETD THE
FASTEST ALGORITHM

Figure[8 and detailed in AppendX A, Tables IIC=]VI. Ideallyfrom the corresponding times in Talile I. However, as desdrib
one should be able to evaluate the minimum-cut processimgSectionll, while the BK and HPF algorithms only read the
times by subtracting the initialization times in Tables+IVI] problem’s data and allocate memory, the PRF algorithm has

10

. L . a) Stereo d) Segmentation
some additional logic in its initialization phase. Conseu @ (@ Seg
tially, one can not evaluate PRF’'s min-cut processing titnes | "% liver.n6c100 K.
this substraction. To accomplish that, one has to account f fﬁ"ffiﬁ ==~an livern6c10 K
. . . - Sukubal |-—— "
the time it takes the PRF algorithm to compute the additiong _, ., .., - oo liver.n26¢100 Ml
.. . CRT . . - - liver.n26¢c10
logic implemented with the initialization stage. FigUIe/®®/s | quootmkzz com “ pRE b;eer:ecioo S
that for all problem instances, the PRF's initializatiomeis | sawwotevz .. bonenéets BL
(tinie) are 2 — 3 times longer than BK's and HPF's times. o 2 4 s bone.n26c100 F
While these times were excluded from the total execution (b) Multi-View bone.n26c10
times reported in[[13] and_[14], Figufd 8 strongly suggest — bone.xyz.n6c100 |
that these initialization times are significant with resgecto | " " bone.xyzn6clo |
h . ¢ tati ti 9.(, d sh Id tb gargoyle-med [bone.xyz.n26c100 &,
t_e min-cut computation times,{:,cw+) and should not be | e 1 NSRS
dlsregarded. camel-sml | HPF bone.xyz.xy.n6¢10
. camel-med “PRF bone.xyz.xy.n6c10
(a) Stereo (d) Segmentation camellig bone xyz.xy.n26c1
venuskKz2 livern6c100 L o 200 400 600 bone.xyz.xy.n26cl |
venusBVZ ke . bone.xyz.x.n6c100
liver.n6c10 &,
tsukubakz2 [BK livern26cion B (c) Surface Fitting bone.xyzx.n6c10 | BK
tsukubaBVZ [“ner - bone.xyz.x.n26¢10 | W HPF
— u PRF liver.n26c10 bunny-sml BK
sawtoothKz2 ! bone.xyz.x.n26c10 | “ PRF
bone.n6¢100 B bunny-med & W HPF
sawtoothBVZ [bone.n6cl0 Ba - - PRF bone.xy.n6c100 |
0 1 2 3 bone.n26¢100 ..) bone.xy.n6c10 |
- bone.n26cl0 e 0 500 1000 1500 one.xy.n26c100 £
(b) Muld-View bone.xyz.n6c100 | bone.xy.n26c10
gargoyle-sml |, BK bone.xyz.n6c10 | bone.x.n6c100 &
gargoyle-med W HPF bone.xyz.n26c100 L bonex.n6cl0 L
gargoyle-Irg s == bone.xyz.n26¢10 L bone.x.n26¢100 ...
camebsml | bone.xyz.xy.n6c10 bone.x.n26c10
camel-med bone.xyz.xy.n6c10 babyface.n6c100 =,
camekrg bone.xyz.xy.n26¢c1 | babyface.n6c10 [
) bone.xyz.xy.n26cl | babyface.n26¢100
° 80 &0 bone.xyz.x.n6¢10 BK babyface.n26c10 e,
u HPF =
(c) Surface Fitting bone.xyz.x.n6c10 | & PRE adhead.n6c100 M
bone.xyz.x.n26cl | adhead.n6c10 =
bunny-sm! | BK bone.xyzx.n26cl | adhead.n26c¢100 o
3 i W HPF dhead.n26c10
bunny-med gy il bone.xy.n6¢100 | aENEac:NZ0e
bunny-Irg B bone.xy.n6c10 | 0 500 1000
bone.xy.n26¢100 .
0 250 500 750
bone.xy.n26c10 Ew Fig. 9. Initialization, Minimum cut and Maximum Flow run-times in
bonex.n6c100 & secondsf (@) Stereo Problerfis;] (b) Multi-view Problefng;Seiface Fitting;
bone.x.n6c10 & Segmentation
bone.x.n26¢100 ..
bone.x.n26c10 [
babyface.n6c100 &))
i level variant of the PRF which are reported [14]. The paper
babyface.n26¢100 [l above reports only the summation of the min-cut and max-
babyface.n26c10 .. flow run-times (without initialization){,incut + tmazFlow -
adhead.n6c100 e Therefore, to enable a fair comparison we use the min-cut and
ad:::zajzgzég === max-flow run-times of the other algorithms as well. g, .
2 | ———— G . .
———— andip o, the run-times reported i [14] for the PAR and PRF
algorithms respectively, the estimated run-time of PAR g,
0 250 500 750 .
on our hardware is:
Fig. 8. Initialization run-times in second§: (a) Stereo Problefns} (b) Multi- - tgAR PRF PRF
view Problems[(¢) Surface Fittinfj; {d) Segmentation tPAR = -7 (trmincut T tmazFlow)
PRF
The actual maximum-flow plays a less significant rolawheretZRE, andtZEE “are the corresponding run-times

