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Competitive Analysis of Minimum-Cut Maximum
Flow Algorithms in Vision Problems

Barak Fishbain, Dorit S. Hochbaum and Stefan Mueller

Abstract—Rapid advances in image acquisition and storage
technology underline the need for algorithms that are capable
of solving large scale image processing and computer-vision
problems. The minimum cut problem plays an important role
in processing many of these imaging problems such as, image
and video segmentation, stereo vision, multi-view reconstruction
and surface fitting. While several min-cut/max-flow algorithms
can be found in the literature, their performance in practice
has been studied primarily outside the scope of computer vision.
We present here the results of a comprehensive computational
study, in terms of execution times and memory utilization, of
the four leading published algorithms, which optimally solve
the s-t cut and maximum flow problems: (i) Goldberg’s and
Tarjan’s Push-Relabel; (ii) Hochbaum’s pseudoflow; (iii) Boykov’s
and Kolmogorov’s augmenting paths; and (iv) Goldberg’s partial
augment-relabel. Our results demonstrate that while theaugment-
ing paths algorithm is more suited for small problem instances
or for problems with short paths from s to t, the pseudoflow
algorithm, is more suited for large general problem instances and
utilizes less memory than the other algorithms on all problem
instances investigated.

Index Terms—Flow algorithms; Maximum-flow; Minimum-
cut; Segmentation; Stereo-vision; Multi-view reconstruction; Sur-
face fitting

I. I NTRODUCTION

T HE minimum cutproblem (min-cut) and its dual, themax-
imum flowproblem (max-flow), are classical combinato-

rial optimization problems with applications in numerous areas
of science and engineering (for a collection of applications of
min-cut and max-flow see [1]).

Rapid advances in image acquisition and storage technology
have increased the need for faster image processing and
computer-vision algorithms that require lesser memory while
being capable of handling large scale imaging problems. The
min-cut problem takes a prominent role in many of these
imaging problems, such as image and video segmentation,
[2], [3], co-segmentation [4], stereo vision [5], multi-view
reconstruction, [6], [7], and surface fitting [8].

Several min-cut/max-flow algorithms can be found in the
combinatorial optimization literature. However, their perfor-
mance in practice has been studied primarily outside the
scope of computer vision. In this study we compare, in terms
of execution times and memory utilization, the four leading
published algorithms, which solve optimally the min-cut and
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max-flow problems within the scope of vision problems. The
study consists of a benchmark of an extensive data set which
includes standard and non-standard vision problems [9], [10].

The algorithms compared within the scope of this study
are: (i) thePush-Relabel, PRF, algorithm devised by Goldberg
and Tarjan [11]; (ii) the Hochbaum’spseudoflowalgorithm,
HPF [12]; (iii) Boykov’s and Kolmogorov’saugmenting paths
algorithm, BK, [13]; and (iv) Goldberg’spartial augment-
relabel, PAR, algorithm [14].

The study of these algorithms within the scope of computer-
vision was reported in [13], [14]. The first, [13], compares
the BK algorithm only to PRF, and for a limited set of
instances. The latter report, [14], used the same limited set
of instances, and compared PRF and PAR to HPF. The
comparison provided in [14] to HPF is however not valid,
as it did not use the updated publicly available software. Here
we provide, for the first time, a comprehensive review of all
these algorithms and a detailed comparison of several aspects
of their performance, including a breakdown of the run-times
and memory requirements. The breakdown of the run-times for
the different stages of the algorithm: initialization, minimum
cut computation and flow recovery, is important as the logic
of the software is allocated differently by these algorithms
to these stages. For example, while the initialization process
in the BK and HPF algorithms only reads the problem file
and initiate the corresponding graphs, the implementationof
the PRF incorporates an additional logic into this stage, e.g.
sorting the arcs of each node. This extends the execution
time of the initialization phase, and as a result of the entire
algorithm. While our experiments show that this time is
significant, it was disregarded in the previous reports in which
the initialization execution time was not considered as part of
the algorithm’s running times. In addition, for many computer-
vision applications only the min-cut solution is of importance.
Thus, there is no need to recover the actual maximum flow in
order to solve the problem. The breakdown of the execution
times allows to evaluate the performance of the algorithms for
these relevant computations by taking into account only the
initialization and minimum-cut times.

Our results demonstrate that while the BK algorithm is more
suited for small problem instances or for problems with short
paths froms to t, the HPF algorithm, is more suited for large
general problem instances and utilizes less memory than the
other algorithms on all problem instances investigated.

The paper is organized as follows: Section II describes the
algorithms compared in this study. The experimental setup is
presented in Section III, followed by the comparison results,
which are detailed in Section IV. Section V concludes the
paper.
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A. A graph representation of a vision problem

A vision problem is typically presented on an undirected
graphG = (V,E), whereV is the set of pixels andE are
the pairs of adjacent pixels for which similarity information
is available. The4-neighbors setup is a commonly used
adjacency rule with each pixel having4 neighbors – two along
the vertical axis and two along the horizontal axis. This set-up
forms a planar grid graph. The8-neighbors arrangement is also
used, but then the planarity of the graph is no longer preserved,
and complexity of various algorithms increases, sometimes
significantly. Planarity is also not satisfied for3-dimensional
images or video. In the most general case of vision problems,
no grid structure can be assumed and thus the respective graphs
are not planar. Indeed, the algorithms presented here do not
assume any specific property of the graphG - they work for
general graphs.

The edges in the graph representing the image carrysim-
ilarity weights. There is a great deal of literature on how to
generate similarity weights, and we do not discuss this issue
here. We only use the fact that similarity is inversely increasing
with the difference in attributes between the pixels. In terms of
the graph, each edge{i, j} is assigned a similarity weightwij

that increases as the two pixelsi andj are perceived to be more
similar. Low values ofwij are interpreted as dissimilarity.
In some contexts one might want to generatedissimilarity
weights independently. In that case each edge has two weights,
wij for similarity, andŵij for dissimilarity.

B. Definitions and Notation

Let Gst be a graph(Vst, Ast), whereVst = V ∪ {s, t} and
Ast = A∪As∪At in whichAs andAt are the source-adjacent
and sink-adjacent arcs respectively. The number of nodes|Vst|
is denoted byn, while the number of arcs|Ast| is denoted by
m. A flow f = {fij}(i,j)∈Ast

is said to befeasibleif it satisfies
(i) Flow balance constraints: for eachj ∈ V ,∑

(i,j)∈Ast
fij =

∑
(j,k)∈Ast

fjk (i.e., inflow(j) =
outflow(j)), and

(ii) Capacity constraints: the flow value is between the lower
bound and upper bound capacity of the arc, i.e.,ℓij ≤
fij ≤ uij . We assume henceforth w.l.o.g thatℓij = 0.

The maximum flowor max-flow problem on a directed
capacitated graph with two distinguished nodes—a source and
a sink—is to find a feasible flowf∗ that maximizes the amount
of flow that can be sent from the source to the sink while
satisfying flow balance constraints and capacity constraints.

