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Abstract Two crucial aspects of visual point tracking
are addressed in this paper. First, the algorithm should
track as many points as possible reliably. Second, the
computation should be fast enough, which is challeng-
ing on low power embedded platforms. We propose a
new multi-scale semi dense point tracker called Video
Extruder, whose purpose is to fill the gap between short
term, dense motion estimation (optical flow) and long
term, sparse salient point tracking. This paper presents
a new detector, including a new salience function with
low computational complexity and a new selection strat-
egy that allows to obtain a large number of keypoints. Its
density and reliability in mobile video scenarios are com-
pared with those of FAST detector. Then, a multi-scale
prediction and a matching strategy are presented, based
on a hybrid regional coarse-to-fine and temporal predic-
tion, which provides robustness to large camera and ob-
ject accelerations. Filtering and merging strategies are
then used to eliminate most of the wrong or useless tra-
jectories. Thanks to its high degree of parallelism, the
proposed algorithm extracts beams of trajectories from
the video in a very fast way. We compare it with the
state-of-the-art pyramidal Lucas Kanade point tracker
and show that, in fast mobile video scenarios, it yields
similar quality results, while being up to one order of
magnitude faster. Three different parallel implementa-
tions of this tracker are presented, including multi-core
CPU, GPU and ARM SoCs. On a commodity 2010 CPU,
it can track 8 500 points in a 640× 480 video at 150 Hz.
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1 Introduction

Estimating the apparent displacement of points from
a dynamic scene in a video sequence is a fundamental
primitive in many applications of computer vision. In
real-time systems, such a primitive must naturally be
much faster than the processing rate.

A notable difficulty of motion estimation is measure
reliability: how trustworthy are the estimated velocities?
On the other hand, it is often desirable to get the dens-
est possible estimation, i.e. computing the displacement
for (almost) every point in the image. For example, this
is the case of motion segmentation [16], or when spatial
statistics need to be computed on the velocities, e.g. to
extract dominant planes by cumulative structure from
motion [1], or to recognise actions [4]. Even in applica-
tions using long term trajectory estimation (e.g. activ-
ity recognition), dense spatial sampling performs better
than sparse trajectories of interest points [18].

However there is a certain antagonism between reli-
ability and density and, practically, one has to choose
between sparse tracking and dense optical flow. Track-
ing algorithms aim at providing reliable motion param-
eters for a reduced set of points, using spatial selection
and long term temporal analysis. Optical flow algorithms
aim at providing an acceptable estimation of velocity for
every point of the video, using short term point match-
ing and spatial regularisation of the motion field. The
reasons for such dichotomy are well known: the aperture
problem subordinates motion estimation to the existence
of salient structures, whereas the piecewise continuity of
the projected velocity field implies spatial smoothness.

But this incompatibility is only apparent, since sa-
lience or smoothness are not intrinsic to the physical ob-
ject, but related to its scale of estimation. In practice the
distinction is mostly due to implementation choices: is it
better to put the computational effort in spatial selec-
tion and extraction of descriptors for long term predic-
tion and tracking, or to put it in spatial regularisation for
globally estimating the motion field? The answer should
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depend on the application, and the choice will clearly
limit the versatility of the system.

As an attempt to fill the gap between sparse track-
ing and dense optical flow, we propose an intermediate
approach that performs long term tracking for a set of
points (particles), designed to be as dense as possible.
Following this approach, we get a flexible motion esti-
mation primitive, that can provide both a beam of tra-
jectories with temporal consistency and a field of dis-
placements with spatial consistency. Our method is de-
signed to be almost fully parallel, thus extremely fast on
multi-core chips such as nowadays GPUs or multi-core
CPUs.

There exist different real-time implementations for
sparse point tracking, e.g. Tomasi and Kanade [17], Fas-
sold et al [6], and for dense optical flow, e.g. d’Angelo
et al [5], but these techniques do not provide the level
of flexibility we are looking for. Our approach is closer
to the Particle Video algorithm of Sand and Teller [14]
though it is not based on dense optical flow algorithm.
We use temporal and spatial coarse-to-fine prediction
and filtering for each particle but no explicit spatial fil-
tering, and finally, our method is real-time by design.