in solving computer vision problems. Yet, for the sake aff the PRF algorithm measured on the hardware used in this
completeness, the maximum flow computation times of thgudy.

The comparison results are given in Figlré 10 for all prob-
lem instances reported in [14]. As reported [inl[14], the PAR
algorithm indeed improves on PRF. HPF outperforms PAR for

algorithms(t;,it + tmincut + tmaz Fiow) are reported in Figure

and in Table§ V]I £X.

B. Comparison to Partial Augment-Relabel

all problem instances. It is noted that in this comparisothef
The PAR run-times, on our hardware setup, are deducenh-times that exclude initialization PAR’s performansesiill
from the speedup factor for PAR with respect to the higheistferior to that of HPF. If one were to add the initialization

11

time then the relative performance of PAR as compare to HRdiotted red line) algorithms. These are detailed in Appendi
would be much worse since the initialization used has tifi® Table[X]. The X-axis in Figur¢_11 is the input size. A
consuming logic in it as note previously in Sectidn | ané®roblem’s input size is the number of nodes,plus the
is shown in Figurd8. In terms of comparing PAR to BKnumber of arcs;n, in the problem’s corresponding graph:
Figure[10 shows that PAR is inferior to BK for small problemnput size = n+m. The number of nodes,, and the number
instances, but performs better for larger instances. of arcs,m, for each of the problems are given in Talle I. The

Y-axis is the memory utilization in Mega- Bytes.

a) Stereo c) Segmentation .
@ (©) Seq Both BK and PRF algorithms use on average 10% more
venuskz2 - e bone.n6c100 memory than the HPF algorithm. For problem instances with
tkbi‘z’z B] large number of arcs, the PRF and BK require 25% more
sukubal f— = |—g
wobanvz B B bone.n6c10 | memory. This becomes critical when the problem size is con-
wtoothizz —— il . siderably large, with respect to the machine’s physical mem
cawtoothavz [, seneyEnBLE] i ory. In these cases the execution of the algorithms requires
o 1 2 3 R a significant amount of swapping memory pages between the
(b) Multi-View _ physmal memory and the disk, resulting in longer execution
. bone.xyz.n26c100 | times.
gargoyle-sml | -
— W PAR
gargoyle-med = BK i
camel-sml |, u HPF bone.xyz.n26c10 | 25000
camel-med S mPRE i
0 100 200 bone.xyz.x.n6c100 | = PAR 'g' 50000 77-0-pR|: /f\
‘ BK 5 “BeHPF R,
bone.xyz.x.n6c10 - s s
| arer T B .
bone.xyz.x.n26¢100 ‘ '% 15000 ,
£ o .
‘ E
bone.xyz.x.n26c10 | i 10000
; S
bone.xy.n6c100 | E
; 2 5000 |
bone.xy.n6c10 |
adhead.n6c100 ... | o &
0 200000000 400000000
adhead.n6¢10 Problem Size (#Nodes + #Arcs)
0 20 40 60 80 100 . - . .
Fig. 11. Memory Utilization Vs. Input size

Fig. 10. PAR, PRF, HPF, Bflinimum cut run-times in secondp:{a) Stereo
Problems[() Multi-view Problem§; {c) Segmentation