A cut is a partition of nodesS ∪ T = V with s ∈
S, t ∈ T . Capacity of a cut is defined byu(S, T ) =∑

i∈S,j∈T,(i,j)∈A uij . The minimums-t cut problem, hence-
forth referred to as themin-cutproblem, defined on the above
graph, is to find a bi-partition of nodes—one containing the
source and the other containing the sink—such that the sum
of capacities of arcs from the source set to the sink set is
minimized. In 1956, Ford and Fulkerson [15] established the
max-flow min-cut theorem, which states that the value of a
max-flow in any network is equal to the value of a min-cut.

Given a capacity-feasible flow, hence a flow that satisfies
(ii), an arc (i, j) is said to be aresidual arc if (i, j) ∈ Ast

and fij < uij or (j, i) ∈ Ast and fji > 0. For (i, j) ∈ Ast,
the residual capacity of arc(i, j) with respect to the flowf
is cfij = uij − fij , and the residual capacity of the reverse arc
(j, i) is cfji = fij . Let Af denote the set of residual arcs with
respect to flowf in Gst which consists of all arcs or reverse
arcs with positive residual capacity.

A preflow is a relaxation of a flow that satisfies capacity
constraints, but inflow into a node is allowed to exceed the
outflow. Theexcessof a nodev ∈ V is the inflow into that
node minus the outflow denoted bye(v) =

∑
(u,v)∈Ast

fuv −∑
(v,w)∈Ast

fvw. Thus a preflow may have nonnegative excess.
A pseudoflowis a flow vector that satisfies capacity con-

straints but may violate flow balance in either direction (inflow
into a node needs not to be equal outflow). A negative excess
is called adeficit.

II. M IN-CUT / MAX -FLOW ALGORITHMS

A. The push-relabel Algorithm

In this section, we provide a sketch of a straightforward im-
plementation of the algorithm. For a more detailed description,
see [1], [11].

Goldberg’s and Tarajen’s push-relabel algorithm [11], PRF,
works withpreflows, where a node with strictly positive excess
is said to beactive. Each nodev is assigned a labelℓ(v) that
satisfies (i)ℓ(t) = 0, and (ii)ℓ(u) ≤ ℓ(v)+1 if (u, v) ∈ Af . A
residual arc(u, v) is said to beadmissibleif ℓ(u) = ℓ(v) + 1.

Initially, s’s label is assigned to ben, while all other nodes
are assigned a label of0. Source-adjacent arcs are saturated
creating a set of source-adjacent active nodes (all other nodes
have zero excess). An iteration of the algorithm consists of
selecting an active node inV , and attempting to push its excess
to its neighbors along an admissible arc. If no such arc exists,
the node’s label is increased by1. The algorithm terminates
with a maximum preflow when there are no active nodes with
label less thann. The set of nodes of labeln then forms
the source set of a minimum cut and the current preflow is
maximum in that it sends as much flow into the sink node as
possible. This ends Phase1 of the algorithm. In Phase2, the
algorithm transforms the maximum preflow into a maximum
flow by pushing the excess back tos. In practice, Phase2 is
much faster than Phase1. A high-level description of the PRF
algorithm is shown in Figure 1.

The generic version of the PRF algorithm runs inO(n2m)
time. Using the dynamic trees data structure of Sleator and
Tarjan [16], the complexity is improved toO(nm log n2

m
)

[11]. Two heuristics that are employed in practice significantly
improve the run-time of the algorithm:Gap relabelingand
Global relabeling(see [11], [17] for details).

In the highest label and lowest label variants, an active node
with highest and lowest labels respectively are chosen for
processing at each iteration. In the FIFO variant, the active
nodes are maintained as a queue in which nodes are added
to the queue from the rear and removed from the front for
processing. In practice the FIFO - highest label variant is
reported to work best [11]. This variant of the algorithm is
also referred to as HIPR. While, in this paper the highest
label variant was used, it is referred to as PRF to indicate that
this is the PRF algorithm.
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/*
Generic push-relabel algorithm for maximum flow.
*/

procedure push-relabel(Vst, Ast, c):
begin

Set the label ofs to n and that of all other nodes to0;
Saturate all arcs inAs;
while there exists an active nodeu ∈ V of label less thann do

if there exists an admissible arc(u, v) do
Push a flow ofmin{e(u), cfuv} along arc(u, v);

else do
Increase label ofu by 1 unit;

end

Fig. 1. High-level description of Phase I of the generic push-relabel algorithm. The nodes with label equal ton at termination form the source set of the
minimum cut.

B. The Hochbaum’s Pseudo-flow Algorithm

The Hochbaum’s Pseudoflow algorithm, HPF, [12] was
motivated by an algorithm of Lerchs and Grossman [18] for
the maximum closure problem. The pseudoflow algorithm
has a strongly polynomial complexity ofO(nm log n2

m
) [19].

Hochbaum’s algorithm was shown to be fast in theory [12]
and in practice [17] for general benchmark problems.

Each node inv ∈ V is associated with at most onecurrent
arc, currArc(v) = (w, v), in Af ; the correspondingcurrent
node of v is denoted bycurrNode(v) = w. The algorithm
also associates with each node with aroot that is defined
constructively as follows: starting with nodev, generate the
sequence of nodes{v, v1, v2, . . . , vr} defined by the current
arcs(v1, v), (v2, v1), . . . , (vr , vr−1) until vr has no current arc.
Such root nodevr always exists [17], [19]. Let the unique root
of nodev be denoted byroot(v). Note that if nodev has no
current arc, thenroot(v) = v.

The HPF algorithm is initiated with any arbitrary initial
pseudoflow(i.e, flow vector that may violate flow balance
in either direction) that saturates source adjacent and sink-
adjacent arcs. Such initial pseudoflow can be generated, for
example, by saturating all source-adjacent and sink-adjacent
arcs,As ∪ At, and setting all other arcs to have zero flow.
This creates a set of source-adjacent nodes with excess, and
a set of sink-adjacent nodes with deficit. All other arcs have
zero flow, and the set of initial current arcs is empty. Thus,
each node is a singleton component of the forest for which it
serves as a tree and the root of the tree.

The algorithm associates each nodev ∈ V with a distance
label d(v). A residual arc(w, v) is said to beadmissibleif
d(w) = d(v) + 1.

A node is said to beactive if it has strictly positive excess.
Given an admissible arc(w, v) with nodesw andv in different
components, anadmissible pathis the path fromroot(w) to
root(v) along the set of current arcs fromroot(w) to w, the
arc(w, v), and the set of current arcs (in the reverse direction)
from v to root(v).

An iteration of the HPF algorithm consists of choosing an
active component, with root node label< n and searching

for an admissible arc from alowest labelednodew in this
component. Choosing a lowest labeled node for processing
ensures that an admissible arc is never between two nodes of
the same component.

By construction (see [12]), the root is the lowest labeled
node in a component and node labels are non-decreasing with
their distance from the root of the component. Thus, all the
lowest labeled nodes within a component form a sub-tree
rooted at the root of the component. Once an active component
is identified, all the lowest labeled nodes within the component
are examined for admissible arcs by performing a depth-first-
search in the sub-tree starting at the root.