The contributions of our work are the following: we
introduce a new point detector called MIEL, whose goal
is to eliminate only the points whose matching will be
ambiguous, providing the semi-dense candidate particle
field. We propose an evaluation method of point detec-
tors adapted to short range fast video. We propose a
massively parallel matching algorithm based on hybrid
temporal and coarse-to-fine spatial prediction, which is
robust to large camera and object acceleration. In our
method, the spatial consistency is not enforced by ex-
plicit spatial filtering but only used as part of a test
to reject unreliable particle matching. Finally, we show
real-time implementations on three different platforms:
multi-core CPU, GPU, and embedded ARM processor.

The proposed tracking procedure is split into 3 main
steps: matching, filtering and new particle detection. Fig.1
shows an overview of the tracking pipeline, whose inputs
are the current frame of the video stream and the (mul-
tiresolution) particle set at time t−1. The matching step
function is to locate each particle in the new frame, and
remove occluded particles. The filtering step uses heuris-
tics to check the validity of each particle state, and to
remove invalid particles. The last step extracts new par-
ticles from the image.

The paper is organised as follows. Section 2 first presents
our study on the weak keypoint selection algorithms, and
defines the feature vector used for matching. Section 3
details our pyramidal tracking algorithm, the filter-merge
procedures, and presents a comprehensive evaluation of
our algorithm, compared with the OpenCV LK tracker [2].
Section 4 finally discusses implementation issues, and
presents time benchmarks obtained with different archi-
tectures.

Inputt ParticleSett−1

Matching

Filtering

New particles detection

ParticleSett

Fig. 1 The tracking pipeline. Only the Matching (in red) has
to be run at every frame. The detection and filtering steps
may be less frequent. In our applications, they are triggered
every 5 frames.

2 Weak keypoint selection and description

The goal of keypoint detection is to select candidate par-
ticles in such a way that the largest possible portion
of the input video is filled with particles, and only the
points whose matching may be ambiguous (homogeneous
zones, straight edges) are discarded. We claim that such
weak keypoint selection is preferable to dense regular
sampling, because it saves a lot of useless computational
effort on points whose matching is either very costly or
unreliable, often both.

In order to get a particle field that is as dense as pos-
sible, the detector needs to be applied at different scales.
We choose to apply the same single scale detector on a
dyadic image pyramid. Section 2.1 details the classical
FAST detector [12] and the MIEL detector, which is an
improvement of previous works [7]. Both are computed
on the same spatial support B3 (see Fig. 7),

To assess the different detectors with respect to our
requirements, we need to compare (i) the number of key-
points and (ii) the matching errors made by the tracking
algorithm on these keypoints. We present our evaluation
method and discuss the results in Section 2.2. The re-
peatability property is usually given much importance
[15]. But it does not make much sense here. First be-
cause, with a high number of keypoints, the repeatability
should always be close to 100%. Second, the detector is
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only applied to create new particles: an existing particle
is matched to a position, not to another particle.

A description vector must be attached to each parti-
cle, to be used for comparison purposes by the matching
procedure. This descriptor is defined in Section 2.3.

2.1 The detectors

2.1.1 The FAST detector

The FAST [11] detector computes local statistics using
B3(p), the Bresenham circle of radius 3 (Fig. 7, left) cen-
tred on the keypoint candidate p. Let I be the grayscale
image. The detection computes the 2 sets S− and S+:

– S−t (p) = {q ∈ B3(p); I(q) ≤ I(p)− t}
– S+

t (p) = {q ∈ B3(p); I(q) ≥ I(p) + t}

FAST selects keypoints p for which either S−t or S+
t

contains n contiguous neighbours B3(p). It appears that
t is a contrast parameter, whereas n is a geometric (cor-
nerness) parameter.

To avoid selecting adjacent keypoints, FAST restricts
the selection to local maxima (over the 3× 3 neighbour-
hood) of the following salience function:

ΣFAST
t (p) = max

 ∑
q∈S+

t (p)

δt(p,q),
∑

q∈S−
t (p)

δt(p,q)


with δt(p,q) = |I(q) − I(p)| − t. FAST is renowned

to combine low computational complexity and high re-
peatability. We will show further that it can also be well
suited to our requirement of getting as many points as
possible, by adapting the selection strategy.