D. Summary

C. Memory Utilization Figure12 is a graphical summary of the run-times of each of
Measuring the actual memory utilization is of growinghe algorithms for the min-cut task;{:: +t...ncut) depending
importance, as advances in acquisition systems and senswrshe problem size. Figufel12 and taliles | &hd Il suggest that
allow higher image resolution, thus larger problem sizes. the BK and the HPF algorithms generate comparable results.
The memory utilization of each of the algorithms is a&he the first, BK, is more suited for small problem instances
result of two factors: (i) the data each algorithm maintainigess thenl, 000,000 graph elements (#Nodes + #Arcs)) or
in order to solve the problem. For example, the BK algorithrior instances that are characterized by a short paths from
must maintain a flowf, the list of active nodes and a listto ¢. The latter, HPF, might be used for all other general
of all orphans (see Section _1IIC); and (i) the efficiencjarger problems. Figufe L0 shows that this also holds for®RF
of the specific implementation’s memory allocation in eactevised version, the partial augment-relabel (PAR) atbors,
implementation. The first factor can be analytically assé$y for all vision problem instances examined in this study. In
carefully examining the algorithm. The latter, however,smudetail, out of the51 instances BK is dominatindg4 times
be evaluated empirically. It is important to note that both dwith an average running time d8 seconds on these instances.
not necessarily grow linearily with the problem size. Thenme HPF on the other hand has an averaged running tim&iof
ory usage was read directly out of thgroc/[process]/statm seconds and therefor the HPF algorithm has a slowdown factor
file for each implementation and for each problem instancef 1.18 with respect to BK. On the remaining 37 instances HPF
One should note that the granularity of the information iis this dominating with an average running time @ seconds. It
file is the page-file size, thuf)96 Bytes. takes BK100 seconds in average to finish on theses instances,
Figure[11 summarizes the results of the memory utilizatiomhitch results in a slowdown factor of.39 for BK with
for BK (solid blue line), HPF (dashed green line) and PRFEespect to HPF.

12

1600
¢ BK

1400
= HPF

1200
PRF

1000

800

600

400

Running Times [Seconds]

Hy ¢

200 1

0 ed [\l M
0 100000000

200000000

300000000

Problem Size (#Nodes + #Arcs)

Fig. 12. Minium-cut Execution times (Initialization and mmum-cut phases) with respect to the problems’ size

V. CONCLUSIONS

This paper presents the results of a comprehensive compu-
tational study on vision problems, in terms of executionetim
and memory utilization, of four algorithms, which optimall
solve thes-t minimum cut and maximum flow problems: (i)
Goldberg’s and TarjanBush-Relabel(ii) Hochbaum’spseud-

oflow; (iii) Boykov's and Kolmogorov'saugmenting pathand
(iv) Goldberg'spartial augment-relabel

The results show that the BK algorithm is more suited fof®!
small problem instances (less ther00, 000 graph elements,
thus vertices and arcs) or for instances that are charaetkeri
by short paths froms to ¢, the HPF algorithm is better suited [g)
for all other general larger problems. In terms of memory
utilization, the HPF algorithm has better memory utilipati
with up to 25% saved in memory allocation as compared t%

BK and PRF.

Our results are of significance because it has been widely
accepted that both BK and PRF algorithms were the faste@tj
algorithms in practice for the min-cut problem. This was
shown not to hold in general [1L7], and here for computer

vision in particular. This, with the availability of HPF alg

rithm’s source-code (see [23]), makes HPF the perfect ol f
the growing number of computer vision applications whlc[h

incorporate the min-cut problem as a sub-routine.

The current strategy of speeding up computers is to in-
crement the number of processors instead of increasing thg
computing power of a single one. This development suggests
that a parallelization of the algorithm would be beneficiaji2]
We expect the HPF algorithm to behave well with respect

to parallel implementations as well.

REFERENCES

[1] R.Ahuja, T. Magnanti, and J. OrlilNetwork Flows: Theory, Algorithms,

and Applications Prentice-Hall, 1993.

[2] D. Hochbaum, “An efficient algorithm for image segmeitat markov

random fields and related problems,” ACM vol. 48, no. 4, pp. 686—
701, 2001.

