Edinburgh Research Explorer

Real-time 3D semi-local surface patch extraction using GPGPU

Citation for published version:

Orts-Escolano, S, Morell, V, Garcia-Rodriguez, J, Cazorla, M & Fisher, RB 2013, 'Real-time 3D semi-local
surface patch extraction using GPGPU', Journal of real-Time image processing.
https://doi.org/10.1007/s11554-013-0385-7

Digital Object Identifier (DOI):
10.1007/s11554-013-0385-7

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
Journal of real-Time image processing

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN (75 ACCESS

Download date: 28. Apr. 2024

https://doi.org/10.1007/s11554-013-0385-7
https://doi.org/10.1007/s11554-013-0385-7
https://www.research.ed.ac.uk/en/publications/91d6d3eb-1f14-4274-86b6-2e26b05c7cdb

Real-time 3D semi-local surface patch extraction using GPGPU:
Application to 3D object recognition

Sergio Orts-Escolano Vicente Morell Jose Garcia-Rodriguez Miguel Cazorla
Robert B. Fisher

Abstract

Feature vectors can be anything from simple surface normals to more complex feature descriptors.
Feature extraction is important in order to solve various computer vision problems: e.g. registration,
object recognition and scene understanding. Most of these techniques cannot be computed online due to
their complexity and the context where they are applied. Therefore computing these features in real-time
for many points in the scene is impossible. In this work a hardware-based implementation of 3D feature
extraction and 3D object recognition is proposed in order to accelerate these methods and therefore the
entire pipeline of RGBD based computer vision systems where such features are typically used. The use
of a GPU as a General Purpose processor (GPGPU) can achieve considerable speed-ups compared with
a CPU implementation. In this work advantageous results are obtained using the GPU to accelerate the
computation of a 3D descriptor based on the calculation of 3D semi-local surface patches of partial views.
This allows descriptor computation at several points of a scene in real-time. Benefits of the accelerated
descriptor have been demonstrated in object recognition tasks. Source code will be made publicly available
as contribution to the Open Source Point Cloud Library (PCL).

The final publication is available at
http://www.springer.com/alert/urltracking.do?id=L41fe935Mdd48a5Sb0d354a

1 Introduction

In recent years, the number of applications concerned with 3D data processing has increased considerably
due to the emergence of cheap 3D sensors capable of providing a real time data stream. The Kinect device!
and other range cameras as the Asus Xtion or the Carmine from PrimeSense are examples of these devices.
Besides providing 3D information, these devices can also provide color information of the observed scene. The
availability of real-time 3D streams has provided a key resource for solving many challenging problems as full
DoF (Degrees of Freedom) tracking of a hand [1], 3D reconstruction and interaction [2] and dense visual SLAM
[3]. Additionally, as these systems are becoming more complex, huge computational resources are demanded,
especially when hard real-time constraints are required.

With the advent of the GPU as a General Purpose Graphic Processing Unit (GPGPU) some methods related
to 3D data processing have been implemented on GPUs in order to accelerate them. Examples of these can be
found in the calculation of feature descriptors and keypoint extraction on the GPU. In [4], the GPU performs
curvature estimation of 3D meshes in real time. The work presented in [5], provides a parallel implementation
using the GPU and the CUDA language from NVIDIA to accelerate the computation of Histograms of Oriented
Gradient (HoG) features. In [6], a Point Feature Histograms (PFH) GPU implementation is proposed allowing
its computation in real-time on large point clouds. A real-time GPU-based method for patches extraction is
presented in [7]. These surfaces patches with associated uncertainties are extracted by means of Kinect cameras.
Despite the methods mentioned above, which demonstrate the feasibility of the GPU for 3D feature extraction,
there are still comparatively few methods implemented with respect to all those currently prevalent in the state
of the art. Most 3D Local Shape Descriptors (LSDs) have not been implemented yet on the GPU. It can also
be noted that the integration of these methods in complete systems, that require real-time constraints, is still
very low. Kinect Fusion [2] has been one of the first works where the GPU has been used as the main core
processor, allowing the reconstruction of 3D scenes in real-time.

Other motivations for this work include the existing gap of 3D object recognition solutions based on models
that support real-time constraints. Until now, most of the proposed works that supported real-time constraints
are view-based. For example in [8], a local feature descriptor for RGB-D images was proposed. This descriptor
combines color and depth information into one representation. However, 3D information possibilities are still
negligible, it depends mostly on textures and illumination of the specific scene. In [9], a combined descriptor
formed by 3D geometrical shape and texture information is used to identify objects and its pose in real-time.
The proposed system is accelerated using GPU achieving real-time processing. However, 3D information is only

TKinect for XBox 360: http://www.xbox.com/kinect Microsoft

used to extend shape information and considerably relies on texture information, making it sensitive to scene
illumination conditions.

Model-based approaches are less sensitive to illumination, shadows, and occlusions of the scene, allowing
more robust object recognition systems. They also improve pose estimation. However, they also have some
drawbacks: first, model-based descriptors usually require noise-free and dense data, which is not common in
range cameras. Moreover, these kind of systems require a large number of descriptors to be calculated and also
their correspondences in the database have to be found at runtime. Consequently, most of them have not been
processed in real-time.

In the following paragraphs a brief review of some LSDs is presented.

One of the local shape descriptors that first appeared was Spin images [10]. It is a regional point descriptor
used to characterize the shape properties of a 3D object with respect to a single oriented point. This descriptor
constructs 2D histograms using the tangent plane and the surface normal passing through the reference point.
For all the neighbouring points within a certain distance, the distance to the tangent plane and the perpendicular
distance to the normal line are computed. Since it is 2D and not 3D it does lose some discriminative power
and leads to many ambiguous matches. Another descriptor that was proposed in the beginning of nineties (also
sensitive to noise and occlusions) is the SPLASH [11] representation.

The Point Signature LSD proposed in [12] is defined as a 1D array based on the distance profile of the
intersection of a sphere with the object from the tangent plane. Other model-based descriptors are Spherical
Spin Images [13] and Surface Signatures [14].

In [15], the Pairwise Geometric Histograms (PGHs) are proposed for object recognition tasks. PGHs are
similar to 2D histogramas constructed by Spin Images but PGHs are constructed using the relative angle
between the normal of the reference facet and the normal of neighboring facets. Moreover, it also adds to the
histogram the perpendicular distance between facets.

Local Surface Patches (LSPs) [16] are another local shape descriptor constructed as 2D histograms. This is
constructed using the angle between the surface normal of neighbouring points and the surface normal of the
reference point. Moreover, it adds the Shape Indez, which is defined as the curvature of the surface.

Among most recent works is the Variable Dimensional Local Shape Descriptor (VDLSD) [17]. VDLSD
is based on the extraction of invariant features extracted from the Principal Component Space of the local
neighborhood around that point. Eigenvalue decomposition is used to associate an orthonormal frame (;, f, l;)7
and the three Eigenvalues. Using these vectors and scalars a variety of histograms are constructed. These
contain various levels of geometric information. As much descriptive information is available, this research finds
the subset that best defines each model that is to be later recognized. Moreover, points where the VDLSD is
calculated are selected using a random criteria which is inefficient due to the amount of points that need to be
computed.

Although many of the presented model-based works are capable of dealing with background clutter and
noise, their computational complexity is often very high. Another different approach from those presented
above and based on global point cloud information instead in local shape is Potential Well Space Embedding
(PWSE) [18]. The PWSE is based on the ICP algorithm and it uses local minima to embed the pose of an
object into a small set of feature vectors. Although this method runs in real-time, it still requires significant
preprocessing steps and a good previous segmentation.

A more extensive review of free-form 3D object representation and recognition techniques can be found in
[19] and [20].

The reviewed 3D model-based descriptors are the most common techniques applied to free-form object
recognition using LSDs, but in this work we are going to focus on a 3D tensor-based representation proposed by
[21]. Tt is also based on local shape information and it has demonstrated good performance in free-form object
recognition even under significant noise and background clutter. Furthermore, this work also presented a novel
hash technique to organize descriptors in an efficient way.