2.1.2 The MIEL detector

The MIEL (French word for ”HONEY”) detector is com-
puted on the same supportB3(p) as FAST. Let {qi}0≤i≤15
be the 16 points of B3(p), numbered clockwise. MIEL is
based on a salience function which computes the mini-
mal absolute value of the second derivative in the 8 di-
rections:

ΣMIEL(p) =
7

min
i=0
|2I(p)− I(qi)− I(qi+8)|

This salience function is based on the hypothesis that
matching will be ambiguous for points where there exists
at least one direction along which the gray level varies
linearly. The function is indeed equivalent to the mini-
mal deviation from linearity in all directions. On areas
with salience higher than a given threshold t, the key-
points can then be selected according to a local maxima
strategy like FAST, but we describe hereunder another
selection strategy that better suits our needs.

2.1.3 Keypoints Selection Strategy

As explained in Section 2.1.1, FAST selects local max-
ima of the computed salience function. It limits the re-
dundancy of salient points by preventing two adjacent
points from being selected together. However, this is not
ideally suited to track a high number of keypoints, be-
cause a point with high salience may be trackable even
if it is not a local maximum.

For high density purposes, we use another selection
method that allows to extract more points on salient
areas: for each 3 × 3 pixels cell of the salience image,
the pixel with maximum value is selected if it is greater
than the detector threshold. Figure 2 compares the two
strategies.

Fig. 2 Comparison of the local maximum (LM) selection
(on the top) and the proposed strategy (on the bottom) us-
ing salience. In both cases, 9000 points are extracted using
the MIEL salience (see Sec. 2.1.2). It turns out that, to get
a high number of points, the LM method must select unreli-
able points, whereas our blockwise strategy provides a denser
mapping of salient areas.

2.1.4 Lowering the Detector Computational Cost

From a computational point of view, FAST and MIEL
have similar complexity. But, it has been shown [13] that,
for specific values of the geometric parameter n, FAST
computation can be significantly accelerated by testing
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subsets from B3(p), in order to quickly discard a high
proportion of the non-keypoints. Nevertheless the opti-
misation is specific to each value of n and, as will be
shown in Sec. 2.2, for our criteria, the best geometric
parameter depends on the targeted number of keypoints.

On the contrary, MIEL does not have geometric pa-
rameters and lends itself to more straightforward optimi-
sations. As the salience function computes a minimum,
it is possible to discard a candidate as soon as a diameter
is found along which the second derivative is lower than
the threshold t. This dramatically reduces the average
number of pixel reads per candidate. For example, two
pixel reads are enough to discard homogeneous areas.

As opposed to some other tracking algorithms, the
matching does not rely on point redetection in each new
frame. This limits the use of the detector to new particle
detection and thus removes the need to run the detector
at the same rate as the matcher.

Furthermore, another straightforward optimisation is
to look for new keypoints only on pixels that are not
adjacent to existing particles. This reduces the number
of pixels the detector has to scan.

2.2 Detector Evaluation

This section presents the benchmark used to evaluate
the ability of a detector to provide trackable particles.
As detailed later, in order to match one particle p from
one frame to the next, our method predicts the next
position of p and uses a gradient descent to refine the
matching. Then, errors appear where the good matching
is not directly accessible by the gradient descent. If the
prediction is consistent, this happens when neighbouring
points have the same appearance: on homogeneous areas
(road, sky,...) or on straight contours (building border,
poles,...). The quality of a detector depends on its ability
to select the highest number of particles with the smallest
matching error.

Thus, a detector can be characterised by the sum
of matching errors on all selected particles, for different
number of particles. This number depends on the con-
trast parameter t (as far as the geometric parameter n of
the FAST detector is concerned, different sample values
will be evaluated separately hereunder, cf. Fig 5).

2.2.1 Protocol

The evaluation consists in analysing particles created by
the different detectors using the following method. For
100 random translation vectors v of norm 5 (as explained
below):

– run the detector on a real world image.
– translate the image according to vector v.
– alter image gray levels with a Gaussian noise (σ =

5.0) to simulate camera artifacts.

– match the particles extracted at step 1 to find their
new position in the transformed image.

– the error on one particle is the distance (in pixels)
between its matched position and v.

Because detectors, even isotropic, behave slightly dif-
ferently according to the orientation, the scores are aver-
aged on all images orientations, using a step of 1 degree.

Figure 3 shows the test image along with the points
extracted by FAST, MIEL and the ideal detector (See
Sec. ??). This urban scene is well suited to evaluate a
keypoint detector because it features different kind of
textures and the two main types of difficulties: straight
lines on the road sides and homogeneous areas on the
sky and the road.