D. S. Hochbaum, “Polynomial time algorithms for ratiogirens and a
variant of normalized cutPattern Recognition and Machine Intelligence
IEEE Transactions gnvol. 32, no. 5, pp. 889-898, 2009.

D. Hochbaum and V. Singh, “An efficient algorithm for co-
segmentation,” innternational Conference on Computer Vision (ICCV)
2009.

D. Scharstein, R. Szeliski, and R. Zabih, “A taxonomy awéluation
of dense two-frame stereo correspondence algorithmsPrat. IEEE
Workshop on Stereo and Multi-Baseline Vision (SMBV 20D#}. 9-10,
2001, pp. 131-140.

S. N. Sinha, D. Steedly, R. Szeliski, M. Agrawala, and MlI&eys, “In-
teractive 3d architectural modeling from unordered phaitections,”
in SIGGRAPH Asia '08: ACM SIGGRAPH Asia 2008 paperdNew
York, NY, USA: ACM, 2008, pp. 1-10.

1 N. Snavely, S. M. Seitz, and R. Szeliski, “Photo tourisExploring

photo collections in 3d,’ACM Transactions on Graphics/ol. 25(3),
August 2006.

J. Starck and A. Hilton, “Surface capture for performediimased anima-
tion,” IEEE Computer Graphics and Applicatigngol. 27, no. 3, pp.
21-31, 2007.

Computer Vision Research Group, “Max-flow problem imst@s in
vision,” University of Western Ontario, Tech. Rep., acegs©ct 2009,
http://vision.csd.uwo.ca.

Stanford Computer Graphics Laboratory, “"the stadf@d scanning
repository”,” Stanford, Palo-Alto, CA, USA, Tech. Rep.,cassed Oct
2009, http://graphics.stanford.edu/data/3Dscanrep/.

A. V. Goldberg and R. E. Tarjan, “A new approach to the maxm-flow
problem,”J. ACM vol. 35, no. 4, pp. 921-940, 1988.

D. S. Hochbaum, “The pseudoflow algorithm: A new
algorithm for the maximum-flow problem,Operations Research
vol. 56, no. 4, pp. 992-1009, 2008. [Online]. Available:
http://or.journal.informs.org/cgi/content/abstr&éi4/992

Y. Boykov and V. Kolmogorov, “An experimental compaois of min-
cut/max-flow algorithms for energy minimization in visidbn|EEE
Transactions on Pattern Analysis and Machine Intelligencel. 26,
no. 9, pp. 1124-1137, 2004.

http://or.journal.informs.org/cgi/content/abstract/56/4/992

[14]
[15]

[16]

[17]

(18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

A. Goldberg, “The partial augment—relabel algorithar the maximum
flow problem,” Algorithms - ESA 20Q8pp. 466—477, 2008.

L. Ford and D. Fulkerson, “Maximal flow through a netwgrCanadian
Journal of Math, vol. 8, no. 3, pp. 339-404, 1956.

D. D. Sleator and R. E. Tarjan, “A data structure for dyna trees,”
in STOC '81: Proceedings of the thirteenth annual ACM symposin
Theory of computing New York, NY, USA: ACM, 1981, pp. 114-122.
B. Chandran and D. Hochbaum, “A computational studyhaf pseud-
oflow and push-relabel algorithms for the maximum flow probfe
Operations Researghvol. 57, no. 2, pp. 358 — 376, 2009.

H. Lerchs and I. Grossman, “Optimum design of open pinesj”
Transactions, C.l.Mvol. 68, pp. 17-24, 1965.

D. S. Hochbaum and J. B. Orlin, “Simplifications and shges of the
pseudoflow algorithm,UC Berkeley manuscrip2009.

R. K. Ahuja, M. Kodialam, A. K. Mishra, and J. B.
Orlin, “Computational investigations of maximum flow
algorithms,” European Journal of Operational

vol. 97, no. 3, pp. 509 - 542, 1997. [Online]. Available:

(38]

[39]
[40]

[41]

Research [42]

13

conversion,”Journal of Real-Time Image Processingl. 2, no. 1, pp.
3-9, 2007.