Although the 3D tensor-based representation has also a high computational cost, in contrast with other
methods it is highly parallelizable. This makes possible that most of its processing steps can take advantage of
modern GPU architectures to accelerate its computation. This work goes a step further in the application of
massively parallel processor architectures, such as the GPU, to 3D data processing tasks. It will help running
complex 3D vision systems under real-time constraints.

The 3D data used in this work has been obtained mainly as RGB-Depth maps provided by the Kinect sensor.
Advantageous results have been obtained using the GPU for accelerating the extraction of a feature descriptor
based on the calculation of 3D tensors. This descriptor is computationally expensive to compute on the CPU
and also requires some preprocessing steps for its computation: normals estimation, surface triangulation and
keypoint detection. Since these preprocessing steps are common for a large number of applications, their
acceleration and integration in the pipeline of a GPU architecture becomes essential to make progress in 3D
data real-time processing.

The paper is structured as follows: in Section 2 the proposed descriptor to be accelerated is presented. In the
following Subsections 2.1 and 2.2 the GPU implementation of pre-processing steps are detailed. In Section 2.3

Capture Point PointCloud Normal Surface Valid Pairs Tensaors
Cloud projection estimation triangulation computation computation

Figure 1: General system overview. Steps coloured in dark are computed on the GPU.

a GPU-based tensor extraction implementation is described. Next, in Section 3, performance results are shown
for different steps and hardware configurations. Finally, Section 4 presents a real object recognition application
with time constraints to validate our implementation, followed by our main conclusions and future work.

2 GPU-based tensor extraction algorithm

The feature descriptor proposed for implementation on the GPU is based on the descriptor introduced in [22].
This descriptor is based on the calculation of semi-local surface patches obtained by a range camera. It has
been used successfully for different applications like global registration and 3D object recognition, where other
descriptors like Spin Images [10] or Geometric Histograms [23] obtained worse results. Additionally, in [21] it is
demonstrated how this descriptor can be successfully applied in object recognition problems with high levels of
occlusion. The main problem of this descriptor is its high computational cost, which is prohibitive for running
in a conventional CPU under real-time constraints.

This descriptor extracts a semi-local model of the scene, computing semi-local features that assist the local
object recognition even under conditions of occlusion. This feature is referenced in the following sections as a
tensor. A tensor is defined by the surface of the model that is intersected by each voxel on a centered grid. This
set of values defines a third order tensor.

To compute the required descriptor some preprocessing steps are necessary. These steps have also been
implemented on the GPU in order to accelerate the entire pipeline. Therefore it has been necessary to implement
on the GPU the following processes: depth map and color map transformation to a coloured point cloud, noise
removal, normal estimation and surface reconstruction. A general system overview for semi-local surface patch
extraction is shown in Figure 1. Figure 2 shows the different steps required prior to the extraction of the tensor
and their 3D visualization after each step. As we can appreciate, most steps are computed on the GPU taking
advantage of parallel computing power of the GPU and avoiding transfers between CPU and GPU after each
step. Pseudo-code of the entire GPU-based tensor extraction algorithm is presented in Algorithm 1. Moreover,
pseudo-code snippets for all GPU-based preprocessing steps are presented in next sections.

input : A depth map My of size 640 x 480
output: A set of 3D tensors T' = {{o, t1, t2,...,tx } that describe the input data

Depth map is transferred to the GPU memory;
cudaMemCopyHostToDevice(d_My, My);
d-Myiiterea < gpuBilateralFiltering(d_My);
d_P,,. < gpuPointCloudProjection(d_M f;itered);
d_Ng,. <+ gpuNormalEstimation(d_P,.);
d_-Tri < gpuSurfaceTriangulation(d_Pyy ., d-Nyy.);
d-Vpairs < gpuValidPairsComp(d_Pyy., d-Nyy.);
cudaMemCopyDeviceToHost (Vpairs: d-Vpairs);
for i < 0 to |Vpuirs| do
tensors are computed in parallel at thread level and tensor level;
AsyncGpuTensorComp(v;,d-Ppy.,d-Nyy-,d-Tri, d_T);
end
13 cudaMemCopyDeviceToHost (T, d_T');

Algorithm 1: Pseudo-code of the GPU-based 3D tensor extraction algorithm. d_ prefix means that
variable is allocated in the GPU memory.

© 0 N O A W N -

= e
N = O

2.1 RGB-D processing on the GPU

In this work we focus on the processing of 3D information provided by the Kinect sensor. This processing is
performed on the GPU with the aim of achieving a real-time implementation.

Point cloud

]
-
5
L
.
g

Normal estimation

Point cloud

(a) {b) {0 (d)

Figure 2: (a) Point cloud obtained after transforming depth and color maps provided by the Kinect sensor. (b)
Normal estimation. (c¢) Surface reconstruction. (d) Feature descriptor extraction: 3D tensor computed over a

partial view

The overall goal is the implementation of systems that offer interaction with the user. The Kinect sensor
provides a RGB map with color information M. and a disparity map My. The first step to carry out on the
GPU with the aim of accelerating future steps is the projection of the depth and color information in a three-
dimensional space, where the depth and colour information is aligned, allowing the production of a coloured
point cloud that represents the scene, Figure 3.

The relationship between a disparity map provided by the Kinect sensor and a normalized disparity map is
given by d = 1/8 - (doss — kd), where d is the normalized disparity, kd is the disparity provided by the Kinect
and d,sy is a particular offset of a Kinect sensor. Calibration values can be obtained in the calibration step
[24]. In this way the relationship between depth and a disparity map is given by the following equation:

_ b-f
B 1/8- (doff — kd)
where b is the baseline between the infrared camera and the RGB camera (in meters), and f is the focal

distance of the cameras (in pixels). Once the depth map M, is obtained calculating the depth z for all points,
the projection of each point in 3D space is given by:

z

(1)

Dz Z(x_xc)l/f:v
Py = Z'(y_yc)'l/fy
P = =z (2)

where p € R?, x and y are the row and the column of the projected pixel, . and 3, are the distances (in pixels)
to the map centre and f, and f, are the focal distances of the Kinect sensor obtained during the calibration
[24].

input : A depth map My of size 640 x 480
output: Projected point cloud F,,. into 3D space

1 __global__ void;

2 gpuPointCloudProjectionKernel(My);

5 {

4 This kernel is executed creating one thread for each pixel in parallel;
5 int u = threadldx.x + blockIdx.x * blockDim.x;

6 int v = threadldx.y + blockldx.y * blockDim.y;

7 float z = Md [v][u] / 1000.f Depth is stored in millimetres;

8 float px =z * (u - cx) * fx_inv;

9 float py =z * (v - cy) * fy_inv;
10 float pz = z;

11 }

Algorithm 2: Pseudo-code of the GPU-based point cloud projection algorithm.

This transformation can be computed independently for each pixel of the map, so it fits perfectly on massively
parallel architectures such as the GPU, accelerating processing time related to the CPU implementation. As
this transformation is often followed by other processing steps, it is not necessary to copy data back to the CPU
memory and we therefore avoid the latency caused by these transfers by storing the projected 3D points on the
GPU memory. Pseudo-code of the kernel executed onto the GPU is shown in Algorithm 2. In section 3.1 we
show the acceleration factor and time of execution obtained by the GPU implementation. All these methods
are developed in C++. GPU programming is done using the CUDA language created by NVIDIA [25]. Finally,
3D data management (data structures) and their visualization is done using the PCL? library.

2.1.1 Noise removal: Bilateral filtering

In structured light imaging a predefined light pattern is projected onto an object and simultaneously observed
by a camera. The appearance of the light pattern in a certain region of the camera image varies with the
camera-object distance. This effect is used to generate a distance image of the acquired scene. The predefined
light patterns can be e.g. gray codes, sine waves, or speckle patterns. Speckle patterns are used in popular
structured light (infrared) cameras like the Microsoft Kinect. This method of obtaining 3D information from
the scene presents problems when the surfaces have a high level of specularity (reflection of the incident light)
making it impossible for the sensor to obtain depth information about some surfaces [27]. The same problem

2The Point Cloud Library (or PCL) is a large scale, open project [26] for 2D/3D image and point cloud processing.

