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Abstract The condition of municipal roads has deteriorated considerably in recent years, leading

to large scale pavement distress such as cracks or potholes. In order to enable road maintenance,

pavement distress should be timely detected. However, manual investigation, which is still the most

widely applied approach towards pavement assessment, puts maintenance personnel at risk and

is time-consuming. During the last decade several efforts have been made to automatically assess

the condition of the municipal roads without any human intervention. Vehicles are equipped with
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sensors and cameras in order to collect data related to pavement distress and record videos of the

pavement surface.

Yet, this data is usually not processed while driving, but instead it is recorded and later analyzed

offline. As a result, a vast amount of memory is required to store the data and the available memory

may not be sufficient. To reduce the amount of saved data, the authors have previously proposed

a Graphics Processing Units (GPU)-enabled pavement distress detection approach based on the

wavelet transform of pavement images. The GPU implementation enables pavement distress de-

tection in real time. Although the method used in the approach provides very good results, the

method can still be improved by incorporating pavement surface texture characteristics.

This paper presents an implementation of textural features on GPUs for pavement distress detec-

tion. Textural features are based on gray tone spatial dependencies in an image and characterize

the image texture. To evaluate the computational efficiency of the GPU implementation, perfor-

mance tests are carried out. The results show that the speed-up achieved by implementing the

textural features on the GPU is sufficient to enable real-time detection of pavement distress. In

addition, classification results obtained by applying the approach on 16,601 pavement images are

compared to the results without integrating textural features. There results demonstrate that an

improvement of 27% is achieved by incorporating pavement surface texture characteristics.

Keywords pavement distress detection, textural features, Haralick features, graphics processing

units

1 Introduction

In recent years, the pavement condition has deteriorated rapidly. As a result of this deterioration,

pavement distress, such as crack and potholes, occurs. In order to keep the roads in good condition

and to extend pavement life, it is necessary to detect this distress in the early stages of pavement

deterioration.

However, the detection of pavement distress is still mostly performed manually by trained person-

nel, which is time-consuming and tedious. Therefore, efforts to automatically assess the condition of

the roads using cameras and sensors installed on vehicles have been made in recent years. Various
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research methods for pavement assessment and evaluation have been proposed, namely sensor-

based and visual-based methods [16].

Yet, most of these methods do not detect key indicators of deteriorating pavement condition in

real-time, since state-of-the-art CPU processors which are used for pavement image processing are

not able to execute the corresponding algorithms fast enough.

Nevertheless, current technology provides us with an opportunity to implement these methods on

various architectures in order to accelerate the execution and achieve efficiency. Graphics Process-

ing Units (GPU) have emerged as a powerful tool for massively parallel computations in recent

years [24].

The authors already have proposed an implementation of the wavelet transform for pavement dis-

tress detection on GPUs [9]. Although promising results have been achieved, the adopted method

for pavement distress detection needs enhancement due to the variety of different textures roads

are characterized with, which makes it impossible to develop universal methods capable of detect-

ing distress on various types of roads. Therefore, in state-of-the-art pavement assessment studies,

the methods for distress detection have been optimized for a certain type of pavement. However,

if fully automated pavement distress detection is pursued, the methods should be able to detect

distress on all types of roads independently from the pavement texture.

To address this issue and compensate the limitation of the previous method to distinguish between

different types of pavement, this paper presents a method capable of detecting distress on pavement

images with various textures by incorporating textural features. The method was implemented for

graphics processing units using the Open Computing Language (OpenCL) to make it capable of

real-time processing.

2 Related work

2.1 State of research and practice in the pavement distress detection field

Although the assessment of the road pavement is still mostly performed manually, several methods

based on computer vision have been proposed. Thereby, images obtained by cameras installed

in vehicles are first pre-processed in order to remove noise and shadows. Then, the images are
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analyzed with respect to distress using specifically developed algorithms. For example, Cafiso et al.

[4] proposed a clustering method which tries to identify patches in the images, while Radopoulou

and Brilakis [29] applied morphological operations for the same purpose. Approaches for pothole

detection have also been proposed. Yu and Salari [41] used laser imaging to analyze pothole severity.

The majority of the pavement assessment methods have been developed for crack detection (Fang et

al. [5], Huang and Xu [12], Li et al. [18], Moussa and Hussain [20], Oliveira and Correia [23], Salman

et al. [31], Subirats et al. [34], Tanaka and Uematsu [35],Varadharajan et al. [38], Vivekanandreddy

et al. [39], Zou et al. [43]). However, all of the methods mentioned above consider only one type of

distress. As several types of distress occur, it is necessary to develop methods capable of assessing

all of them at once. In addition, the images are analyzed offline, which leads to a large amount of

stored data.