If an admissible arc(w, v) is found, amergeroperation is
performed. The merger operation consists of pushing the entire
excess ofroot(w) towardsroot(v) along the admissible path
and updating the excesses and the arcs in the current forest.
A schematic description of the merger operation is shown in
Figure 2. The pseudocode is given in Figure 3.

Fig. 2. (a) Components before merger (b) Before pushing flow along
admissible path fromri to rj (c) New components generated when arc(w, v)
leaves the current forest due to insufficient residual capacity.

If no admissible arc is found,d(w) is increased by1 unit
for all lowest label nodesw in the component. The algorithm
terminates when there are no active nodes with label< n.
At termination alln labeled nodes form the source set of the
min-cut.
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The active component to be processed in each iteration can
be selected arbitrarily. There are two variants of the pseud-
oflow algorithm: (i) the lowest label pseudoflow algorithm,
where an active component with the lowest labeled root is
processed at each iteration; and (ii) the highest label algorithm,
where an active component with the highest labeled root node
is processed at each iteration.

The first stage of HPF terminates with the min-cut and a
pseudoflow. The second stage converts this pseudoflow to a
maximum feasible flow. This is done byflow decomposition.
Hence representing the flow as the sum of flows along a
set of s-t paths, and flows along a set of directed cycles,
such that no two paths or cycles are comprised of the same
set of arcs ( [20], pages 79-83). This stage can be done in
O(m log n) by flow decomposition in a related network, [12].
Our experiments, like the experiments in [17], indicate that
the time spent in flow recovery is small compared to the time
to find the min-cut.

C. Boykov’s and Kolmogorov’s Augmenting Paths Algorithm

Boykov’s and Kolmogorov’s augmenting paths algorithm,
BK, [13] attempts to improve on standard augmenting path
techniques on graphs in vision. Given that|C| is the capacity
of a minimum cut, the theoretical complexity of this algorithm
is O(mn2|C|). Similarly to Ford–Fulkerson’s algorithm [15],
the BK algorithm’s complexity is only pseudo-polynomial. In
this it differs from the other algorithms studied here, all of
which have strongly polynomial time complexity. Despite of
that, it has been demonstrated in [13] that in practice on a set
of vision problems, the algorithm works well.

At heart of the augmenting paths approach is the use of
search trees for detecting augmenting paths froms to t. Two
such trees, one from the source,TS, and the other from the
sink, TT are constructed, whereTS ∩ TT = ∅. The trees are
constructed so that inTS all edges from each parent node to
its children are non-saturated and inTT , edges from children
to their parents are non-saturated.

Nodes that are not associated with a tree are calledfree.
Nodes that are not free can be tagged asactive or passive.
Active nodes have edges to at least one free node, while
passive nodes have no edges connecting them to a free node.
Consequentially trees can grow only by connecting, througha
non-saturated edge, a free node to an active node of the tree.
An augmenting path is found when an active node in either of
the trees detects a neighboring node that belongs to the other
tree.

At the initialization stage the search tree,TS contains only
the source node,s and the search treeTT contains only the
sink nodet. All other nodes are free.

Each iteration of the algorithm consists of the following
three stages:
Growth In this stage the search treesTS andTT expand. For
all active nodes in a tree,TS or TT , adjacent free nodes, which
are connected through non-saturated edge, are searched. These
free nodes become members of the corresponding search tree.
The growth stage terminates when the search for an active
node from one tree, finds an adjacent (active) node that belongs

to the other tree. Thus, an augmenting path fromS to T was
found.
Augmentation Upon finding the augmenting path, the maxi-
mum flow possible is being pushed froms to t. This implies
that at least one edge will be saturated. Thus, for at least one
node in the treesTS and TT the edge connecting it to its
parent is no longer valid. The augmentation phase may split
the search treesTS andTT into forests. Nodes for which the
edges connecting them to their parent become saturated are
calledorphans.
Adoption In this stage the tree structure ofTS and TT is
restored. For each orphan, created in the previous stage, the
algorithm tries to find a new valid parent. The new parent
should belong to the same set,TS or TT , as the orphan node
and has a non-saturated edge to the orphan node. If no parent
is found, then the orphan node and all its children become
free and the tree structure rooted in this orphan is discarded.
This stage terminates when all orphan nodes are connected to
a new parent or are free.

The algorithm terminates when there are no more active
nodes and the trees are separated by saturated edges. Thus, the
maximum flow is achieved and the corresponding minimum-
cut is S = TS andT = TT .

It is interesting to note that there are two speed-ups for the
BK-algorithm. The first one is an option to reuse search trees
from one maxflow computation to the next as described in
[21]. This option does not apply in our setting as the instances
are not modified. The other speed-up is due to capacity scaling
[22]. We would have liked to test this version but we are not
aware of any publicly available implementation.

D. The Partial Augment-Relabel

The Partial Augment-Relabel algorithm, PAR, devised by
Goldberg, [14] searches for the shortest augmenting path and
it maintains a flow (rather than a pseudoflow or preflow). A
relabeling mechanism is utilized by the algorithm to find the
augmenting paths.

The algorithm starts ats and searches for admissible, non-
saturated, arcs in a depth-first search manner. An arc(x, y)
is admissible if the label of its associated nodes is equal,
d(x) = d(y). At each iteration, the algorithm maintains a
path from s to v ∈ V and tries to extend it. Ifv has an
admissible arc,(v, w), the path is extended tow. If no such
admissible arc is found, the algorithm shrinks the path, making
the predecessor ofv on the path the current node and relabels
v. At each iteration, the search terminates either ifw = t, or
if the length of the path reaches some predefined value,k, or
if v, the current node has no outgoing admissible arcs. For
k = Θ(

√
m), PAR has a complexity ofO(n2

√
m) [14].

In order to achieve better performance in practice, the same
gap and global heuristics mentioned in Section II-A, for PRF,
can be applied here for the PAR algorithm.

III. E XPERIMENTAL SETUP

ThePRF, HPF and theBK algorithms are compared here by
running them on the same problem instances and on the same
hardware setup. The run-times of the highest level variant of
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/*
Min-cut stage of HPF algorithm.
*/

procedure HPF (Vst, Ast, c):
begin

SimpleInit (As, At, c);
while ∃ an active componentT with root r, whered(r) < n, do

w ← r;
while w 6= ∅ do

if ∃ admissible arc(w, v) do
Merger (root(w), · · · , w, v, · · · , root(v));
w ← ∅;

else do
if ∃y ∈ T : (current(y) = w) ∧ (d(y) = d(w)) do

w← y;
else do{relabel}

d(w)← d(w) + 1;
w← current(w);

end

Fig. 3. The min-cut stage of the HPF algorithm. At termination all nodes in label-n components are the source set of the min-cut.

the PRF algorithm and of PAR are reported in [14] for a subset
of the problems used here. Since the source code for the PAR
implementation is not made available, the PAR performance is
evaluated here through the speedup factor of PAR with respect
to the highest level variant of the PRF algorithm for each
instance reported in the above paper.