V. Lempitsky, Y. Boykov, and D. Ivanov, “Oriented vigiity for
multiview reconstruction,” inComputer Vision ECCV 2006ser.
Lecture Notes in Computer Science, A. Leonardis, H. Bisclaofd

A. Pinz, Eds. Springer Berlin / Heidelberg, 2006, vol. 39%®.
226-238. [Online]. Available: http://dx.doi.org/10.100174407818

D. Snow, P. Viola, and R. Zabih, “Exact voxel occupancithwgraph
cuts,” in Proc. IEEE Conference on Computer Vision and Pattern
Recognition vol. 1, Jun. 13-15, 2000, pp. 345-352.

G. Vogiatzis, P. Torr, and R. Cipolla, “Multi-view s&o via volumetric
graph-cuts,” inComputer Vision and Pattern Recognition (CVPR). 2,
2005, pp. 391 — 398.

V. L. Yuri Boykov, “From photohulls to photoflux optimation,” in
British Machine Vision Conference (BMV,QJol. IIl, Sept 2006, pp.
1149-1158.

Y. Boykov and G.
n-d

Funka-Lea, “Graph cuts and efficient
image segmentation,”International Journal of Computer

hittp://www.sciencedirect.com/science/article/B6VBSWXMSD-8/2/8d88b6f35ia70 160 f8hoR82g - 109131, 2006. [Online]. Available:

P. Kohli and P. H. S. Torr, “Effciently solving dynamicarkov random
fields using graph cuts,” ilCCV '05: Proceedings of the Tenth IEEE
International Conference on Computer VisiotWashington, DC, USA:
IEEE Computer Society, 2005, pp. 922-929.

0. Juan and Y. Boykov, “Capacity scaling for graph cutsvision,” in
ICCV, 2007, pp. 1-8.

D. S. Hochbaum, “HPF Implementation Ver. 3.3
http://riot.ieor.berkeley.edu/riot/Applications/Psmflow/maxflow.html
(accessed January 2010).

B. V. Cherkassky and A. V. Goldberg, “On implementinge thush—
relabel method for the maximum flow problen#lgorithmica vol. 19,
no. 4, pp. 390-410, 12 1997.

A. V. Goldberg, “Hi-level variant of the push-relabelef. 3.5),”
http://www.avglab.com/andrew/soft.html (accessed dan2010).

V. Kolmogorov, “An implementation of the maxflow algtrm,”
http://www.cs.ucl.ac.uk/staff / V.Kolmogorov / softwanéml (accessed
January 2010).

D. S. Hochbaum, “Efficient and effective image segmeaiainteractive
tool,” in BIOSIGNALS 2009 - International Conference on Bio-ingpire
Systems and Signal Processir09, pp. 459-461.

Y. Nakamura, T. Matsuura, K. Satoh, and Y. Ohta, “Occdogletectable
stereo — occlusion patterns in camera matri@mputer Vision and
Pattern Recognition, IEEE Computer Society Conferencevoh 0, p.
371, 1996.

V. Lempitsky and Y. Boykov, “Global optimization for ape fitting,”
in Proc. IEEE Conference on Computer Vision and Pattern Retiogn
CVPR '07 Jun. 17-22, 2007, pp. 1-8.

S. Ali and M. Shah, “Human action recognition in videosing
kinematic features and multiple instance learnifgEE Trans, Pattern
Analysis and Machine Intelligenceol. 32, no. 2, pp. 288-303, 2010.
Y. Boykov and D. Huttenlocher, “A new bayesian framelvéor object
recognition,”Computer Vision and Pattern Recognition, IEEE Computer
Society Conference owol. 2, p. 2517, 1999.

I. Cox, S. Rao, and Y. Zhong, “ratio regions”: a techmégfor image
segmentation,” vol. 2, Aug 1996, pp. 557-564 vol.2.

V. Kwatra, |. Essa, A. Bobick, and N. Kwatra, “Texturetiopization for
example-based synthesis,” 8iIGGRAPH '05: ACM SIGGRAPH 2005
Papers New York, NY, USA: ACM, 2005, pp. 795-802.

S. Roy and I. J. Cox, “A maximum-flow formulation of thecamera
stereo correspondence problem,Aroc. Sixth International Conference
on Computer VisionJan. 4-7, 1998, pp. 492-499.

J. Shi and J. Malik, “Normalized cuts and image segntemtd leee
Transactions On Pattern Analysis and Machine Intelligencel. 22,
no. 8, pp. 888—905, AUG 2000.