As we target short range video tracking, and thanks
to the prior displacement vector estimated for each parti-
cle, we assume that the distance between prediction and
true match is small. Thus, we limit the displacement of
our evaluation to a norm of 5 pixels.

2.2.2 Results

In this section, several detectors are compared according
to the previous protocol. They should outperform the
random detector, which randomly selects a given number
of points, and be outperformed by the ideal selection,
which can be made a posteriori using the matching error
map. The detectors use the same local selection strategy.
The random detector uses a random image as salience
function, whereas the ideal detector uses the inverse of
the matching error.

Figure 4 shows the impact of our alternative selection
strategy (cf. Sec 2.1.3). It allows to extract more points
and, above 8 000 FAST points or 5 000 MIEL points, re-
sults in smaller matching errors.

Figure 5 compares several versions of the FAST de-
tector. It shows that extraction is optimal with n = 9 for
less than 20 000 points, whereas n = 8 is better for more
than 20 000 points. Using our selection strategy, up to
34 133 points are extracted from the 640× 480 pixels of
the test image.

Finally Fig.6 compares the quality of the best FAST
and MIEL keypoints versus the ideal and random detec-
tors. Those results can be outlined as follows:

– up to a certain limit (around 30k particles in our
benchmark, that is 10% of the whole image area),
there is a significant benefit in using a geometric se-
lection with respect to a random selection.

– the MIEL and FAST detectors have approximately
the same quality for less than 10k points, and it seems
from our experiments that many different detectors
with the same support (B3(p)) and complexity could
achieve similar performance.

– changing the selection strategy from local maxima to
blockwise maxima, as described in Sec. 2.1.3, actually
improves the detector by allowing a higher density of
keypoints.
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Fig. 3 From top to bottom: 1 - Test image of the detec-
tor benchmark. 2 - Points extracted with an ideal detector
based on the matching error map (10k points with the small-
est matching error). 3 - 10k FAST keypoints. 4 - 10k MIEL
keypoints.

– the comparison with the ideal detector shows that
there is still a large margin of improvement for better
detectors.

2.3 Keypoint descriptor

This section introduces a new keypoint descriptor, de-
signed for real-time tracking and specially adapted to the
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Fig. 4 Comparison of the selections strategies. Although
simpler to compute, our selection strategy is close or even
better (more than 5 000 MIEL or 8 000 FAST points) than
the local maxima (LM) strategy.

matching algorithm introduced later. Generally speak-
ing, a descriptor has two main characteristics:

– Discrimination power: descriptors should be able
to distinguish one image location from a set of match-
ing candidates. This characteristics is related to the
size of the descriptor: The larger the descriptor is, the
more it can distinguish a particle from its neighbours,
thus limiting the temporal aliasing problem.

– Invariance: descriptors should be robust to the geo-
metric and photometric changes that may occur from
one frame to the other, like viewpoint changes, non
rigid object motions, illumination changes, etc.

Those two characteristics are, to a large extent, an-
tagonist. Besides, high invariance implies a computation-
ally expensive descriptor construction. Our descriptor is
justified by the following arguments: (i) by using predic-
tion and coarse-to-fine matching, the search space can
be reduced, which lowers the importance of discrimina-
tion. However, looking for semi-dense particle flow, sim-
ilar particles can be expected near the search area, so
there must be enough bins to distinguish them. (ii) since
the target is video tracking, the appearance of objects is
not expected to vary significantly between consecutive
frames, which limits much the importance of invariance.

Our semi dense tracker uses a feature vector of di-
mension 16, corresponding to two times 8 values evenly
sampled on the Bresenham circles of radius 3 (first scale)
and 6 (second scale) (See Fig. 7). First (resp. second)
scale values are obtained by smoothing the input frame
with a Gaussian kernel with σ = 1.0 (resp. 2.0). The
matching algorithm presented in the next section uses
the L1 distance between these vectors as similarity met-
rics.
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Fig. 5 Profile of the FAST detectors. Best performance is
obtained from n = 9 (below 20k extracted points) and n = 8
(above).

3 Tracking Algorithm

This section presents how particle positions are tracked
from one frame to the next. It involves prediction, match-
ing, filtering and merging mechanisms. We first give an
overview of the algorithm and then go into the details of
each step.