As suggested by Chandran and Hochbaum [17] we use
the highest label version for the HPF algorithm. The latest
version of the code (version 3.23) is available at [23]. The
highest level variant of the PRF algorithm is considered to
have the best performance in practice [24]. We use the highest-
level PRF implementation Version 3.5, [25]. Note that the
latest implementation of the Push-Relabel method is actually
denoted by HIPR, which indicates that the highest-label
version is used. We refer to it as PRF, to indicate that it
is the same algorithm which was reported in [24]. For the
BK algorithm, a library implementation was used [26]. In
order to utilize the library for solving problems in DIMACS
format, a wrapping code, wrapper, was written. This wrapper
reads the DIMACS files and calls the library’s functions for
constructing and solving the problem. The part that reads the
DIMACS files, under the required changes, is similar to the
code used in the HPF implementation. One should note that the
compilation’s setup and configuration of the library have great
effect on the actual running times of the code. In our tests the
shortest running times were achieved using the following com-
pilation line g++ -w -O4 -o <output_file_name>

-DNDEBUG -DBENCHMARK graph.cpp maxflow.cpp

<wrapper_implementation_file>.

Every problem instance was run5 times and we report the
average time of the three runs. These are reported for the three
different stages of the algorithm (Initialization, Compute Min-
Cut and Flow recovery). As detailed in section I, breaking

down the run-times provides insight into the algorithms’
performance and allows for better comparison. Since for many
computer-vision applications only the min-cut solution isof
importance (e.g. [2], [4]–[7], [27]–[36]), the most relevant
evaluation is of the initialization and min-cut times.

A. Computing Environments

Our experiments were conducted on a machine with x8664
Dual-Core AMD Opteron(tm) Processor at 2.4 GHz with 1024
KB level 2 cache and 32 GB RAM. The operating system was
GNU/Linux kernel release 2.6.18-53.el. The code of all three
algorithms, PRF, HPF and BK, was compile with gcc 4.1.2
for the x86 64-redhat-linux platform with−O4 optimization
flag.

One should note that the relatively large physical memory
of the machine allows one to avoid memory swaps between
the memory and the swap-file (on the disk) throughout the
execution of the algorithms. Swaps are important to avoid
since when the machine’s physical memory is small with re-
spect to the problem’s size, the memory swap operation might
take place very often. These swapping times, the wait times
for the swap to take place, can accumulate to a considerably
long run-times. Thus, in these cases, the execution times are
biased due to memory constraints, rather than measuring the
algorithms’ true computational efficiency. Therefore we chose
large physical memory which allows for more accurate and
unbiased evaluation of the execution times.

B. Problem Classes

The test sets used consist of problem instances that arise as
min-cut problems in computer vision, graphics, and biomedi-
cal image analysis. All instances were made available from
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the Computer Vision Research Group at the University of
Western Ontario [9]. The problem sets used are classified into
four types of vision tasks: Stereo vision, Segmentation, Multi-
view reconstruction; and Surface fitting. These are detailed in
sections III-B1 through III-B3. The number of nodesn and
the number of arcsm for each of the problems are given in
Table I.

1) Stereo Vision:Stereo problems, as one of the classical
vision problems, have been extensively studied. The goal of
stereo is to compute the correspondence between pixels of
two or more images of the same scene. we use theVenus,
Sawtooth[5] and theTsukuba[28] data-sets. These sequences
are made up of piecewise planar objects. Each of the stereo
problems, used in this study, consists of an image sequence,
where each image in the sequence is a slightly shifted version
of its preceding one. A corresponding frame for each sequence
is given in Figure 4.

Often the best correspondence between the pixels of the
input images is determined by solving a min-cut problem
for each pair of images in the set. Thus in order to solve
the stereo problem, one has to solve a sequence of min-cut
sub-problems all of approximately the same size. Previously
reported run-times of these stereo problem [13], [14] disclosed,
for each problem, only the summation of the run-times of its
min-cut sub-problems. Presenting the summation of the run-
times of the sub-problems as the time for solving the entire
problem assumes linear asymptotic behaviour of the run-times
with respect to the input size. This assumption has not been
justified. The run-times here, for the stereo problems, are
reported as theaveragetime it takes the algorithm to solve
the min-cut sub-problem.

Each of the stereo min-cut sub-problems aims at matching
corresponding pixels in two images. The graphs consist of
two 4-neighborhood grids, one for each image. Each node,
on every grid, has arcs connecting it to a set of nodes on the
other grid. For each of the stereo problems there are two types
of instances. In one type, indicated by KZ2 suffix, each node
in one image is connected to at most two nodes in the other
image. In the second type, indicated by BVZ suffix, each node
in one image is connected to up to five nodes in the second
image.

Sawtooth V enus Tsukuba

Fig. 4. Stereo test sequences (source [9])

2) Multi-view reconstruction: A 3D reconstruction is a
fundamental problem in computer vision with a significant
number of applications (for recent examples see [6], [7], [37]).
Specifically, graph theory based algorithms for this problem
were reported in [38]–[40].The input for the multi-view recon-
struction problem is a set of 2D images of the same scene taken

from different perspectives. The reconstruction problem is to
construct a 3D image by mapping pixels from the 2D images
to voxels complex in the 3D space. The most intuitive example
for such a complex would be a rectangular grid, in which the
space is divided into cubes. In the examples used here a finer
grid, where each voxel is divided into 24 tetrahedral by six
planes each passing through a pair of opposite cube edges, is
used (See [38] for details). Two sequences are used in this
class,CamelandGargoyle. Each sequence was constructed in
three different sizes (referred to as small, middle and large)
[41]. Representing frames are presented in Figure 5.

Camel Gargoyle

Fig. 5. Multi-view test sequences (source [9])

3) Surface fitting:3D reconstruction of an object’s surface
from sparse points containing noise, outliers, and gaps is also
one of the most interesting problems in computer vision.
Under this class we present a single test instance,”Bunny”
(see Fig. 6), constructed in three different sizes. The sequence
is part of the Stanford Computer Graphics Laboratory 3D
Scanning Repository [10] and consists of362, 272 scanned
points. The goal then to reconstruct the observed object by
optimizing a functional that maximizes the number of data
points on the 3D grid while imposing some shape priors
either on the volume or the surface, such as spatial occupancy
or surface area [29]. The ”bunny” corresponding graphs, on
which the min-cut problem is solved, are characterized by
particularly short paths froms to t [29].

OriginalImage ReconstructedSurface

Fig. 6. Bunny Problem Instance - Surface fitting (source [10])

4) Segmentation:Under this group4 test sets, referred
to as ”Liver” , ”adhead”, ”Babyface” and ”bone” are used.
Each set consists of similar instances which differ in the
graph size, neighborhood size, length of the path between
s and t, regional arc consistency (noise), and arc capacity
magnitude [42]. For all instances used in this group, the
sufficesn and c represent the neighborhood type and max-
imum arc capacities respectively. For example,bone.n6.c10
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andbabyface.n26.c100, correspond to a6 neighborhood and a
maximum arc capacity of10 units and a26 neighborhood with
maximum arc capacity of100 units respectively. The different
bone instances differ in the number of nodes. The grid on
the 3 axes x,y and z was made coarser by a factor of 2 on
each, thus bonexy, means that the original problem (bone)
was decimated along the x,y axes and it is1/4 of its original
size; bonexyz, means that the original problem was decimated
along the x,y and z axes and it is1/8 of its original size.