B. Thirion, B. Bascle, V. Ramesh, and N. Navab, “Fusiéraor, shad-
ing and boundary information for factory pipe segmentati@omputer
Vision and Pattern Recognition, IEEE Computer Society @mmice on
vol. 2, p. 2349, 2000.

I. Ideses, L. Yaroslavsky, and B. Fishbain, “Real-tidé to 3d video

nitp:7/7ax.dor.org/10.1007/s11263-006- 7934-5

http://www.sciencedirect.com/science/article/B6VCT-3SWXMSD-8/2/8d88b6f35cdd701679f1f5b9a328cdbc
http://riot.ieor.berkeley.edu/riot/Applications/Pseudoflow/maxflow.html
http://www.avglab.com/andrew/soft.html
http://dx.doi.org/10.1007/11744078_18
http://dx.doi.org/10.1007/s11263-006-7934-5

APPENDIXA
RUN-TIMES

Stereo

Instance [PRE HPF BK

sawtoothBVZ | 1.02 0.57 0.53
sawtoothKz2 | 2.69 1.40 1.32
tsukubaBVZ | 0.65 0.37 0.34
tsukubakz2 1.79 0.96 0.90
venusBVZ 1.02 057 0.53
venuskKz2 2.79 145 1.36

Average 1.66 0.89 0.83
TABLE Il
Initialization STAGE RUN-TIMES: Stereo ViSiorPROBLEMS

Multi-View

Instance | PRF HPF BK
camel-Irg 155.25 76.97 70.22
camel-med 76.40 38.44 35.15
camel-sml 8.66 4.65 4.23

gargoyle-Irg 141.81 68.79 63.50
gargoyle-med| 70.79 34.97 32.33
gargoyle-smi 8.11 4.33 3.94
Average 76.84 38.02 34.89

TABLE IV
Initialization STAGE RUN-TIMES: Multi-View PROBLEMS

Surface Fitting

Instance | PRF HPF BK

bunny-Irg 687.01 230.81 219.04
bunny-med| 70.87 29.25 27.95
bunny-sml 7.99 3.70 3.47
Average 255.29 87.92 83.5(0

TABLE V
Initialization STAGE RUN-TIMES: Surface FittingPROBLEMS

Segmentation

Instance PRF HPF BK
adhead.n26¢10 697.57 238.71 233.34
adhead.n26¢100 702.45 242.09 239.02
adhead.n6c10 144.05 58.00 55.12
adhead.n6¢100 146.12 59.82 56.47
babyface.n26¢10 180.35 94.24 92.50
babyface.n26¢100 182.76 95.88 94.62
babyface.n6c10 44.31 22.77 21.71
babyface.n6¢100 44.85 23.37 22.35
bone.n26¢10 381.60 146.00 144.64
bone.n26¢100 382.59 149.93 145.7(
bone.n6¢10 85.74 35.58 33.66
bone.n6¢c100 86.26 36.68 34.72
bone subx.n26¢10 182.47 72.52 71.59
bone subx.n26¢100 183.88 73.70 72.54
bone subx.n6¢10 41.02 17.62 16.78
bone subx.n6¢100 41.46 18.18 17.28
bone subxy.n26¢c10 87.33 36.05 35.32
bone subxy.n26¢100 88.08 36.37 35.89
bone subxy.n6c10 19.62 8.73 8.26
bone subxy.n6c100 19.77 8.99 8.60
bone subxyz.n26¢10 41.91 17.60 17.31
bone subxyz.n26¢100 42.26 17.93 17.74
bone subxyz.n6¢c10 9.26 4.28 4.10
bone subxyz.n6¢100 9.29 4.46 4.21
bone subxyz subx.n26¢10 20.24 8.80 8.66
bone subxyz subx.n26¢100 20.47 8.93 8.76
bone subxyz subx.n6¢c10 4.32 2.16 2.05
bone subxyz subx.n6¢c100 4.39 2.23 2.10
bone subxyz subxy.n26¢10 9.63 4.38 4.30
bone subxyz subxy.n26¢c100 9.68 4.47 4.34
bone subxyz subxy.n6c10 2.05 1.06 1.02
bone subxyz subxy.n6c100 2.08 1.11 1.05
liver.n26¢10 200.28 76.43 75.65
liver.n26¢100 200.64 77.25 76.02
liver.n6¢c10 44.58 18.68 17.90
liver.n6¢100 44.76 18.91 17.99
Average 122.45 48.44 47.3]