Figure 3: Left: Depth map. Center: RGB Map. Right: Projected point cloud.

occurs in the case of objects that are very far away from the sensor. Therefore, if we want to extract coherent
information about the observed surfaces it is necessary to minimize this observation error. In previous works,
simple filters such as the mean or the median have been used as they correct the error and run in real-time. As
the computing power of the GPU can be applied in this step, this allows the application of more complex filters
that are able to reduce the depth map error without removing important information, such as edge information.
An example of these filters, the Bilateral filter [28], is able to remove noise of the image whilst preserving edge
information. This filter was used originally in color and grey scale images to reduce the noise while keeping
edge information, but we can also use it to reduce the noise on depth maps obtained from 3D sensors like the
Kinect. A Bilateral filter is a combination of a domain kernel, which gives priority to pixels that are close to
the target pixel in the image plane, with a range kernel, which gives priority to the pixels which have similar
values as the target pixel. This filter is often useful when it is necessary to preserve edge information because
of the range kernel advantages. The new value of a filtered pixel is given by:

Py = = SVl o~ allo(1V, — V) 3)

P gew

where K, is a normalization factor, w is the neighbourhood of the target pixel p, V; is the neighbouring pixel
value and Py is the filtered value of pixel p. This equation also contains the domain kernel and the range kernel:
fUlp—dl) , 9(J|Vp = V4l|). Often, f and g are Gaussian functions with standard deviation o, and o,.

Section 2.1.2 shows how the estimation of the normal vectors is improved after applying bilateral filtering,
providing more stable normal vectors by removing original noise presented on the depth map. Most 3D features
extracted from the scene are based on the curvature of the geometry, which is calculated using information
from normal vectors at each point in the scene, therefore obtaining more stable normal vectors leads to more
accurate scene knowledge.

The calculation of filtered values at each pixel of the image can be computed independently and therefore
is well suited for parallel architectures like the GPU. In [29] and [30] GPU implementations able to run in real
time were proposed. The runtime is considerably improved, allowing filtering in real time depth maps generated
by the sensor. In Section 3 GPU and CPU runtimes and speed-ups for our implementation on different graphics
boards are presented.

2.1.2 Normal estimation

Estimation of normal vectors on a geometric surface has been widely used in many application areas such as
computer graphics: generating realistic illumination of the surfaces and in computer vision as geometric features
of the observed environment: keypoints with high curvature (corner or edge points).

Given a geometric surface it is possible to estimate the direction of the normal vector at a point obtaining
the outward facing vector of the surface. However, we still have a point cloud without information about the
surfaces that compose it, therefore we approach the normal vector estimation of a point efficiently by using its
neighbourhood to calculate the normal vector. Here we focus on the estimation of the plane that best fits the
neighbourhood of points using least squares. In this way the point normal vector is calculated as the plane
normal vector.

The search for this plane is reduced to the calculation of eigenvalues and eigenvectors, Principal Component
Analysis (PCA) of the covariance matrix created using the neighbourhood of the point on which we want to
know its normal vector. The orientation of the normal vector is easily calculated because we know the point of
view of the scene, in this case the Kinect position, so that all normal vectors must be facing consistently toward
the point of view satisfying the following equation:

i - (vp = pi) >0 (4)

where n; is the calculated normal vector, v, is the point of view, and p; is the target point. In cases where this
constraint is not satisfied, it is necessary to reverse the sign of the calculated normal vector.

Once we have the organized point cloud stored in the memory of the GPU, the normal estimation process
using PCA can be performed efficiently on the GPU. The normal vector calculation is performed on the GPU
independently at each point of the scene, considerably accelerating the runtime. Pseudo-code of the GPU-based
normal estimation algorithm is shown in Algorithm 3. Moreover, thanks to the previous noise removal using
bilateral filtering, normal vectors obtained are much more stable than normal vectors computed directly from
the original depth map that does not take into account the borders and corner points of the scene. In Figure 6
we can see this effect.

Figure 4: Left: RGB map of the captured plane. Right: Projected Point cloud of the captured plane. Corners
of the chessboard has been used for estimating normal information at these points and compare that normals
with the ground truth data (plane normal, 90 degrees).

Mean error | RMS

Raw plane 1.5m 11.00 | 12.36
Bilateral plane 1.5m 4.84 5.53
Raw plane 3.5m 27.85 | 31.42
Bilateral plane 3.5m 13.89 | 16.56

Table 1: Angle errors between the normals of the points and the normal of the ground truth plane (90 degrees).
All angle errors are in degrees.

In order to obtain a quantitative measurement of the improvement on the normal estimation step, a simple
experiment was performed. We captured a perpendicular wall from two different distances, 1.5 and 3.5 meters
(Figure 4). Using the points of the wall, a plane that fits best to these points is extracted. To estimate that
plane we used a RANSAC method that gets the plane model with more inliers of the plane. Once we have the
normal of the plane, we computed the angle between the estimated normals and the plane normal. In order to
measure the quality of the normal estimation we show the arithmetic mean and the Root Mean Square (RMS)
of the angle (in degrees).

Results in table 1 show that the angle error between the normals of the points and the normal of the plane
is two times bigger without using the bilateral filter. We can also see the improvement in Figure 5 where the
normal map of the scene is visually more regular applying bilateral filtering before normal estimation.

input : A projected point cloud d_P,,.
output: Point cloud of normals d_N,, .
1 __global__ void;
2 gpuNormalEstimationKernel(Py, k);
s {
4 This kernel is executed creating one thread for each point in parallel;
5 int u = threadldx.x + blockldx.x * blockDim.x;
6 int v = threadldx.y + blockldx.y * blockDim.y;
7 Compute Covariance matriz centered at point p using k neighbours;
8 d_Ngy-[u][v] = compCovarianceMat (u,v,k,N);
9 d_Nyy.[u][v] = checkOrientation();
10 }

Algorithm 3: Pseudo-code of the GPU-based normal estimation algorithm

Figure 5: Left: Normal map from a raw plane captured using 3D range sensor. Right: Normal map from a
filtered plane captured using 3D range sensor (bilateral filtering).

1

e YT FINCONNNEN
s A NN
—//;/////J//I\\\\\\\ \\\\\
g Al oy A [\\§§\\\\\\\\\\\\
//////////;\//l'\\\is\ \\\\\\\\\\
AT TR RN NN
//////////1I \\\\\\\\\\\\\\
77 é/’// h \\\\\\\\\\\\\
/// 7 ‘, k R RN SN
s i 17/, /R NSRS N
TN \i AR TR IRNIN N
7/ AN
/////L/////‘//Il‘/ll/v\\‘,,*\\ -
5 L ST 5 A TN N e R
T et b i
_‘“\\;\\\\-~\ _)_,\‘ e
<) N N -
RV eIV AN A 2
LES IR T
j\//”/\\l- VAT _/*\/-
AN =L T T
?{K\ s 1 \\(—\1/ </ \/\\/_
AV, AN MR R
— 2 /\‘\I:\">I\\ _IE\\\\\
,// /,/\\ NG \\\‘__:
\K\Z"_,\// /\|‘>\\\/ NS
A P D ARNENE
/>/\|14//|/ §0 Rl sE T L e T
S A SR g R
o ! S \ NG e

Figure 6: Bottom row. Normal estimation using the original map. Top row. Normal estimation using the
filtered map (bilateral filtering). It can be observed that the normal estimation is improved resulting in more
stable normal directions. This effect can be visually observed on plane surfaces where the normals estimated
using a noisy map are much less stable than normals computed over a filtered map.