3.1 Overview

We track particles from coarse-to-fine scales using a dyadic
pyramid. Statistics extracted at scale s + 1 and/or mo-
tion estimated at time t− 1 are used to predict particles
at time t and scale s (Sec. 3.2).

The new position of each particle is then estimated
by searching its best matching position using a two-scale
gradient descent (Sec. 3.3).
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Fig. 6 Comparison of FAST and MIEL. MIEL turns out
comparable to FAST tuned at its best, though a little weaker
below 25k particle.

Fig. 7 The two neighbourhoods B3 and B6 used to compute
the detector and the description vectors.

To avoid particle drift around occlusions, particles are
discarded when the matcher converged to a pixel that is
too dissimilar, according to the descriptor distance. Er-
ror filtering then discards remaining false matches, using
spatial statistics (Sec. 3.4).

Finally, to minimise redundant tracking, adjacent par-
ticles with similar trajectories are merged (Sec. 3.5).

3.2 Coarse-to-fine Prediction

To be robust to large motion due to sudden camera ac-
celerations or fast moving objects, particle positions are
predicted using a hybrid temporal and coarse-to-fine spa-
tial method.

Given a particle living at time t and at scale s, let
P s
t its position in the current frame and V s

t = P s
t −P s

t−1
its velocity. To initialise the pyramidal matching frame-
work, at the coarsest scale s = smax, particle positions
are predicted to be:

P̂ smax
t = P smax

t−1 + V smax
t−1
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The position is refined using the matching algorithm
(Sec. 3.3), providing P smax

t and then V smax
t .

Then, particles at finer scales (s < smax) essentially
inherit from particles at coarser scales. However, because
of sparsity, particles at scale s do not always have corre-
sponding particles at scale s+1. The following strategy is
used to maximise the probability that a particle inherits
a flow vector. For all scales s < smax:

– V s+1
t , the velocity field calculated at the previous

(upper) scale, is sub-sampled by replacing the val-
ues within every 8 × 8 block by the average value
of the velocities of all particles present in this block.

The modified field is denoted Ṽ s+1
t .

– The position of each particle is predicted as:

P̂ s
t = P s

t−1 + 2Ṽ s+1
t (P s

t−1/2)

– If the corresponding block Ṽ s+1
t (P s

t−1/2) is empty,
the position of the particle is predicted as:

P̂ s
t = P s

t−1 + V s
t−1

– The matching procedure (Sec. 3.3) is used to refine
the particle position P s

t and velocity V s
t .

A slight disadvantage of this prediction strategy is
that it may induce errors on the borders of moving ob-
jects. However it has several significant advantages:

– it reduces the amount of memory.
– it smoothes matching errors.

3.3 Matching

To refine the position search of each particle, we use a
hierarchical sequence of two gradient descents: Let F1

(resp. F2) be the part of the descriptor containing values
extracted a the first (resp. second) scale. Let d1 (resp
d2) be the L1 distance between sub-descriptors F1 (resp
F2). The first (coarse) descent finds the local minimum
according to d2, whereas the second (fine) descent uses
d1+d2. Each step of the two descents looks for minimum
distance in a 3× 3 neighbourhood.

To handle occlusions, matches are rejected when the
similarity distance d1 + d2 is above a given threshold θ
which sets a balance between robustness to appearance
changes and occlusion detection. We use θ = 300 to ob-
tain the results shown on Table 1, which correspond to
7.5% of the maximal value of d1 + d2.

3.4 Error Filtering

Being able to detect false matches is essential to com-
pensate for errors, mainly due to (i) the limited discrim-
ination power of the detector and (ii) the reduced search
performed by the gradient descents.

We chose not to perform spatial smoothing but only
remove particles with a spatially inconsistent velocity
vector. The false matching detection uses the sub-sampled
velocity map presented earlier (Sec. 3.2) to estimate the
velocity divergence between the particle and its neigh-
bourhood. We then discard particles such that:

||V s
t − Ṽ s

t || > λ

We use λ = 10 pixels in our experiments. Further-
more, isolated particles in their 8× 8 block are deleted.

Although these two strategies can delete good parti-
cles, it has negligible impact on the high number of par-
ticles, while improving significantly the average match-
ing error. On the other hand, by using statistics already
computed for the prediction, this error filtering function
has minor computational cost, thus very little influence
on the overall tracking speed.