IV. RESULTS

A. Run-times

In this study, the comparison of the PRF’s, HPF’s and BK’s
run-times are indicated for the three stages of the algorithms:
(i) initialization, tinit; (ii) minimum-cut, tminCut; and (iii)
maximum-flow,tmaxFlow. As these data is unknown for the
PAR algorithm, the comparison of these three algorithms with
respect to PAR is addressed differently, by running PRF on
our setup and deducing the PAR run-times by multiplying the
measured PRF time by the speedup factor reported in [14].
This is explained in Section IV-B.

As already indicated, the most relevant times in this study
are the times it takes each of the algorithms to complete the
computation of the min-cut, thustinit + tminCut. These are
graphically presented in Figure 7 and detailed in Table I. The
Slowdown Factor, reported in table I for each algorithm, for
every problem instance, is the ratio of the time it takes the
algorithm to complete the computation of the minimum-cut
divided by the minimum time it took any of the algorithms to
complete this computation.

Figure 7(a) presents the run-times for the stereo vision
problem sets. The input’s size, for these problems is small,
with respect the the other problem sets. For these small
problem instances, the BK algorithm is doing better than PRF
(with average Slowdown factor of2.86, which corresponds
to average difference in the running time of2.0 Seconds)
and slightly better than HPF (slowdown factor of1.24, which
corresponds to a running time difference of0.24 Seconds).
For the Multi-view instances HPF presents better results than
both algorithms with average slowdown factors of1.46 with
respect to BK and3.19 with respect to PRF. These correspond
to differences in the running times of95 and 170 seconds
respectively. This is illustrated in Figure 7(b). Figure (c)
shows that the BK algorithm is more suitable for solving
the surface fitting instances. This is attributed to the factthat
these problems are characterized by particularly short s-tpaths.
In these instances, the slowdown factors of HPR and PRF
are 1.05 (correspond to an average difference of9 seconds)
and 4.06 (difference of 454 seconds). The running times
for the Segmentation problems class are depicted in Figure
7(d). There are36 segmentation problems. In a subset of5
segmentation problems BK achieved shorter running times. In
this subset the BK’s average slowdown factors are1.19 (9.24
seconds difference) and2.62 (106 seconds difference in the
running time) with respect to HPF and PRF respectively. On
the rest of the31 segmentation problems, HPF shows shorter
running times with slowdown factors of1.18 (14.22 seconds

difference) with respect to BK and2.62 (101.39 seconds
difference) with respect to PRF.

A total of 51 problem instances were tested within the scope
of this study. The HPF algorithm was shown to be better
in 37 problem instances. The BK algorithm achieved better
results over the other14 problems. The average run-times and
slowdown factors of these two subsets are given in Table II.

TABLE II
AVERAGE RUNNING TIMES AND SLOWDOWN FACTORS

PRF HPF BK
HPF is better (37 problem instances)
Ave. run-time 184.87 72.25 99.69

Ave. slowdown 2.6 1 1.39
BK is better (14 problem instances)
Ave. run-time 185.96 53.53 48.00

Ave. slowdown 3.03 1.18 1

(a) Stereo

(b) Multi-View

(c) Surface Fitting

(d) Segmentation

Fig. 7. Initialization and Minimum-cut run-times in seconds: (a) Stereo
Problems; (b) Multi-view Problems; (c) Surface Fitting; (d) Segmentation

In order to allow for the comparison of the times it takes
each of the algorithms to complete the computation of only
the min-cut phase, the initialization run-times are presented in
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Instance Run-times [Secs] Slowdown Factor
Name Nodes Arcs PRF HPF BK PRF HPF BK

Stereo
sawtoothBVZ 173,602 838,635 1.55 0.76 0.62 2.50 1.23 1
sawtoothKZ2 310,459 2,059,153 4.05 1.87 1.52 2.66 1.23 1
tsukubaBVZ 117,967 547,699 1.09 0.50 0.41 2.66 1.22 1
tsukubaKZ2 213,144 1,430,508 3.42 1.33 1.06 3.23 1.25 1
venusBVZ 174,139 833,168 1.93 0.82 0.66 2.92 1.24 1
venusKZ2 315,972 2,122,772 5.12 2.09 1.66 3.08 1.26 1
Multi-View
camel-lrg 18,900,002 93,749,846 558.65 143.96 225.53 3.88 1 1.57
camel-med 9,676,802 47,933,324 240.30 67.61 83.43 3.55 1 1.23
camel-sml 1,209,602 5,963,582 17.16 6.31 6.46 2.72 1 1.02
gargoyle-lrg 17,203,202 86,175,090 413.26 134.77 432.31 3.07 1 3.21
gargoyle-med 8,847,362 44,398,548 196.26 56.24 226.43 3.49 1 4.03
gargoyle-sml 1,105,922 5,604,568 12.26 5.00 13.86 2.45 1 2.77
Surface Fitting
bunny-lrg 49,544,354 300,838,741 1564.10 305.05 277.02 5.56 1.10 1
bunny-med 6,311,088 38,739,041 129.05 34.47 32.82 3.93 1.05 1
bunny-sml 805,802 5,040,834 10.89 4.12 4.03 2.70 1.02 1
Segmentation
adhead.n26c10 12,582,914 327,484,556970.74 344.31 407.42 2.82 1 1.18
adhead.n26c100 12,582,914 327,484,556971.20 362.49 476.04 2.68 1 1.31
adhead.n6c10 12,582,914 75,826,316 219.14 90.17 90.38 2.43 1 1.01
adhead.n6c100 12,582,914 75,826,316242.43 103.03 123.22 2.35 1 1.20
babyface.n26c10 5,062,502 131,636,370 333.91 245.10 250.15 1.36 1 1.02
babyface.n26c100 5,062,502 131,636,370378.94 272.26 321.20 1.39 1 1.18
babyface.n6c10 5,062,502 30,386,370 103.27 48.30 35.30 2.93 1.37 1
babyface.n6c100 5,062,502 30,386,370 126.28 58.77 43.89 2.88 1.34 1
bone.n26c10 7,798,786 202,895,861 451.35 160.73 196.26 2.81 1 1.22
bone.n26c100 7,798,786 202,895,861 472.34 168.09 198.73 2.81 1 1.18
bone.n6c10 7,798,786 46,920,181 119.76 41.02 47.79 2.92 1 1.17
bone.n6c100 7,798,786 46,920,181 132.06 43.56 51.88 3.03 1 1.19
bone subx.n26c10 3,899,394 101,476,818 209.03 79.70 100.23 2.62 1 1.26
bone subx.n26c100 3,899,394 101,476,818 218.57 81.79 107.43 2.67 1 1.31
bone subx.n6c10 3,899,394 23,488,978 64.17 20.89 26.57 3.07 1 1.27
bone subx.n6c100 3,899,394 23,488,978 61.18 22.06 30.29 2.77 1 1.37
bone subxy.n26c10 1,949,698 50,753,434 99.59 39.51 48.25 2.52 1 1.22
bone subxy.n26c100 1,949,698 50,753,434 101.13 40.00 51.04 2.53 1 1.28
bone subxy.n6c10 1,949,698 11,759,514 27.22 10.04 12.09 2.71 1 1.20
bone subxy.n6c100 1,949,698 11,759,514 27.66 10.56 13.62 2.62 1 1.29
bone subxyz.n26c10 983,042 25,590,293 48.07 18.89 23.69 2.54 1 1.25
bone subxyz.n26c100 983,042 25,590,293 48.83 19.39 25.41 2.52 1 1.31
bone subxyz.n6c10 983,042 5,929,493 11.95 4.85 5.95 2.46 1 1.23
bone subxyz.n6c100 983,042 5,929,493 12.05 5.14 6.54 2.34 1 1.27
bone subxyz subx.n26c10 491,522 12,802,789 22.96 9.36 11.27 2.45 1 1.20
bone subxyz subx.n26c100 491,522 12,802,789 23.55 9.52 11.55 2.47 1 1.21
bone subxyz subx.n6c10 491,522 2,972,389 5.47 2.37 2.75 2.31 1 1.16
bone subxyz subx.n6c100 491,522 2,972,389 5.56 2.47 2.89 2.25 1 1.17
bone subxyz subxy.n26c10 245,762 6,405,104 10.99 4.63 5.60 2.37 1 1.21
bone subxyz subxy.n26c100 245,762 6,405,104 11.06 4.74 5.79 2.33 1 1.22
bone subxyz subxy.n6c10 245,762 1,489,904 2.55 1.14 1.34 2.24 1 1.18
bone subxyz subxy.n6c100 245,762 1,489,904 2.59 1.21 1.39 2.14 1 1.15
liver.n26c10 4,161,602 108,370,821 272.63 123.61 112.40 2.43 1.10 1
liver.n26c100 4,161,602 108,370,821 297.88 132.48 128.60 2.32 1.03 1
liver.n6c10 4,161,602 25,138,821 82.11 35.24 32.02 2.56 1.10 1
liver.n6c100 4,161,602 25,138,821 96.38 40.36 43.60 2.39 1 1.08