2.2 Surface triangulation on the GPU

In [31] an efficient method to triangulate organised point clouds is presented. In this section we present an
accelerated and robust implementation of this method. In the original work a triangulation method for 3D
points, obtained from range cameras or structured light, is proposed. Using sensors such as the Kinect, 3D
points can be accessed using their matrix organization using x for the row and y for the column. In this way, a
3D point p, , can be accessed using a 2D indexing system. Using this representation it is possible to obtain the
scene surface from the point cloud captured by the sensor. The method assumes that the viewpoint is known
and in this way it is possible to calculate the angle formed by the viewpoint vector v, and the target point p ,
and the vector formed by the target point p, , and its neighbour points p,;y1,, or pyy+1. If points fall into a
common line of sight with the viewpoint from where the measurements are taken, one of the underlying surfaces

occludes the other. If all checks are passed the triangle (ps,y, Pat1,y: Day+1) is added to the mesh, otherwise a
hole arises in the final reconstructed mesh. Moreover, if the sensor cannot acquire a valid depth measurement
for a certain pixel that triangle is also rejected creating a hole. Figure 7 visually shows the proposed condition
for point triangulation.

Variables p and q are equal to p(x,y) and p(x,y+1) respectively

5
K

o PO
p(x.y)

Point of view

v+ .‘.....
p(x.y)| R

Figure 7: Left: Point triangulation condition. This images shows how the condition for creating an edge
establishes that the angle 60,,, formed by vectors v,, , and v, , must be within an established threshold ey, .
This threshold assures that points are not occluded among themselves. The Euclidean distance between p and
q also must be smaller than an established threshold Ty, dynamically calculated according to mesh resolution
and its standard deviation. Right: Triangles are established by left cut checking constraints between points.

Our proposed method is more robust than the original method, as the normal information at each point of
the scene is used as an additional condition for meshing the point cloud. As the triangulation of the points can
be done independently, the algorithm has been ported to the GPU, where each GPU thread tests the point we
are targeting to form a triangle with its neighbourhood. As a result, we obtain a vector with all the triangles.
Pseudo-code of the GPU-based surface triangulation algorithm is shown in Algorithm 4.

Invalid triangles are created on points that do not satisfy the proposed constraint to keep the organization
of the point cloud. Finally, the condition to create an edge between two points is formulated as follows:

edgevatia = (|Vo,,p - Up,q| < coseg,,,) A
(Ilp = all> < Ta) A
(Inp - ng| < cose,) (5)

where €, is the angle existing between two points and the point of view establishing whether or not these
points are occluded. This angle value is computed based on the visual analysis shown in Figure 7 and also
based on results provided in [31]. The maximum distance between two points is Ty. This distance is obtained
in real-time based on point cloud resolution. For that, the average distance between the targeted point and its
neighbourhood k is calculated. Next, based on the mean of these average distances and standard deviation,
threshold T} is given by: T; = dj, + 04 where dj, is the mean distance and oy is the standard deviation. Finally,
€p, is the established threshold for the maximum angle between two normal vectors. This is calculated in the
same way as Ty, obtaining an angle threshold.

The proposed method allows us to obtain fast approximate meshing of the input point cloud. This fast mesh-
ing method is therefore used in Section 2.3 for computing the proposed 3D semi-local surface patch descriptor
in real-time, as it requires a surface representation of the scene. The proposed accelerated meshing method
takes advantage of the knowledge about the point of view position and also takes advantage of having already
calculated normal vectors on GPU memory for every point of the scene. The GPU implementation achieves
run times considerably lower compared to the CPU. The GPU implementation achieves processing frame rates
close to 30 fps for 640 by 480 depth maps while the CPU implementation achieves a frame rate close to 6 fps.
Figure 8 shows a point cloud mesh obtained using the proposed method.

Figure 8: Point cloud meshing using the proposed method. Note that some holes and gaps still exist in the
approximate surface reconstruction due to the noisy information obtained from the Kinect sensor.

input : A projected point cloud d_P,,.
input : A point cloud of normals d_Ng,..
output: List of triangles d_T'ri

1 _global__ void;

2 gpuTriangulationKernel(d_Py,., d-Nyy.);

3

4 This kernel is executed creating one thread for each point in parallel;
5 int u = threadldx.x + blockIdx.x * blockDim.x;

6 int v = threadldx.y + blockldx.y * blockDim.y;

7 check constraints with neighbour points;

8 if (isValidTriangle (i, index_down, index_right));

9 addTriangle (d_T'ri);

10 if (isValidTriangle (index_right, index_down, index_down_right)) ;
11 addTriangle (d_T'ri);

12 }

Algorithm 4: Pseudo-code of the GPU-based surface triangulation algorithm.

2.3 Tensor computation on the GPU

Once point cloud normal information and surface triangulation are obtained, pairs of points along with their
normals are selected to define local 3D coordinate bases for tensor computation. To avoid the C3 combinatorial
explosion of the points, a distance constraint is used on their pairing. This distance constraint allows the
pairing between only those points that are within a previously specified distance. The distance constraint also
ensures that the vertices that are paired are far enough apart so that the calculation of the coordinate bases
is not sensitive to noise but close enough to maximize their chances of being inside the same surface. The
maximum and minimum distances between points are based on point cloud resolution, being d,,in, = pcl,., * 5
and dimae = pclres * 14. pcl,.., is calculated for each point cloud captured by the Kinect sensor in real time,
allowing the movement of the sensor. In addition to this distance constraint, an angle constraint 8, is defined
between valid pairs of points, so that points with approximately equal normals are not paired (since their cross
product will result in zero). This mutual angle must be higher than 15° degrees allowing the use of the mean
value of these normals as an axis for the coordinate bases. In Figure 9 shows how valid pairs are selected
considering mutual angle and mutual distance constraints. Moreover, each point is paired with only its three
closest neighbours, limiting the number of possible pairs to 3n per view. In practice, due to the constraints this
number is lower than 3n.

Pair point calculation is accelerated using as many threads as points in the point cloud. In this way each

10

Valid pairs detection

Figure 9: Detecting a valid pair using mutual angle #; and mutual distance d constraints. The midpoint of the
pair will be used later to define a 3D grid for tensor computation.

GPU thread checks its corresponding point pair with its neighbours. Moreover, the matrix organization of the
point cloud is used for improving this search. In this way, each thread of the GPU performs the search of valid
pairs only in a defined window around the targeted point. The size of this window is based on the maximum
distance constraint d,,q, and the point cloud resolution pclyes: windowsrqdivs = dmaz/PClres giving the radius
of the windows in pixels. As dyq. is defined as a constant based on the pcl,.es (millimeters), the windows,qdius
can be simplified as the constant 14.

In Section 3.1 a runtime comparison is presented, the CPU implementation applies the same technique for
search acceleration.

Once a valid list of point pairs is obtained, a local 3D basis is defined for each valid pair in the following
manner: the center of the line joining the two vertices defines the origin of the new 3D basis. The average of
the two normals defines the z-axis. The cross product of the two normals defines the x-axis and finally the cross
product of the z-axis with the x-axis defines the y-axis. This 3D basis is used to define a 3D grid centered at
its origin. This step is also computed in parallel on the GPU for each valid pair of points.

For the grid computation, which will define the feature descriptor, it is necessary to define two more param-
eters. The first one is the number of voxels that compose the grid mn,,.¢;s and the size of each of these voxels
vozxelg;... Modifying the number of voxels and so the size of the grid causes the obtained descriptor to contain
local, semi-local or global information of the scene. In the experiments done in [21] it is demonstrated how
for the object recognition task, a size of 10 x 10 x 10 grid allows the extraction of a descriptor with semi-local
information of the object allowing identification even under a high level of occlusion. The size of the voxel
vozxelg; . is defined dynamically according to the point cloud resolution. Once the grid is defined, the surface
area of the mesh surface intersecting each voxel of the grid is stored in a third order tensor. This tensor is a local
surface descriptor which corresponds to a semi-local representation of the object where the pair of points are
lying. Sutherland Hodgman’s polygon clipping algorithm [32] is used for calculating area intersections between
polygons and voxels. In this way an entry is made at the corresponding element position in the tensor. Since
more than one triangulated facet can intersect a single voxel, the calculated area of intersection is added to the
area already present in that voxel as a result of intersection with another triangulated facet. To avoid checking
all triangles that compose the scene, a growing approach is used, which starts by checking the triangles that
lie in the pair of points selected and growing along its neighbourhood until all the checked triangles are not
intersected with the corresponding voxel. This approach is used in both CPU and GPU versions, allowing a
fair runtime comparison. Finally extracted tensors are compressed by squeezing out the zero elements and
retaining the non-zero values and their index positions in the tensor. These compressed tensors together with
their respective coordinate basis and the mutual angle between their normals are called a tensor representation
of the view.