3.5 Particle Merging Strategy

When tracking a semi dense field of particles, the prob-
ability that two particles converge to the same trajec-
tory is high. It can lead to redundant computations,
which lowers the performance of the tracker. To avoid
this problem, particles which are 1-pixel distant or less
are merged simply by removing the youngest. Looking
for superposed or adjacent particles can be performed
in O(1) time complexity thanks to the spatial index de-
scribed in Section 4.2.

3.6 Evaluation of the Tracker

Some results of the semi dense tracker can be seen on
Fig.8, on different scenarios and scenes. In this section,
we propose a method to evaluate our semi-dense tracking
algorithm and compare it with the OpenCV pyramidal
Lukas-Kanade (pyrLK) tracker [2] that is widely used as
state-of-the-art algorithm for tracking a high number of
points in real time.

The pyrLK tracker does not perform direct search
matching, but uses an iterative Euler Lagrange resolu-
tion scheme. The quality of their result is related to the
smoothness of the function to minimise, which depends
on the size of the window used to integrate the deriva-
tives [2]. Such size has major influence on the compu-
tation time, we then consider different window sizes for
PyrLK on our benchmarks (the default size is 21 pixels
in the OpenCV function).

For Video Extruder, the smoothness of the similarity
function is related to the size and scales of the descrip-
tor. One single version is evaluated, with 2 scales and 8
sample values per scale as described in Sec. 2.3.
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3.6.1 Generating Sequences with Ground Truth Motion

To benchmark tracking algorithms, we generated syn-
thetic videos with their associated ground truth mo-
tion data. The generator produces flat-world dynamic
scenarios using a very large image as panoramic back-
ground and 3 small images of objects inserted in the
video stream. Two kinds of motion are simulated: cam-
era pan-tilt that affects the whole scene (background and
objects), and object-specific motion.

Let αt be the pan-tilt random acceleration vector at
frame t, and βi

t the random acceleration vector of object
i at frame t. Orientations of these acceleration vectors
are randomly changed every 5 frames, while their norms
are kept constant.

Two scenarios are used in our evaluation, the first
with small accelerations is denoted SA, with ||αt|| = 1
and ||βi

t || = 2. The second one with large accelerations
is denoted SB , with ||αt|| = 15 and ||βi

t || = 5 (units in
pixels2 per frame).

3.6.2 Qualitative evaluation

A qualitative evaluation is first performed, by compar-
ing the trajectories extracted by the tracking algorithms
with the true trajectories obtained from the ground truth
sequences.

For each scenario, the tracking algorithms are run
on a generated sequence of 100 frames. Each computed
trajectory c is compared to the reference trajectory r cor-
responding to the ground truth trajectory starting from
the same position. More precisely, let Tc = {pc

s, . . . ,p
c
e}

be a computed trajectory, starting from frame s and end-
ing at frame e. The corresponding reference trajectory is
Tr = {pr

s, . . . ,p
r
f}, such that pr

s = pc
s.

1. The average error along Tc is defined as:∑
s≤t≤min(e,f)

||pc
t − pr

t ||
1 + min(e, f)− s

2. The particle is considered lost if (f − e) > η.
3. There is an undetected occlusion if (e− f) > η.

We set η = 10 frames to allow small tracking errors,
which represents 0.40 seconds in a 25Hz input video. For
all computed trajectories, we then calculate: (i) the mean
average error along the trajectories, which measures the
ability to track particle positions without drifting (ii) the
percentage of lost particles, that shows the robustness to
motion and appearance change and, (iii) the percentage
of undetected occlusions. In all these statistics, all tra-
jectories have the same weight, whatever their length.

Table 1 compares the video extruder with the OpenCV
pyrLK tracker [2] parameterised with different window
sizes (WS) on the two scenarios SA and SB . It shows
that, while being significantly faster (see Sec. 4), the
global quality of our tracker is close to that of PyrLK

in terms of matching error (i). Measures ii and iii are
in favour of PyrLK, because, unlike our tracker, it does
not update point descriptors over the time. This allows
to detect occlusions more easily, especially when they
progressively occlude the particle neighbourhood, at the
cost of a weaker robustness to appearance changes.

One counter-intuitive observation is that scenario SA,
while featuring small motion, is actually harder because
it contains slow occlusions that trigger progressive drift
of the descriptor components involving matching with
error inferior to θ.