TABLE I
V ISION PROBLEMS: GRAPH SIZES WITH COMBINEDINITIALIZATION AND M INIMUM -CUT RUN-TIMES AND THEIR CORRESPONDING SPEEDUP FACTORS.

EACH PROBLEM’ S FASTEST RUN-TIME IS SET IN BOLDFACE. THE SPEEDUP FACTOR STATES HOW MUCH AN ALGORITHM RUNS COMPAREDTO THE

FASTEST ALGORITHM

Figure 8 and detailed in Appendix A, Tables III – VI. Ideally
one should be able to evaluate the minimum-cut processing
times by subtracting the initialization times in Tables III– VI

from the corresponding times in Table I. However, as described
in Section I, while the BK and HPF algorithms only read the
problem’s data and allocate memory, the PRF algorithm has
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some additional logic in its initialization phase. Consequen-
tially, one can not evaluate PRF’s min-cut processing timesby
this substraction. To accomplish that, one has to account for
the time it takes the PRF algorithm to compute the additional
logic implemented with the initialization stage. Figure 8 shows
that for all problem instances, the PRF’s initialization times
(tinit) are 2 − 3 times longer than BK’s and HPF’s times.
While these times were excluded from the total execution
times reported in [13] and [14], Figure 8 strongly suggests
that these initialization times are significant with respect to to
the min-cut computation times (tminCut) and should not be
disregarded.

(a) Stereo

(b) Multi-View

(c) Surface Fitting

(d) Segmentation

Fig. 8. Initialization run-times in seconds: (a) Stereo Problems; (b) Multi-
view Problems; (c) Surface Fitting; (d) Segmentation

The actual maximum-flow plays a less significant role
in solving computer vision problems. Yet, for the sake of
completeness, the maximum flow computation times of the
algorithms(tinit+tminCut+tmaxFlow) are reported in Figure
9 and in Tables VII – X.

B. Comparison to Partial Augment-Relabel

The PAR run-times, on our hardware setup, are deduced
from the speedup factor for PAR with respect to the highest

(a) Stereo

(b) Multi-View

(c) Surface Fitting

(d) Segmentation

Fig. 9. Initialization, Minimum cut and Maximum Flow run-times in
seconds: (a) Stereo Problems; (b) Multi-view Problems; (c)Surface Fitting;
(d) Segmentation

level variant of the PRF which are reported in [14]. The paper
above reports only the summation of the min-cut and max-
flow run-times (without initialization),tminCut + tmaxFlow .
Therefore, to enable a fair comparison we use the min-cut and
max-flow run-times of the other algorithms as well. FortGPAR

andtGPRF , the run-times reported in [14] for the PAR and PRF
algorithms respectively, the estimated run-time of PAR,t̂PAR,
on our hardware is:

t̂PAR =
tGPAR

tGPRF

(tPRF
minCut + tPRF

maxFlow)

wheretPRF
minCut andtPRF

maxFlow are the corresponding run-times
of the PRF algorithm measured on the hardware used in this
study.

The comparison results are given in Figure 10 for all prob-
lem instances reported in [14]. As reported in [14], the PAR
algorithm indeed improves on PRF. HPF outperforms PAR for
all problem instances. It is noted that in this comparison ofthe
run-times that exclude initialization PAR’s performance is still
inferior to that of HPF. If one were to add the initialization
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time then the relative performance of PAR as compare to HPF
would be much worse since the initialization used has time
consuming logic in it as note previously in Section I and
is shown in Figure 8. In terms of comparing PAR to BK,
Figure 10 shows that PAR is inferior to BK for small problem
instances, but performs better for larger instances.

(a) Stereo

(b) Multi-View

(c) Segmentation

Fig. 10. PAR, PRF, HPF, BKMinimum cut run-times in seconds: (a) Stereo
Problems; (b) Multi-view Problems; (c) Segmentation

C. Memory Utilization

Measuring the actual memory utilization is of growing
importance, as advances in acquisition systems and sensors
allow higher image resolution, thus larger problem sizes.

The memory utilization of each of the algorithms is a
result of two factors: (i) the data each algorithm maintains
in order to solve the problem. For example, the BK algorithm
must maintain a flowf , the list of active nodes and a list
of all orphans (see Section II-C); and (ii) the efficiency
of the specific implementation’s memory allocation in each
implementation. The first factor can be analytically assessed by
carefully examining the algorithm. The latter, however, must
be evaluated empirically. It is important to note that both do
not necessarily grow linearily with the problem size. The mem-
ory usage was read directly out of the/proc/[process]/statm
file for each implementation and for each problem instance.
One should note that the granularity of the information in this
file is the page-file size, thus4096 Bytes.