The computation of each tensor is considerably accelerated using the GPU because there is no dependency
between the calculation of the intersected area in each voxel of the grid. Therefore, Dim, x Dim, x Dim,
threads are executed on the GPU organized as a three dimensional grid. Each thread calculates the intersected
area between the mesh and its corresponding voxel, storing the calculated area in the position accessed by its
indexes. See Figure 10. Due to the 3D index organization that the CUDA framework provides, the calculation
of corresponding indexes is greatly accelerated. Sutherland Hodgman’s polygon clipping algorithm is also
executed by each thread in parallel. Pseudo-code of the GPU-based 3D tensor computation algorithm is shown
in Algorithm 5. Additionally, there is also no dependency between the computation of different tensors, thereby

11

the computation of different tensors is overlapped occupying all the available resources on the GPU. Performance
results are shown in Section 3.1.

input : A projected point cloud d_P,,.
input : A valid pair of points d_Ng,.
input : List of triangles d_Tri
output: 3D tensor ¢;
1 __global__ void;
2 gpuTensorCompKernel(v;,d_Pyy.,d-Nyy.,d T);
s {
4 This kernel is executed creating one thread for each bin of the grid in parallel;
5 int x = threadldx.x + blockldx.x * blockDim.x ;
6 int y = threadldx.y + blockIdx.y * blockDim.y ;
7 int z = threadldx.z + blockldx.z * blockDim.z ;
8 binLimits = computeBinLimits(cloud,tri) ;
9 d_Neigh_-Tri = compIndexNeighTriangles() ;
10 calculate area that clip with the corresponding bin;
11 for i + 0 to |d_Neigh_Tri| do
12 ‘ area += clipTriangle(cloud,tri,binLimits);
13 end
14 t;[x][y][z] = area ;
15 }

Algorithm 5: Pseudo-code of the GPU-based 3D tensor computation algorithm

)

)
)
W
0’0.0
M
(X)
()

SOOI 3D Polygon clipping
N
N N o 1 g ”
ANNANNNEgPsfelss
‘\.. L ’ﬁ»‘d!
NNy T T
NN
NANNNNE 52
#oes
9%

Figure 10: Launching Dim, x Dim, x Dim, threads in parallel where each GPU thread represents a voxel
of the grid. FEach thread with indexes 4, j, k calculates the area of intersection between the mesh and its
corresponding voxel using Sutherland Hodgman’s polygon clipping algorithm. Taking advantage of thread
indexes, the calculated area is stored in a flattened vector.

2.4 Offline learning and matching

Since computed 3D tensors can be used in many different applications it is necessary to find a way to store
them so they can be retrieved in an efficient way. All extracted tensors from different partial views of an object
are stored with their coordinate basis allowing the use of this information for grouping all tensors with similar
angles between their normals. In this way an efficient matching is possible for different applications such as
partial view registration and object recognition. This collection of tensors is stored during a training phase
creating a hash table for efficient retrieval during the test phase. The hash table is efficiently constructed from
the computed tensors of multiple views and it is filled up using the angle 6; of the tensors as the hash key.

12

This hashing technique appears to be an efficient and an appropriate way to perform tensor matching due to
its lower computational cost compared to linear matching techniques. This makes the matching method less
sensitive to the number of views or models in the database.

In contrast to the implementation originally presented in [21] and in order to integrate the matching process
on the GPU pipeline, the hash table is stored in the GPU memory performing the tensors matching in parallel
on the GPU and considerably accelerating its performance. In the online matching step, once a tensor is
extracted from the scene, there are launched as many threads as tensors are stored in the corresponding bin.
This allows to check in parallel all tensors stored in a bin and therefore to accelerate the matching process.
Further discussion and experimental results are presented in Section 4.

3 Experimental results

GPU versions of the proposed method described in this document has been tested on a desktop machine with
an Intel Core i3 540 3.07Ghz and different CUDA capable devices. GPU implementations were first developed
on a laptop machine equipped with an Intel Core i5 3210M 2.5 Ghz and a CUDA compatible GPU. Table 2
shows different models that have been used and their main features. We used different models ranging from
the integrated GPU on a laptop to a more advanced model, demonstrating that the GPU implementations can
be executed on different GPUs and that they can obtain good execution times on different graphic boards with
different number of cores.

l Device Model [CUDA cores [Global Mem [Bandwidth Mem [GPU Clock [Memory Clock

Quadro 2k 192 1 GB 41.6 GB/s 625 Mhz 1300 Mhz
GeForce GTX 480 480 1.5 GB 177.4 GB/s 607 Mhz 1215 Mhz
GeForce GT630M 96 1 GB 32 GB/s 625 Mhz 1000 Mhz

Table 2: CUDA capable devices used in experiments

GPUs are ideally suited to executing data-parallel algorithms. Data-parallel algorithms execute identical
units of work (programs) over large sets of data. The algorithms can be parallelized for efficiency when the
work units are independent and are able to run on small divisions on the data. One critical aspect of designing
parallel algorithms is identifying the units of work and determining how they will interact via communication
and synchronization. A second critical aspect is analyzing the data access patterns of the programs and ensuring
data locality to the processing units. It is also necessary to consider the program execution pipeline in order to
avoid unnecessary data transfers,

These three critical aspects have been satisfied by our GPU implementations because every step was de-
composed as an independent execution unit. This is possible since there are no dependencies during their
computation. Moreover, all the computed data on the GPU is not transferred back to the CPU until the entire
pipeline is completed, thus avoiding expensive memory transfers. Finally, threads access memory using data-
patterns in order to ensure locality to the processing units. Most steps implemented on the GPU use a 2D map
of threads accessing memory in a coalesced way. For the tensor computation a 3D grid of threads is used.

3.1 Performance

The performance obtained by the GPU implementation allow us to compute the proposed methods under real-
time constraints. In Table 3 we can see the different steps that have been accelerated using the GPU and their
different runtime and the speed-ups achieved for the different graphics boards. The obtained acceleration is
relative to a CPU implementation of the proposed method. In general the best performance was obtained with
the graphics board with the largest number of CUDA cores (GTX480) and the largest memory bandwidth.

These results demonstrate how the proposed methods are suitable for massively parallel architectures such
as the GPU, where each thread processes one of the points of the scene. Another interesting aspect of the results
shown in Table 3 is that GPU implementations allows us to compute operations that are prohibitively slow on
the CPU in real-time such as normal estimation, noise filtering, valid pairs detection or surface triangulation.
Moreover, in table 3 it is shown how the entire computation of 200 tensors in the GPU is performed in less
than 0.5 seconds for the faster device achieving a 93x performance boost related to the CPU implementation
and allowing the computation of the descriptor at different points of a scene in real-time.