TABLE VI
Initialization STAGE RUN-TIMES: SegmentatioPROBLEMS

Stereo

Instance [PRE HPF BK
sawtoothBVZ | 1.64 0.88 0.62
sawtoothKZ2 | 4.26 2.02 152
tsukubaBVZ | 1.15 057 0.41
tsukubaKz2 355 142 1.06
venusBVZ 202 094 0.66
venuskKz2 532 222 1.66
Average 299 134 0.99

TABLE VII

STAGES- Stereo ViSiorPROBLEMS

TOTAL RUN-TIMES OF THEInitialization and Min-cut and Max-flow

14

Multi-View
Instance | PRF HPF BK .
camelrg 56352 18057 22553 Segmentation
camel-med | 24274 80.56 83.43 Instance | _PRF__HPF BK
camel-sml 17.44 6.92 6.46 adhead.n26c10 982.98 356.07 407.42
gargoyle-lrg | 417.75 154.40 432.31 adhead.n26¢100 985.39 383.55 476.04
gargoyle-med| 198.56 66.66 226.43 adhead.n6c10 223.30 94.54 90.3§
Average 242.09 82.45 164.61 babyface.n26c10 341.32 264.41 250.14
babyface.n26¢100 392.62 325.34 321.2(
TABLE VI babyface.n6¢c10 105.48 5274 35.3Q
TOTAL RUN-TIMES OF THEInitialization and Min-cut and Max-flow babyface.n6c100 129.39 72.35 43.89
STAGES- Multi-View PROBLEMS bone.n26¢10 456.03 163.58 196.26
bone.n26¢100 477.26 174.07 198.73
bone.n6c10 121.31 42.74 47.79
bone.n6¢100 133.96 47.02 51.89
bone subx.n26¢10 211.19 80.94 100.23
bone subx.n26¢100 220.91 83.42 107.43
bone subx.n6¢10 64.91 21.41 26.57|
bone subx.n6¢100 62.00 22.52 30.29
bone subxy.n26¢c10 100.65 40.13 48.25
bone subxy.n26¢100 102.25 40.87 51.04
bone subxy.n6¢c10 27.58 10.30 12.09
bone subxy.n6c100 28.05 10.83 13.62
bone subxyz.n26¢10 48.60 19.15 23.69
bone subxyz.n26¢100 49.39 19.71 25.41
bone subxyz.n6¢c10 12.13 4,98 5.95
bone subxyz.n6¢100 12.24 5.28 6.54
bone subxyz subx.n26¢10 23.23 9.48 11.27
bone subxyz subx.n26¢100 23.82 9.68 11.55
bone subxyz subx.n6¢c10 5.56 2.43 2.75
bone subxyz subx.n6¢c100 5.65 2.54 2.89
bone subxyz subxy.n26¢10 11.12 4.67 5.60
bone subxyz subxy.n26c100{ 11.20 4.80 5.79
bone subxyz subxy.n6c10 2.60 1.16 1.34
bone subxyz subxy.n6c100 2.64 1.24 1.39
Surface Fiting liver.n26¢10 275.68 126.03 112.4(
liver.n26¢100 301.11 135.20 128.6(
Instance | PRF___HPF BK liver.n6c10 83.42 3699 32.02
bunny-Irg | 1595.21 440.59 277.03 liver.n6c100 97.88 4230 43.60
bunny-med| 131.78 43.50 32.82 Average 17725 78.42 84.79
bunny-sml 11.18 4,74 4.03
Average 579.39 162.94 104.62 TABLE X
TOTAL RUN-TIMES OF THEInitialization and Min-cut and Max-flow
TABLE IX STAGES- SegmentatioPROBLEMS

TOTAL RUN-TIMES OF THEInitialization and Min-cut and Max-flow
STAGES- Surface FittingPROBLEMS