Figure 11 summarizes the results of the memory utilization
for BK (solid blue line), HPF (dashed green line) and PRF

(dotted red line) algorithms. These are detailed in Appendix
B, Table XI. The X-axis in Figure 11 is the input size. A
Problem’s input size is the number of nodes,n plus the
number of arcs,m, in the problem’s corresponding graph:
input size = n+m. The number of nodes,n, and the number
of arcs,m, for each of the problems are given in Table I. The
Y-axis is the memory utilization in Mega- Bytes.

Both BK and PRF algorithms use on average 10% more
memory than the HPF algorithm. For problem instances with
large number of arcs, the PRF and BK require 25% more
memory. This becomes critical when the problem size is con-
siderably large, with respect to the machine’s physical mem-
ory. In these cases the execution of the algorithms requires
a significant amount of swapping memory pages between the
physical memory and the disk, resulting in longer execution
times.

Fig. 11. Memory Utilization Vs. Input size

D. Summary

Figure 12 is a graphical summary of the run-times of each of
the algorithms for the min-cut task (tinit+tminCut) depending
on the problem size. Figure 12 and tables I and II suggest that
the BK and the HPF algorithms generate comparable results.
The the first, BK, is more suited for small problem instances
(less then1, 000, 000 graph elements (#Nodes + #Arcs)) or
for instances that are characterized by a short paths froms
to t. The latter, HPF, might be used for all other general
larger problems. Figure 10 shows that this also holds for PRF’s
revised version, the partial augment-relabel (PAR) algorithms,
for all vision problem instances examined in this study. In
detail, out of the51 instances BK is dominating14 times
with an average running time of48 seconds on these instances.
HPF on the other hand has an averaged running time of54
seconds and therefor the HPF algorithm has a slowdown factor
of 1.18 with respect to BK. On the remaining 37 instances HPF
is dominating with an average running time of72 seconds. It
takes BK100 seconds in average to finish on theses instances,
whitch results in a slowdown factor of1.39 for BK with
respect to HPF.
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Fig. 12. Minium-cut Execution times (Initialization and minimum-cut phases) with respect to the problems’ size

V. CONCLUSIONS

This paper presents the results of a comprehensive compu-
tational study on vision problems, in terms of execution times
and memory utilization, of four algorithms, which optimally
solve thes-t minimum cut and maximum flow problems: (i)
Goldberg’s and Tarjan’sPush-Relabel; (ii) Hochbaum’spseud-
oflow; (iii) Boykov’s and Kolmogorov’saugmenting paths; and
(iv) Goldberg’spartial augment-relabel.

The results show that the BK algorithm is more suited for
small problem instances (less then1, 000, 000 graph elements,
thus vertices and arcs) or for instances that are characterized
by short paths froms to t, the HPF algorithm is better suited
for all other general larger problems. In terms of memory
utilization, the HPF algorithm has better memory utilization
with up to 25% saved in memory allocation as compared to
BK and PRF.

Our results are of significance because it has been widely
accepted that both BK and PRF algorithms were the fastest
algorithms in practice for the min-cut problem. This was
shown not to hold in general [17], and here for computer
vision in particular. This, with the availability of HPF algo-
rithm’s source-code (see [23]), makes HPF the perfect tool for
the growing number of computer vision applications which
incorporate the min-cut problem as a sub-routine.

The current strategy of speeding up computers is to in-
crement the number of processors instead of increasing the
computing power of a single one. This development suggests
that a parallelization of the algorithm would be beneficial.
We expect the HPF algorithm to behave well with respect
to parallel implementations as well.
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APPENDIX A
RUN-TIMES

Stereo
Instance PRF HPF BK

sawtoothBVZ 1.02 0.57 0.53
sawtoothKZ2 2.69 1.40 1.32
tsukubaBVZ 0.65 0.37 0.34
tsukubaKZ2 1.79 0.96 0.90
venusBVZ 1.02 0.57 0.53
venusKZ2 2.79 1.45 1.36
Average 1.66 0.89 0.83

TABLE III
Initialization STAGE RUN-TIMES: Stereo VisionPROBLEMS

Multi-View
Instance PRF HPF BK

camel-lrg 155.25 76.97 70.22
camel-med 76.40 38.44 35.15
camel-sml 8.66 4.65 4.23
gargoyle-lrg 141.81 68.79 63.50
gargoyle-med 70.79 34.97 32.33
gargoyle-sml 8.11 4.33 3.94
Average 76.84 38.02 34.89

TABLE IV
Initialization STAGE RUN-TIMES: Multi-View PROBLEMS

Surface Fitting
Instance PRF HPF BK

bunny-lrg 687.01 230.81 219.08
bunny-med 70.87 29.25 27.95
bunny-sml 7.99 3.70 3.47
Average 255.29 87.92 83.50

TABLE V
Initialization STAGE RUN-TIMES: Surface FittingPROBLEMS

Segmentation
Instance PRF HPF BK

adhead.n26c10 697.57 238.71 233.34
adhead.n26c100 702.45 242.09 239.02
adhead.n6c10 144.05 58.00 55.12
adhead.n6c100 146.12 59.82 56.47
babyface.n26c10 180.35 94.24 92.50
babyface.n26c100 182.76 95.88 94.62
babyface.n6c10 44.31 22.77 21.71
babyface.n6c100 44.85 23.37 22.35
bone.n26c10 381.60 146.00 144.64
bone.n26c100 382.59 149.93 145.70
bone.n6c10 85.74 35.58 33.66
bone.n6c100 86.26 36.68 34.72
bone subx.n26c10 182.47 72.52 71.59
bone subx.n26c100 183.88 73.70 72.54
bone subx.n6c10 41.02 17.62 16.78
bone subx.n6c100 41.46 18.18 17.28
bone subxy.n26c10 87.33 36.05 35.32
bone subxy.n26c100 88.08 36.37 35.89
bone subxy.n6c10 19.62 8.73 8.26
bone subxy.n6c100 19.77 8.99 8.60
bone subxyz.n26c10 41.91 17.60 17.31
bone subxyz.n26c100 42.26 17.93 17.74
bone subxyz.n6c10 9.26 4.28 4.10
bone subxyz.n6c100 9.29 4.46 4.21
bone subxyz subx.n26c10 20.24 8.80 8.66
bone subxyz subx.n26c100 20.47 8.93 8.76
bone subxyz subx.n6c10 4.32 2.16 2.05
bone subxyz subx.n6c100 4.39 2.23 2.10
bone subxyz subxy.n26c10 9.63 4.38 4.30
bone subxyz subxy.n26c100 9.68 4.47 4.34
bone subxyz subxy.n6c10 2.05 1.06 1.02
bone subxyz subxy.n6c100 2.08 1.11 1.05
liver.n26c10 200.28 76.43 75.65
liver.n26c100 200.64 77.25 76.02
liver.n6c10 44.58 18.68 17.90
liver.n6c100 44.76 18.91 17.99
Average 122.45 48.44 47.31