Another remarkable aspect of the performance obtained for the overall system is that tensor computation
is not only parallelized at thread level, it is also parallelized at task level computing simultaneously different
tensors. As tensor computation is not dependent, it can be parallelized using different CUDA streams on the
GPU. This technology allows executing in parallel as many kernels as possible in different queues and therefore
allows to exploit available resources on the GPU [33]. We decided to exploit the possibility of launching
multiple kernels concurrently using CUDA streams, overlapping the paradigm of task parallelism with that of

13

Step | GT630M | GTX480 | Q2k | CPU | GT630M [GT480 | Q2k |

Bilateral filtering of depth map 11ms 5ms 8ms | 1008 ms 91.63x | 201.6x 126x

Point cloud projection 2ms 1ms 1ms 50ms 25x 50x 50x

Normal estimation 9ms 1ms 8ms 190ms 21.11x 190x 23.75x

Compute surface triangulation 5ms 2ms 4ms 121ms 24.25x 40.3x 30.25x

Compute cloud resolution Tms 4ms 6ms 330ms 47.14x 82.5x 55x

Compute valid pairs 71lms 9ms 35ms 4479ms 63x 497x | 127.97x

Compute third order tensor 6ms 3ms 4ms 130 ms 31.6x | 43.33x 32.5x

Total GPU time for 854 ms 490ms | 687ms | 45887ms 53.72x | 93.64x | 66.79x
extracting 200 tensors

Table 3: Runtime comparison and speed-up obtained for proposed methods using different graphics boards.
The fastest run times were achieved by the graphics board NVIDIA GTX480. Runtimes are averaged over 50
runs. Data transfers between GPU and CPU memories are included in the total GPU runtime.

data parallelism. In order to analyse and confirm stream parallel execution we profiled the algorithm using the
NVIDIA Visual Profiler [34], which allows to visually appreciate how stream computation is performed along the
time and also multiprocessors occupancy on the GPU. In Figure 12 shows the algorithm computation timeline
using and not using streams to overlap computations. Runtime execution and multiprocessors occupancy is
greatly improved thanks to concurrent kernel execution using streams. Runtime is improved by a speed-up
factor of 5x overlapping tensors computation with many kernels enqueued in different streams and launched
concurrently.

Tensors computation

3000
2500 ‘\
g 2000 \ =&—Tensors
2 1500 computation
£ \
2 1000 \\‘___‘_*—4
500

1 2 4 8 16 32 64

Number of streams

Figure 11: Tensors computation runtime using different numbers of streams. Number of tensors is fixed to 200
and the device used is the NVIDIA GTX 480.

We fixed the number of streams to 16 after testing different numbers of streams. Figure 11 shows how the
runtime is improved as the number of streams is increased obtaining maximum performance and occupancy on
the GPU using values larger than 4. Indeed, in Figure 12 it is shown how the maximum number of tensors that
are calculated simultaneously is 8 without taking into consideration the maximum number of streams specified.
This occurs due to the occupancy of all the available resources by the kernels running concurrently.

Finally, in Figure 13 an experiment computing different number of tensors is performed and the speed-up
compared to the CPU version is presented. From Figure 13 we can conclude that the speed-up obtained by
the GPU version is increased as the number of tensors is also increased achieving a larger speed-up factor.
Computing times obtained using the CPU version are prohibitive for time-constrained applications.

4 Robot Vision: 3D object recognition

In this section, we show an application where the use of the accelerated semi-local surface feature extraction
process allows to detect and recognize objects under cluttered conditions in real-time. The main goal of this
application is the recognition of objects under real-time constraints in order to integrate the proposed algorithm
in mobile robotics. Our method is designed to use only depth information because of the need for robots to
work under bad or no illumination conditions.

To validate the proposal we tested the proposed feature in a similar application as was done in the original
work [21] where the semi-local surface features are successfully used to recognize objects in cluttered scenes.
For our experiments we have captured data from a Kinect sensor and tested the accelerated feature with some

14

= Process sean.
= Thraad 8636
Rt 451
Diver AP
Prfing Ovahesd

B
T MemCoy (H1oD) I
T werCoy (k) | 11

1]

Concurrent computation of tensors

NVIDIA Vi

I8 B v a &z

=5 ms mss w7s =: B B B s e nss 055 sis s s

5 Poam 0
= et
R 161 [asti arch adddvee
et
et Ovetent ¥
=/ [0] GeForce GTX 480
[Ep————

T MemCpy (+iaD) |
F ey o) Il
L |
7 89.1% [200] pckidevice::compute ThirdOrderTensork...
1068 6] b ST’ I
¥ S, z A
T 1% i schremmpuntatareB. ‘\ Sequential computation of tensors

DLt U ————— |

Runtime WithOl‘;lt Streams: 2690 ms
|

L S KO ———— |

= Seears

Figure 12: Profiling computation of tensors using streams (Top) and without streams (Bottom). On the top of
the figure (using streams) it can be seen how kernels run simultaneously occupying all available resources on
the GPU.

Tensors computatlon speed-up
600
508.82

o =¢=>Speed-u
S 357.87 376.59 39490 41535 p 0
g o . GTX480
F Speed-up
g 300 spe
3 200
[T BT S S]
& 208.86 191.89 1884 21067 24878

100 .

0
>0 100 200 500 1000
Number of tensors

Figure 13: Achieved speed-ups compared to sequential CPU version and computational times for computing
various number of tensors without considering the rest of steps (projection, bilateral filtering, normal estimation,
etc.)

15

cluttered scenes. To do that, first a small library of models is constructed offline, storing all extracted tensors
in an efficient way using a hash table. Afterwards, online object recognition is performed using cluttered scenes.
Although the accelerated feature is tested using 3D data obtained from the Kinect sensor, this method is
developed for managing 3D point sets collected by any kind of sensor and could be extended to other datasets.

We created a toy dataset to validate our proposal since the main goal of this work is to achieve real-time
performance and integrate 3D data processing onto the GPU. Further analysis on recognition rates and feature
parameters are already presented in the original work [21]. In addition, a deeper analysis on parametrization
will be carried out in future works as this topic is out of the scope of the current work.

4.1 Offline learning

To recognize objects using our real-time tensor extraction algorithm, first a model library is built extracting
tensors from different views of free-form objects. Each partial view is represented with tensors and they are
stored in an efficient way for being used after in an online recognition phase. In Figure 14, some partial views
of the models used to build the library are presented. Moreover, tensors extracted for some of the views are
shown in Figure 14. For each of these views the process explained in Section 2.1 is computed, obtaining as a
result a set of tensors that describe each partial view. Tensors are stored in an efficient way using a hash table
as was explained in Section 2.4.

4.2 Online recognition

Once the model library is built and loaded in the GPU memory, the application is ready to start recognizing
objects from a scene captured in real-time. Therefore, the input to our application is a point cloud of a scene.
The point cloud is processed following the pipeline presented in Section 2.1. Once tensors from the scene are
computed these are matched against the model library previously stored on the GPU memory. The matching
process, as was introduced in previous section, is performed in parallel for the calculated entry using the angle
as a key for the hash map. For the calculated entry are launched as many threads as tensors are stored in
that bounded bin, computing in parallel a correlation coefficient originally presented in [21]. The correlation
coefficient measures the similarity between the scene tensors and possible candidates stored in the model library.
The correlation coefficient in the overlapped area between two tensors is calculated as follows:

C. = Mg Dy Pidi = Do Pi doi i (©)

ng 30t pi? = (00 pe) g S 4? — (1 40)

where p; and ¢;(i = 1...nq) are the respective elements of the model tensor T}, and scene tensor T in their
region of overlap. Matchings whose C. < t. are discarded (t. = 0.45 based on results presented in [21]). The
remaining tensors are considered as possible correspondences.

Once all correlation coefficients have been calculated in parallel for a scene tensor T and considered as possi-
ble correspondences, maximum correlation coefficient value is found and considered as the true correspondence.
The reduction operation [35] to obtain the maximum value in parallel is also performed on the GPU pipeline
using traditional divide and conquer approach to find the maximum value.

4.3 3D object recognition results

We performed out different experiments where the accuracy and the performance of the proposed GPU im-
plementation are studied. The algorithm is initially validated on scenes with a single object. Then, a more
complex study on noise scenes with multiple objects and occlusions is performed.