4 Implementation

4.1 Parallelism

In recent years, the growing market of smart phones
urged processor designers to increase significantly the
efficiency of embedded low power chips. Because high
frequency cores are subject to physical limits, chips are
made increasingly parallel in order to raise computa-
tional power while reducing energy consumption.

To leverage this trend, our tracker is essentially based
on two kinds of highly parallel building blocks:

– The pixel-wise operations involved in the tracking
pipeline are convolutions with Gaussian kernels and
the keypoint detector. We can split them in as many
threads as the number of pixels.

– The particle-wise operations affect all the other
parts of the tracker, i.e. matching, semi-dense opti-
cal flow computation, and error filtering. They use a
contiguous buffer of particles (Sec. 4.2), smaller than
the input image, thus involving less memory trans-
fers than pixel-wise operations. Because of the high
number of particles, they are also easily split into
thousands of threads, able to make the most of the
GPU parallelism.

So in the GPU implementation, there is one thread
per pixel or particle. When targeting the CPU, which is
a coarse grained parallel architecture, we assign to each
core a subset of the image, or of the particle buffer. To
leverage the CPU cache, adjacent subsets are assigned
to consecutive cores, and all memory ranges (input and
output buffers) needed by all the CPU threads at a given
time must exactly fit the available cache size.

4.2 Particle container

In order to lower the computation time of both the tracker
and the applications using it, we use a particle container,
which allows to:

– provide at each frame a contiguous buffer of alive
particles.
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Table 1 Comparison of PyrLK with different integration window sizes (WS) and our tracker. Lost particles and undetected
occlusions are expressed in percentage of computed trajectories.

PyrLK WS=5 PyrLK WS=11 PyrLK WS=21 Our tracker

Scenario SA - 5 000 particles

Matching error 1.74 0.92 1.03 1.12

Lost Particles 8.27 % 8.26 % 7.91 % 8.82 %

Undetected occlusions 10.80 % 1.41% 3.39 % 12.82 %

Scenario SB - 5 000 particles

Matching error 3.62 1.12 1.18 0.94

Lost Particles 10.59 % 7.99 % 7.88 % 8.48 %

Undetected occlusions 9.93 % 1.01% 1.95 % 5.47 %

Scenario SA - 15 000 particles

Matching error 2.45 0.99 1.03 1.14

Lost Particles 8.92 % 8.39 8.54 % 8.33 %

Undetected occlusions 15.00 % 1.12 % 1.98 % 9.28 %

Scenario SB - 15 000 particles

Matching error 3.82 1.19 1.19 0.95

Lost Particles 12.80 % 8.13 % 8.56 % 8.74 %

Undetected occlusions 8.98 % 0.72 % 1.19 % 4.11 %

– get the particle located on a given pixel in constant
time.

The first property is needed to efficiently iterate over
all the alive particles, and the second one to efficiently
look for particles at a given location. We choose to store
particle data in a contiguous 1d array P and to reference
them in a 2d image R. That is, R(p) = i if P (i), the
particle at index i, is located at pixel p.

Keeping up to date a contiguous buffer of alive par-
ticles is a complicated task. Particles appear and die
at each frame and P needs to be updated accordingly.
Also, dead particles deletion and the subsequent com-
paction procedure that is needed change particles posi-
tion in memory, which makes difficult to attach data to
particles. Thus, we provide a procedure to synchronise
attribute data with the particle buffer, optionally saving
attributes of dead particles.

This provides applications with a way to attach data
to moving particles instead of static pixels which is useful
for object segmentation and tracking, or particle depth
estimation.

To better use the processor cache, the container re-
orders the particle buffer every N frames, in such a way
that close particles in the 2d space are also close in mem-
ory. To achieve this, a coarse grained parallel compaction
algorithm is used on the CPU and a fined grained parallel
version of the Thrust library [8] on the GPU.

4.3 Time benchmark

Eventually, the density and matching quality of Video
Extruder is comparable to that of the OpenCV PyrLK
tracker as shown in Section 3. But its overriding advan-
tage is speed. We show in this section that it outperforms
PyrLK tracker, reaching real-time processing rates even
on low power architectures such as ARM systems-on-chip
embedded in current middle end smart phones.

Table 2 provides some speed figures and ratios, mea-
sured on the Camvid [3] urban driving videos dataset.
The proposed tracking algorithm features speedup fac-
tors from ×1.5 to ×17 compared to PyrLK with different
window size.