TABLE VI
Initialization STAGE RUN-TIMES: SegmentationPROBLEMS

Stereo
Instance PRF HPF BK

sawtoothBVZ 1.64 0.88 0.62
sawtoothKZ2 4.26 2.02 1.52
tsukubaBVZ 1.15 0.57 0.41
tsukubaKZ2 3.55 1.42 1.06
venusBVZ 2.02 0.94 0.66
venusKZ2 5.32 2.22 1.66
Average 2.99 1.34 0.99

TABLE VII
TOTAL RUN-TIMES OF THEInitialization and Min-cut and Max-flow

STAGES- Stereo VisionPROBLEMS
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Multi-View
Instance PRF HPF BK

camel-lrg 563.52 180.57 225.53
camel-med 242.74 80.56 83.43
camel-sml 17.44 6.92 6.46
gargoyle-lrg 417.75 154.40 432.31
gargoyle-med 198.56 66.66 226.43
gargoyle-sml 12.54 5.61 13.86
Average 242.09 82.45 164.67

TABLE VIII
TOTAL RUN-TIMES OF THE Initialization and Min-cut and Max-flow

STAGES- Multi-View PROBLEMS

Surface Fitting
Instance PRF HPF BK

bunny-lrg 1595.21 440.59 277.02
bunny-med 131.78 43.50 32.82
bunny-sml 11.18 4.74 4.03
Average 579.39 162.94 104.62

TABLE IX
TOTAL RUN-TIMES OF THE Initialization and Min-cut and Max-flow

STAGES- Surface FittingPROBLEMS

Segmentation
Instance PRF HPF BK

adhead.n26c10 982.98 356.07 407.42
adhead.n26c100 985.39 383.55 476.04
adhead.n6c10 223.30 94.54 90.38
adhead.n6c100 248.06 110.58 123.22
babyface.n26c10 341.32 264.41 250.15
babyface.n26c100 392.62 325.34 321.20
babyface.n6c10 105.48 52.74 35.30
babyface.n6c100 129.39 72.35 43.89
bone.n26c10 456.03 163.58 196.26
bone.n26c100 477.26 174.07 198.73
bone.n6c10 121.31 42.74 47.79
bone.n6c100 133.96 47.02 51.88
bone subx.n26c10 211.19 80.94 100.23
bone subx.n26c100 220.91 83.42 107.43
bone subx.n6c10 64.91 21.41 26.57
bone subx.n6c100 62.00 22.52 30.29
bone subxy.n26c10 100.65 40.13 48.25
bone subxy.n26c100 102.25 40.87 51.04
bone subxy.n6c10 27.58 10.30 12.09
bone subxy.n6c100 28.05 10.83 13.62
bone subxyz.n26c10 48.60 19.15 23.69
bone subxyz.n26c100 49.39 19.71 25.41
bone subxyz.n6c10 12.13 4.98 5.95
bone subxyz.n6c100 12.24 5.28 6.54
bone subxyz subx.n26c10 23.23 9.48 11.27
bone subxyz subx.n26c100 23.82 9.68 11.55
bone subxyz subx.n6c10 5.56 2.43 2.75
bone subxyz subx.n6c100 5.65 2.54 2.89
bone subxyz subxy.n26c10 11.12 4.67 5.60
bone subxyz subxy.n26c100 11.20 4.80 5.79
bone subxyz subxy.n6c10 2.60 1.16 1.34
bone subxyz subxy.n6c100 2.64 1.24 1.39
liver.n26c10 275.68 126.03 112.40
liver.n26c100 301.11 135.20 128.60
liver.n6c10 83.42 36.99 32.02
liver.n6c100 97.88 42.30 43.60
Average 177.25 78.42 84.79

TABLE X
TOTAL RUN-TIMES OF THEInitialization and Min-cut and Max-flow

STAGES- SegmentationPROBLEMS
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APPENDIX B
MEMORY UTILIZATION

Instance PRF HPF BK

Stereo
sawtoothBVZ 62.28 58.50 69.27
sawtoothKZ2 141.08 125.81 147.55
tsukubaBVZ 41.62 39.55 48.79
tsukubaKZ2 97.72 87.12 104.57
venusBVZ 62.27 58.65 69.24
venusKZ2 145.76 129.76 152.22
Segmentation
adhead.n26c10 20,759.80 16,480.20 20,719.40
adhead.n26c100 20,759.80 16,480.20 20,719.40
adhead.n6c10 5,399.80 4,960.20 5,359.40
adhead.n6c100 5,399.80 4,960.20 5,359.40
babyface.n26c10 8,347.10 6,628.00 8,335.40
babyface.n26c100 8,347.10 6,628.00 8,335.40
babyface.n6c10 2,167.30 1,993.20 2,155.60
babyface.n6c100 2,167.30 1,993.20 2,155.60
bone.n26c10 12,863.50 10,212.70 12,841.30
bone.n26c100 12,863.50 10,212.70 12,841.30
bone.n6c10 3,343.50 3,072.70 3,321.30
bone.n6c100 3,343.50 3,072.70 3,321.30
bone subx.n26c10 6,435.30 5,109.30 6,428.10
bone subx.n26c100 6,435.30 5,109.30 6,428.10
bone subx.n6c10 1,675.30 1,539.30 1,668.10
bone subx.n6c100 1,675.30 1,539.30 1,668.10
bone subxy.n26c10 3,220.40 2,557.04 3,220.60
bone subxy.n26c100 3,220.40 2,557.06 3,220.60
bone subxy.n6c10 840.40 772.00 840.60
bone subxy.n6c100 840.40 772.00 840.60
bone subxyz.n26c10 1,625.60 1,291.00 1,629.40
bone subxyz.n26c100 1,625.60 1,291.00 1,629.40
bone subxyz.n6c10 425.60 391.10 429.40
bone subxyz.n6c100 425.60 391.10 429.40
bone subxyz subx.n26c10 815.10 647.60 820.80
bone subxyz subx.n26c100 815.10 647.60 820.80
bone subxyz subx.n6c10 215.10 197.70 220.80
bone subxyz subx.n6c100 215.10 197.70 220.80
bone subxyz subxy.n26c10 409.60 325.80 416.30
bone subxyz subxy.n26c100 409.60 325.80 416.30
bone subxyz subxy.n6c10 109.60 100.80 116.30
bone subxyz subxy.n6c100 109.60 100.80 116.30
liver.n26c10 6,872.10 5,455.20 6,863.80
liver.n26c100 6,872.10 5,455.20 6,863.80
liver.n6c10 1,792.00 1,645.20 1,783.80
liver.n6c100 1,792.00 1,645.20 1,783.80
Multi-View
camel-lrg 6,879.30 6,392.60 6,814.80
camel-med 3,519.90 3,272.50 3,490.60
camel-sml 441.50 411.30 444.50
gargoyle-lrg 6,313.40 5,851.80 6,255.40
gargoyle-med 3,253.60 3,015.00 3,227.40
gargoyle-sml 413.30 382.52 416.60
Surface Fitting
bunny-lrg 21,389.40 19,600.30 21,208.00
bunny-med 2,753.30 2,515.00 2,736.80
bunny-sml 360.50 327.70 365.10

TABLE XI
MEMORY UTILIZATION IN [MB YTES]
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