4.3.1 Recognition on scenes with a single object

In this first experiment, single views of each object model are used for testing descriptor recognition accuracy.
Tested scenes only contained the object, so there are no occlusions caused by other objects, only self-occlusions.
The experiment was performed on different views of each object. Different views from arbitrary viewing direc-
tions were selected. The confusion matrix showing the performance and recognition rates for extracted tensors
is shown in Figure 15. The total rate of tensor recognition obtained for the experiment was 84% (TP). The
rate of False Positives (FP) was 16% and False Negatives (FN) 0%. It is important to notice how some tensors
extracted from tortoise views were wrongly assigned to the apple model and vice versa. This was caused by the
lack of information of some tortoise views from these viewing directions and the similar geometric shape they
have. It is also important to notice how observations from the top of two objects may be visually similar as
occurs with the front view of the pyramid and the speaker. Therefore, some tensors extracted from the speaker
views where wrongly classified as the pyramid and cube model.

16

Cube

E%\

Tortoise

Pyramid

Speaker

Tasmanian

Figure 14: Model library consisted of 7 real models. Each object consists of several partial views. For every
partial view of a model, tensors are computed (blue lines) describing the model by extracting 3D surface patches
(tensors).

4.3.2 Recognition on scenes with multiple objects and occlusions

In this experiment, we used objects from the previously constructed dataset and other non-stored objects. There
were multiple objects occluding each other and causing clutter in the scene. Constructed scenes were used as
input data for the proposed GPU implementation in order to perform object recognition. Moreover, no prior
information was provided to the algorithm regard models placed in the scene. In Figure 16 (Top) it is shown a
first experiment with occlusions where three different objects (2 pyramids and a tortoise) are occluded by two
objects non-stored in the database. In this experiment different percentage of occlusions are considered. We
defined occlusion according to the next formula as it was done in a similar way in the original work:

object points visible in the scene

occlusion = 1 — (7)

From all the extracted tensors from the scene presented in Figure 16 (Top) the recognition rate (TP)
achieved was 85 percent, with the only mis-classifications occuring with objects not in the database. They
were classified as the cube and speaker model as the flat sides of the observation resembles the cube model.
All extracted tensors from the occluded objects were successfully classified. In addition, this experiment shows
how the proposed implementation can differentiate between multiple instances of the same object, while other

total object points

17

tortoise | speaker | pyramid | cube | mask | tasmanian | apple
97.62
° 90.00
3!
2 83.33
o 77.94
o=
92.98
92.16
S
(]
=<
©
Q
o
wv
p)
£
©
S
>
o
[}
e}
=1
o
-
[7]
(5]
£
c
i
o
(]
£
(7]
©
8
2
=
Qo
]

Figure 15: Confusion matrix for extracted tensors from different views of each object model contained in the
dataset. The averaged recognition rate (TP) is 84%, wrong matches (FP) 16% and false negatives (FN) 0%.
Cells numbers indicate the number of times (percentage) that an extracted tensor was sucessfully classified to
the corresponding model. Presented results show that method provides high discrimination capability.

techniques [10] are only able to detect single instances in the scene. In Figure 16 (Bottom) a scene with different
levels of occlusion is presented. The recognition rate achieved for this scene was 76%. As the level of occlusion
is increased some objects such as the pyramid which has a level of occlusion close to 82% was wrongly classified,
but the rest of objects in the scene were successfully classified. Moreover, some objects present in the scene
but non-stored in the library such as the paper box was classified as the cube model. After testing the GPU
implementation with a total of 8 scenes (Figure 17) with different levels of occlusion the average recognition
rate achieved was 82%. We noticed that the capability to recognize objects with different level of occlusion is
related to the part of the object that is visible and if this part of the object has areas with high discriminant
features. Moreover, the area of overlap for the correlation coefficient between two tensors was established to
45%. If higher levels of occlusions are demanded this factor could be set to a lower value allowing the detection
of tensors with higher levels of occlusions, but this would considerably affect the recognition rate, classifying a

18

Scenes with multiple objects and occlusions

Visible points pyramid
(47% occlusion)

Visible points pyramid visible points tortoise Pyramid model
(25% occlusion) (25% occlusion)

Visible points pyramid
(82% occlusion)

Visible points mask Visible points speaker
(42% occlusion) (47% occlusion)

Figure 16: Object recognition is performed on scenes with different level of occlusion. The models are occluded
by objects stored and non-stored in the library.

higher number of tensors in the wrong class.

Finally, Figure 18 shows two arbitrary scenes computed using the proposed method. Tensors are calculated
randomly over the scenes and matched tensors are labelled with the closest model in the library. Multiple
labels are shown in Figure 18 as all tensors present in the scene are evaluated and matched against the library
model. Voting strategies within clusters may be performed in order to further accelerate the object recognition
process. In addition since the main goal of this work is to achieve real-time geometric feature extraction, the
final hypothesis verification step has not been implemented yet on the GPU, so it remains as a future work.
This is the reason why multiple labels are drawn.

The number of tensors evaluated over the scene is 200 as experiments have demonstrated that evaluating
over this number in most of cases achieves the recognition of all objects in the scene. A similar study was made
in the original work [21]. Some wrong labelling appears in Figure 18 (Top) for the speaker as the partial view
of the scene does not have enough geometric information to find a correspondence in the database. However,
in the Scene 2 (Bottom) as the partial view contains more geometric information of the speaker, it is correctly
recognized. For other objects as the tortoise, cube and pyramid, as similar views of the objects are present in
the database and partial view of the scene has enough geometric information, the algorithm does correctly find

19

= “

Figure 17: Scenes with multiple object and occlusions. These scenes were used in experiments presented in
Section 4.3.2 achieving a recognition rate of 82%. Scenes presented a different level of clutter and occlusions
caused by stored and non-stored objects.

tensors that match the model stored in the library. Future hypothesis verification and feature grouping steps
will improve the classification accuracy of the object recognition task.
4.3.3 Performance

In this section, some experiments related to the performance of the parallel matching performed on the GPU
are presented, comparing performances obtained by the GPU and CPU versions.

Model library size (tensors) | 2000 | 4000 | 16000 | 64000
Runtime CPU (ms) | 215 | 398 | 1580 | 6414
Runtime GTX480 (ms) 75 140 534 2130
Speed-up GTX480 | 2.87x | 2.84x | 2.98x | 3.01x

Table 4: Runtime comparison and speed-up obtained for matching process. As the size of the model library is
increased the speed-up achieved is slightly larger. Runtimes are averaged over 50 runs.

Table 4 shows how the matching process is computed faster on the GPU. The speed-up achieved is close to
3x but the most important observation is that computing matching process on the GPU also avoids transferring
the data back to the CPU side after computing tensors on the GPU, which obtains an important acceleration
factor compared to the CPU as was shown in Section 3.1. In this experiment, matching process is tested using
different sizes of the model library, ranging from 4 to 64 objects. The number of objects was simulated by the
real model library comprised of 4 objects. It is assumed that every object is described extracting tensors from
6 partial views obtaining an average of 150 tensors per model.

Regarding GPU memory limitations, since modern GPUs have large global memories, we can find in the
market consumer GPUs equipped with a 6 GB RAM memory, so storage of the model library for the matching
process is not a problem. Moreover, the tensor representation is compressed by squeezing out the zero elements
and retaining the non-zero values and their index positions in the tensor. Even without compressing tensors,
the overall storage of 120 models using an average of 6 views per model will results in less than 40 MB of storage
space.

Finally, total computation for the GPU took around 800ms using the NVIDIA GTX480, managing 3D
object recognition in real-time and therefore enabling its integration in mobile robotics. In the original Matlab
single-threaded implementation it took an average time of 2 minutes to recognize and segment a single object
in a cluttered scene. We believe that this GPU implementation is an important step towards the computation
of 3D geometric descriptors in real-time.