APPENDIXB
MEMORY UTILIZATION

S=an

| Instance PRF HPF BK |
Stereo
sawtoothBVZ 62.28 58.50 69.27
sawtoothKZ2 141.08 125.81 147.55
tsukubaBVZ 41.62 39.55 48.79
tsukubaKz2 97.72 87.12 104.57
venusBVZ 62.27 58.65 69.24
venuskKz2 145.76 129.76 152.22
Segmentation
adhead.n26c10 20,759.80 16,480.20 20,719.
adhead.n26¢100 20,759.80 16,480.20 20,719.
adhead.n6¢10 5,399.80 4,960.20 5,359.4(
adhead.n6c100 5,399.80 4,960.20 5,359.4(
babyface.n26c10 8,347.10 6,628.00 8,335.4(
babyface.n26¢100 8,347.10 6,628.00 8,335.4(
babyface.n6c10 2,167.30 1,993.20 2,155.6(
babyface.n6c100 2,167.30 1,993.20 2,155.6(0
bone.n26¢10 12,863.50 10,212.70 12,841.3
bone.n26¢100 12,863.50 10,212.70 12,841.3
bone.n6c10 3,343.50 3,072.70 3,321.3(
bone.n6¢100 3,343.50 3,072.70 3,321.30
bone subx.n26¢10 6,435.30 5,109.30 6,428.1(
bone subx.n26¢100 6,435.30 5,109.30 6,428.10
bone subx.n6¢c10 1,675.30 1,539.30 1,668.10
bone subx.n6¢c100 1,675.30 1,539.30 1,668.1(
bone subxy.n26¢10 3,220.40 2,557.04 3,220.6(
bone subxy.n26¢100 3,220.40 2,557.06 3,220.6(0
bone subxy.n6¢10 840.40 772.00 840.60
bone subxy.n6¢100 840.40 772.00 840.60
bone subxyz.n26¢10 1,625.60 1,291.00 1,629.4(
bone subxyz.n26¢100 1,625.60 1,291.00 1,629.40
bone subxyz.n6¢c10 425.60 391.10 429.40
bone subxyz.n6¢100 425.60 391.10 429.40
bone subxyz subx.n26¢10 815.10 647.60 820.80
bone subxyz subx.n26¢100 815.10 647.60 820.80
bone subxyz subx.n6c10 215.10 197.70 220.80
bone subxyz subx.n6¢100 215.10 197.70 220.80
bone subxyz subxy.n26c10 409.60 325.80 416.30
bone subxyz subxy.n26¢100| 409.60 325.80 416.30
bone subxyz subxy.n6¢c10 109.60 100.80 116.30
bone subxyz subxy.n6¢100 109.60 100.80 116.30
liver.n26¢10 6,872.10 5,455.20 6,863.8(
liver.n26¢100 6,872.10 5,455.20 6,863.8(
liver.n6¢c10 1,792.00 1,645.20 1,783.8(
liver.n6¢100 1,792.00 1,645.20 1,783.80
Multi-View
camel-Irg 6,879.30 6,392.60 6,814.8(
camel-med 3,519.90 3,272.50 3,490.6(
camel-sml 441.50 411.30 444.50
gargoyle-Irg 6,313.40 5,851.80 6,255.4(
gargoyle-med 3,253.60 3,015.00 3,227.40
gargoyle-sml 413.30 382.52 416.60
Surface Fitting
bunny-Irg 21,389.40 19,600.30 21,208.0
bunny-med 2,753.30 2,515.00 2,736.8(
bunny-sml 360.50 327.70 365.10

TABLE XI

MEMORY UTILIZATION IN [MB YTES]

16

	I Introduction
	I-A A graph representation of a vision problem
	I-B Definitions and Notation

	II Min-cut / Max-flow Algorithms
	II-A The push-relabel Algorithm
	II-B The Hochbaum's Pseudo-flow Algorithm
	II-C Boykov's and Kolmogorov's Augmenting Paths Algorithm
	II-D The Partial Augment-Relabel

	III Experimental Setup
	III-A Computing Environments
	III-B Problem Classes
	III-B1 Stereo Vision
	III-B2 Multi-view reconstruction
	III-B3 Surface fitting
	III-B4 Segmentation

	IV Results
	IV-A Run-times
	IV-B Comparison to Partial Augment-Relabel
	IV-C Memory Utilization
	IV-D Summary

	V Conclusions
	References
	Appendix A: Run-times
	Appendix B: Memory Utilization