2.2 Wavelet transform for pavement distress detection

In our previous work, we proposed an implementation of image pre-processing operations and

the wavelet transform for pavement distress detection on graphics processing units [9]. For pre-

processing, the top-hat transform and median filtering were implemented on the GPU. The wavelet

transform was applied by Zhou et al. [42] on pavement images in order to detect distress such as

diverse types of cracks or potholes. The wavelet transform decomposes an image into different-

frequency coefficients. Based on the assumption that distress usually is a high-frequency component

which is transformed into high-amplitude wavelet coefficients, Zhou suggested three statistical

criteria for pavement distress detection, namely the high-frequency energy percentage (HFEP), the

standard deviation of the wavelet coefficients (STD), and the high-amplitude wavelet coefficient

percentage (HAWCP). Our implementation of the pre-processing steps, the wavelet transform

and the HAWCP computation on GPU yielded very good results in terms of efficiency. On an

NVIDIA Tesla C2070 GPU a speed up of 9000 against a sequential C++ implementation was

achieved. However, although promising distress detection results were obtained in a case study,

in our opinion, the success rate leaves room for improvement and the methodology needs to be

extended, so that different types of pavement are evaluated correctly.
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2.3 Graphics processing units

Graphics processing units (GPUs) have originally been designed mainly for rendering images, an-

imations and videos. However, they are nowadays utilized not only for graphics processing but

also for parallel processing of diverse types of algorithms. General purpose graphics processing

units (GPGPU) are increasingly applied for real-time applications. Nevertheless, as far as we are

concerned, there exist no implementations of textural feature calculations on graphics processing

units, which is one of hte main contributions of this paper.

Several programming frameworks for GPU have been developed. Among them the Compute Unified

Device Architecture (CUDA) and Open Computing Language (OpenCL) are the most commonly

used ones. CUDA [22] has been developed by NVIDIA and currently supports only NVIDIA de-

vices, while OpenCL [15] which has been developed by the Khronos Consortium can be executed

on diverse platforms produced by different vendors. As far as we are concerned, CUDA is faster

than OpenCL on NVIDIA devices. However, having in mind that our aim is to enable real-time

pavement distress detection using common vehicles, OpenCL was used in this study because of

the variety of hardware that it supports. Even if it is slower than CUDA, OpenCL offers a good

trade-off between wide applicability and performance. For this reason, OpenCL was used in this

study for the implementation of a parallel version of the textural feature extraction.

An OpenCL platform includes a single host (usually a CPU), which is connected to one or more

devices (CPUs, GPUs or other processors). Functions written in the OpenCL C programming

language and compiled with the OpenCL compiler [15] are defined on the host but executed on

the device. These functions are called kernels. The host submits the kernels for execution on an

OpenCL compliable device. An instance of the kernel is executed concurrently for each point in an

index space. These instances are referred to as work-items and are organized into work-groups. The

kernels operate on the values of memory objects. There exist different types of memory in Open-

CL: host memory, global memory, constant memory, local memory, and private memory. Since host

memory is visible only to the host, data has to be first transferred to a global memory buffer on the

device. Global memory permits read and write access to all work-items in all work-groups, while

local memory can only be accessed by work-items belonging to a specific work-group. However,
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local memory access is in general much faster than global memory access.

2.4 Haralick features

Texture is an important characteristic in image analysis and contains information about the spa-

tial distribution of tonal variations within an image. An exact definition of texture does not exist.

Several scientists define texture depending on the purpose they need texture for, or on their ap-

plications. Jain [14], for example, defines texture as repeating patterns of local variations in image

intensity which are too fine to be distinguished as separable objects at the observed resolution.

Texture analysis comprises texture classification, texture segmentation, and shape recovery from

texture. We are particularly interested in texture classification, whereby the problem is identifying

the given textured region from a given set of texture classes such as, for example, agricultural land,

forest region or urban area [14].

Jain [14] distinguishes between three different types of texture analysis algorithms, namely model-

based methods, structural methods, and statistical methods. While model-based and structural

methods are useful when macrotextures need to be identified (i.e., when the texture primitives

are large and it is first necessary to determine the shape and properties of the basic primitive),

statistical methods facilitate the classification of microtexture. When microtexture is considered,

the primitives are small. As this is the case with pavement images, statistical textural features

were considered in our work.