5 Conclusions
The highlights of this paper are as follows:

e Qur primary concern is the integration of 3D data processing algorithms in complex computer vision
systems. Experiments have demonstrated that the GPGPU paradigm allows to considerably accelerate

20

Figure 18: 3D object recognition in cluttered scenes. Different partial views of two scenes are shown. Multiple
labels are shown as all computed tensors are evaluated and matched against the library model.

algorithms compared to CPU implementations and to run these in real-time.

e Within the 3D data algorithms used in the proposed pipeline, some progress has been made towards
a faster and more robust normal estimation and point cloud triangulation algorithms, obtaining GPU
implementations that run at 30 fps.

e Advantages are obtained by the use of the GPU to accelerate the computation of a 3D descriptor based
on the calculation of 3D semi-local surface patches of partial views, thus allowing descriptor computation
at several points of a scene in real-time.

e The matching process has also been accelerated onto the GPU, taking advantage of the GPU pipeline and
achieving a speed-up factor of 3x compared the CPU implementation.

21

e We have implemented a prototype of the proposed pipeline and it has been tested with a real application
obtaining satisfactory results in terms of accuracy and performance. We show that implemented prototype
took around 800 ms with a GPU implementation to perform 3D object recognition of the entire scene.

Further work will include adding other processing steps to the GPU pipeline: hypothesis verification us-
ing ICP techniques on the GPU and using multi-GPU computation to improve performance and to manage
computation of tensors and their matching on different devices.

Acknowledgements

This work was partially funded by the Valencian Government BEFPI/2012/056, and by the European Network
of Excellence on High Performance and Embedded Architecture and Compilation (HiPEAC). Experiments were
made possible with a generous donation of hardware from NVDIA.

References

[1] Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Full DoF tracking of a hand interacting with an object by
modeling occlusions and physical constraints. In: Proceedings of the 2011 International Conference on
Computer Vision. ICCV11, Washington, DC, USA, IEEE Computer Society (2011) 2088-2095

[2] Tzadi, S., Newcombe, R.A., Kim, D., Hilliges, O., Molyneaux, D., Hodges, S., Kohli, P., Shotton, J., Davi-
son, A.J., Fitzgibbon, A.W.: Kinectfusion: real-time dynamic 3d surface reconstruction and interaction.
In: SIGGRAPH Talks. (2011)

[3] Kerl, C., Sturm, J., Cremers, D.: Dense visual slam for RGB-D cameras. In: Proc. of the Int. Conf. on
Intelligent Robot Systems (IROS). (2013)

[4] Griffin, W., Wang, Y., Berrios, D., Olano, M.: Real-time gpu surface curvature estimation on deforming
meshes and volumetric data sets. IEEE Transactions on Visualization and Computer Graphics 18(10)
(2012) 1603-1613

[5] Prisacariu, V., Reid, I.: fastHOG - a real-time GPU implementation of HOG. Technical Report 2310/09,
Department of Engineering Science, Oxford University (2009)

[6] Himmelsbach, M., Luettel, T., Wuensche, H.J.: Real-time object classification in 3d point clouds using
point feature histograms. In: Proceedings of the 2009 IEEE/RSJ Int. conference on Intelligent robots and
systems. IROS’09, Piscataway, NJ, USA, IEEE Press (2009) 994-1000

[7] Olesen, S., Lyder, S., Kraft, D., Kriiger, N., Jessen, J.: Real-time extraction of surface patches with
associated uncertainties by means of kinect cameras. Journal of Real-Time Image Processing (2012) 1-14

[8] Blum, M., Springenberg, J.T., Wiilfing, J., Riedmiller, M.: A learned feature descriptor for object recog-
nition in rgh-d data. In: ICRA. (2012) 1298-1303

[9] Lee, W., Park, N., Woo, W.: Depth-assisted real-time 3D object detection for augmented reality. ICAT 11
2 (2011) 126-132

[10] Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3d scenes. IEEE
Trans. Pattern Anal. Mach. Intell. 21(5) (1999) 433-449

[11] Stein, F., Medioni, G.: Structural indexing: efficient 3-d object recognition. Pattern Analysis and Machine
Intelligence, IEEE Transactions on 14(2) (1992) 125-145

[12] Chua, C.S., Jarvis, R.: Point signatures: A new representation for 3d object recognition. International
Journal of Computer Vision 25(1) (1997) 63-85

[13] Ruiz-Correa, S., Shapiro, L., Melia, M.: A new signature-based method for efficient 3-d object recognition.
In: Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer
Society Conference on. Volume 1. (2001) I-769-1-776 vol.1

[14] Yamany, S.M., Farag, A.A.: Surface signatures: an orientation independent free-form surface representation
scheme for the purpose of objects registration and matching. Pattern Analysis and Machine Intelligence,
IEEE Transactions on 24(8) (2002) 1105-1120

22

[15]

[16]

[18]

[19]

[20]

Ashbrook, A., Fisher, R.: Finding surface correspondence for object recognition and registration. In: Proc.
5th Eur. Conf. on Computer Vision. Volume II., Freiburg, Germany (1998) 674-680

Chen, H., Bhanu, B.: 3d free-form object recognition in range images using local surface patches. Pattern
Recogn. Lett. 28(10) (2007) 1252-1262

Taati, B., Greenspan, M.: Local shape descriptor selection for object recognition in range data. Comput.
Vis. Image Underst. 115(5) (2011) 681-694

Shang, L., Greenspan, M.A.: Real-time object recognition in sparse range images using error surface
embedding. International Journal of Computer Vision 89(2-3) (2010) 211-228

Campbell, R.J., Flynn, P.J.: A survey of free-form object representation and recognition techniques.
Computer Vision and Image Understanding 81 (2001) 166-210

Mian, A.S., Bennamoun, M., Owens, R.A.: Automatic correspondence for 3d modeling: an extensive
review. International Journal of Shape Modeling 11(2) (2005) 253-291

Mian, A.S., Bennamoun, M., Owens, R.: Three-dimensional model-based object recognition and segmen-
tation in cluttered scenes. IEEE Trans. Pattern Anal. Mach. Intell. 28(10) (2006) 1584-1601

Mian, A.S., Bennamoun, M., Owens, R.A.: A novel representation and feature matching algorithm for
automatic pairwise registration of range images. Int. J. Comput. Vision 66(1) (2006) 19-40

Hetzel, G., Leibe, B., Levi, P., Schiele, B.: 3d object recognition from range images using local feature
histograms. In: CVPR (2), IEEE Computer Society (2001) 394-399

Khoshelham, K., Elberink, S.O.: Accuracy and resolution of kinect depth data for indoor mapping appli-
cations. Sensors 12(2) (2012) 1437-1454

NVIDIA: CUDA Programming Guide 5.0. (2012)

Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), Shanghai, China (2011)

Zhang, Z.: Microsoft kinect sensor and its effect. MultiMedia, IEEE 19(2) (2012) 4 -10

Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of the Sixth
International Conference on Computer Vision. ICCV "98, Washington, DC, USA, IEEE Computer Society
(1998) 839-846

Chan, D., Buisman, H., Theobalt, C., Thrun, S.: A Noise-Aware Filter for Real-Time Depth Upsampling.
In: Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications - M2SFA2
2008, Marseille, France (2008)

Wasza, J., Bauer, S., Hornegger, J.: Real-time preprocessing for dense 3-d range imaging on the GPU:
Defect interpolation, bilateral temporal averaging and guided filtering. In: ICCV Workshops. (2011) 1221—
1227

Holz, D., Behnke, S.: Fast range image segmentation and smoothing using approximate surface reconstruc-
tion and region growing. In: Proceedings of the 12th International Conference on Intelligent Autonomous
Systems (IAS), Jeju Island, Korea (2012)

Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F.: Computer graphics: principles and practice (2nd
ed.). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1990)

Wang, L., Huang, M., El-Ghazawi, T.A.: Exploiting concurrent kernel execution on graphic processing
units. In Smari, W.W., Mclntire, J.P., eds.: HPCS, IEEE (2011) 24-32

NVIDIA: Visual profiler (2012)
Harris, M.: Optimizing parallel reduction in CUDA. NVIDIA Dev. Technology (2008)

23