Figure 4.3 shows the repartition of the computation
time among the different parts of the tracker. The two
most expensive tasks are the matching, and the two Gaus-
sian blurs per scale needed by the descriptor. Every other
parts are negligible because they only involve few mem-
ory fetches per particles and basic arithmetic.

We built three main implementations of our tracker.
The first two run on standard desktop hardware, respec-
tively a GPU and a CPU, and achieve ultra fast pro-
cessing for high frame rate video sources. The third one
targets low power ARM processors and achieves real-
time video processing at a lower resolution (see Fig. 9).
As far as we know, this is the first implementation able
to track such a high number of particles at such a frame
rate. Note that, except the convolutions, none of those
implementations makes explicit (i.e. not automatically
done by the compiler) use of architecture specific opti-
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Table 2 Compared computation times, averaged on the 1 000 first frames of a 640 × 480 pixels video (CamVid dataset).
Both trackers were set to track around 8 500 particles per frame. The detectors were run every 5th frames. The platform
used is a Core i5 2500k at 3.3 GHz.

PyrLK WS = 5 PyrLK WS = 11 PyrLK WS = 21 Our tracker

Frames per second 101.11 31.25 8.95 151.9

µs per particle 1.21 3.50 14.44 0.77

misations like SSE, NEON or other SIMD extensions,
so future works could speedup this tracker using such
optimisations.

Fig. 9 The tracker running at 10Hz on a low-end Xperia U
smart phone embedding an ARM dual-core STE U8500.

Table 3 presents the computation time of our tracker
on different architectures, ranging from high performance
processors (GPU) to low power ARM processors.

5 Conclusion and Perspectives

In this paper we proposed a visual point tracking algo-
rithm called Video Extruder. It is designed to be used as
a basic primitive in many different embedded video pro-
cessing systems. Indeed, it lends itself to very fast com-
putation on different architectures, including low power

Matcher 43 %

Descriptor 42 %

Detector 10%

Pyramid 2%

Filter/Merge 1.4%

Misc.

Fig. 10 Repartition of the processing time among the dif-
ferent parts of the algorithm running on a quad-core x86

SoCs, thanks to its highly regular and parallel friendly
task arrangement, and thanks to its efficient data man-
agement. Furthermore, it achieves a trade-off between
dense optical flow and long term point tracking, which
makes it a very versatile brick that can be used in many
different applications: non rigid object tracking, struc-
ture from motion, video stabilisation, video segmenta-
tion, action recognition and so on. It has been used al-
ready to build action descriptors using beam of trajec-
tories [10, 9]. In [9], it is shown that the performance of
action classification is higher when the number of tra-
jectory increases, up to a certain limit: when the quality
of matching begins to drop. This fact confirms the inter-
est of our approach with respect to sparse tracking and
regular/dense sampling.

Other contributions of our work are:

– a new salience function which allows fast detection of
weakly salient points.

– a new selection mechanism allowing much more points
than classical local maxima.

– an hybrid temporal and medium range coarse to scale
spatial prediction mechanism which makes the tracker
robust to large camera and object accelerations.

– a two scale descriptor with low memory footprint
combined with a simple gradient-descent based match-
ing algorithm that iterate with a small 3 × 3 search
window.

– an evaluation protocol adapted to fast mobile video
point tracking scenarios.

In our on-going and future work, we shall use the
tracker to build different real-time applications, like soft-
ware video stabilisation and 3d reconstruction. Besides,
the reader is invited to try it for his/her own needs, by
downloading the open source version available via the
project web page:
http://www.ensta-paristech.fr/~garrigues/video_
extruder.html
Other demonstrations and applications are also available
on this same page.
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Table 3 Time performance of our tracker on different architectures. The detector and filtering step were run every 5 video
frames.

Architecture Resolution Number of particles Frames per second Cycles per particle

GPU Geforce GTX 460 1.35GHz 640 × 480 8 500 166 957

CPU quad-core I5 2500k 3.3GHz 640 × 480 8 500 152 2 550

ARM dual-core STE U8500 1GHz 320 × 240 3 000 11 30 300

ARM single-core IMX.53 1GHz 720 × 288 2 000 10 50 000
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Fig. 8 From left to right: the input video, the particles (in red) and their trajectories (in black), and the semi dense motion
field, using polar coordinates of the velocity vector as (hue, intensity) colour code.