Haralick features are the most commonly applied statistical textural features. With the aim of

enabling texture classification, Haralick [10] has proposed a set of meaningful textural features for

classification of pictorial data. By conducting several experiments, he has concluded that textural

features have applicability for a wide variety of image-classification applications. The set consists of

14 textural features which can be extracted from a so-called gray-tone spatial-dependence matrix

(or gray-level co-occurrence matrix).

Haralick assumes that an image is a set of resolution cells (i.e. pixels) and the classification of

pictorial data can be performed either on a resolution cell basis or on a block of resolution cells.

If a large block of resolution cells is observed, a procedure for extracting textural properties of
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Fig. 1: Neighborhood of a resolution cell after [10].

these blocks is required. The procedure proposed by Haralick first computes a set of gray-level

co-occurrence matrices (GLCMs) and then calculates textural features based on these matrices.

The GLCM expresses the relationship between adjacent or nearest-neighbor pixels in an image.

According to Haralicks notion, a pixel has eight nearest neighbors, as shown in Figure 1, where

1 and 5 are 0 degrees (horizontal) nearest neighbors to the pixel in the middle (*). Pixels 2 and

6 are 135 degrees (diagonal) nearest neighbors. Pixels 4 and 8 are 45 degrees nearest (diagonal)

neighbors, and pixels 3 and 7 are 90 degrees (vertical) nearest neighbors to *. To calculate the

GLCM, the numbers of all possible nearest-neighbor gray-tone pairs in an image are counted. In

the gray level co-occurrence matrix each cell represents the number of occurrences of pixels with

intensity a, which are 0 degree nearest neighbors to pixels with intensity b.

After calculating the GLCMs along all four directions for a certain image, textural features are

extracted from these matrices. In total, 14 features have been suggested by Haralick. For each of

these 14 features the range and the mean values for the four directions can be calculated, resulting

in a total number of 28 features. However, in order to simplify the classification model and to

enhance generalization by reducing overfitting, feature selection was conducted. Since [10] states

that although we may have an intuitive expectation of what the textural features represent, this is

a problem of a thorough experiment, the features that most appropriately characterize the pave-

ment texture were chosen by evaluation. The feature selection was carried out using a third-party

software tool [40]. For this purpose, pavement images which do not contain any distress were man-

ually divided into several classes based on the visual evaluation of experts. After that, all Haralick
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features were computed for all of the images. Since the publication [10] proposes the ranges and

the mean values as features, in total 28 features were calculated for each image. The features

were evaluated by measuring the information gain with respect to the class, which is calculated

according to Equation 1:

InfoGain(Class,Attribute) = H(Class)−H(Class|Attribute), (1)

where H is the information entropy.

Then, the features were ranked according to the information gain and we have found out that

angular second moment, contrast, inverse difference moment, and entropy are the most significant

features for pavement condition assessment. These features are defined by Equations 2, 3, 4, and

5 respectively, where p(i, j) denotes the frequency with which two neighboring resolution cells sepa-

rated by a certain distance occur on the image, one with gray tone i and the other with gray tone j.

Angular second moment (ASM):

f1 =
∑
i

∑
j

{p(i, j)}2 (2)

Contrast:

f2 =

Ng−1∑
n=0

n2


Ng∑
i=1

Ng∑
j=1

p(i, j)

with |i− j| = n (3)

Inverse difference moment (IDM):

f3 =
∑
i

∑
j

1

1 + (i− j)2
p(i, j) (4)

Entropy:

f4 = −
∑
i

∑
j

p(i, j)log(p(i, j)) (5)
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3 Research problem and objectives

Although diverse methods for pavement distress detection and evaluation have been presented in

recent years, the majority of these research methods are not capable of detecting the deteriorating

condition of various types of roads. Therefore, it is essential to develop methods for pavement dis-

tress detection which are capable of distinguishing between different pavement types and adapting

the pavement distress detection models appropriately.

Figure 2 presents some examples of images of healthy pavement with different texture. The wavelet-

based descriptors for these images were calculated as described in [9] after pre-processing the images

to correct the non-uniform background illumination. In Figure 2, the values of the wavelet de-

scriptors for images containing cracks are presented. As can be seen, the high-amplitude wavelet

coefficient percentage (HAWCP) value of the image in the middle which contains cracks is low-

er than the HAWCP value of the good pavement image on the right, although it was expected

that images containing distress should have higher HAWCP values than images of good pavement.

Moreover, the HAWCP values for images (a) and (b) are very close to each other, despite of the

fact that one of them contains distress and the other one does not. This indicates that the HAWCP

value itself is not able to identify the presence of distress on images with different texture.

In addition, state-of-the-art methods for distress detection are, in general, applied to the pave-

(a) HAWCP: 0.0537 (b) HAWCP: 0.09 (c) HAWCP: 0.5110

Fig. 2: Pavement images with different texture and corresponding wavelet descriptor values.

ment data (i.e. pavement images or sensor data) offline. The data is first stored persistently until

it is actually processed, because the time required to execute the methods on the images usually
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exceeds the time available for processing between two subsequent data acquisitions. As a result,

a huge amount of data which may not indicate the presence of distress is stored. Thereupon, ap-

proaches to detect the distress in real time and save only data which represents distress need to

be investigated or developed.

To address the aforementioned issues and improve the already existing method, the following re-

search questions need to be answered:

– How can we detect key indicators of deteriorating pavement condition on images of various

types of pavement?

– How can we execute distress detection methods fast enough, so that real-time processing of the

images is possible?

4 Methodology

With the aim of improving the current pavement evaluation framework, textural features are incor-

porated into an existing pavement distress detection methodology. An overview on the methodology

is presented in Figure 3. First, the pavement images are pre-processed by applying a median fil-

ter in order to remove noise. Then, another pre-processing step is performed, namely the top-hat

transform is applied, to correct the non-uniform illumination in the images. As a result of the

top-hat transform, shadow regions such as the one present on the right image in Figure 2 are

corrected and misleading results are avoided. Afterwards, the wavelet transform of the images is

computed and the high-amplitude wavelet coefficient percentage (HAWCP) is calculated.

The contribution of this paper is the blue part in Figure 3. In addition to the HAWCP value,

textural features are calculated to enhance the classification performance. The textural features

are used together with the HAWCP descriptor in order to generate a classification model. The clas-

sification model is created based on training images which are manually labeled by experts. Then,

the classification model is used to evaluate the presence of distress on new images in real-time.
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Fig. 3: Overview on the pavement distress detection methodology.

5 Implementation

The GPU implementation of the proposed methodology is presented in Figure 4. Like in Figure

3, the parts of the implementation which are described in this paper in detail are presented with

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



12

Fig. 4: GPU implementation of the proposed methodology.

a blue background. The top-hat transform was implemented as a combination of separable erosion

and dilation operations.
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5.1 Gray Level Co-occurrence Matrix

The calculation of the GLMC matrix could be considered as an example of a histogram. In gener-

al, a histogram is a representation of the distribution of numerical data [25]. The first step when

calculating a histogram is to define the range of values and divide it into a set of intervals called

bins. In the next step, the values which fall into each bin are counted. In the case of the GLCM,

the values of the GLCM are the bins and the pairs of pixels with intensity a and b are the values

which fall into these bins. Several implementations of histogram calculations on GPU have been

proposed [27] [3] [37]. However, these implementations use local memory to store a histogram for

each work-item. Then, a reduction operation is performed on the local histograms in order to

combine them into a final histogram. Unfortunately, the size of the GLCM usually exceeds the

available amount of local memory. For example, if we want to compute the GLCM for 256 pixel

intensity values, the required local array would be of size 256x256 = 65,536 elements. If unsigned

integers are used, the amount of memory is 65,536*32 bit = 2,097,152 bit = 256 KB. However, the

size of the available local memory, for example on NVIDIA Kepler GPUs, is either 16KB or 48KB

[21].

Therefore, we present another approach to compute the GLCM in parallel. The approach can also

be adopted for computing other types of histograms. The idea of the implementation of the GLCM

computation is to use multiple work-groups to compute different parts of the GLCM.

The approach is shown in Figure 5 for a simple example with 2 work-groups (a blue work-group

and a red one) and 4 work-items per work-group. The implementation is also based on local mem-

ory. Since local memory access is much faster than global memory access, local memory is used to

store partial GLCMs computed by different work-groups. Depending on the amount of available

memory, the GLCM is split into tiles. The values belonging to the different tiles are calculated by

the different work-groups. Each work-group processes the whole image by reading corresponding

intensity values, but uses only one part of the GLCM. This means that different work-groups up-

date different parts of the GLCM, so there are no race conditions between the work-groups.

Yet, different work-items belonging to the same work-group may need write access to the same

element of the GLCM tile, although they are reading different image elements. This is the case

when, for example, two work-items process image pairs with the same intensity values. If these
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work-items would try to increment the corresponding value of the GLCM tile at the same time, the

result would be wrong due to race conditions. There exist two possible solutions to this problem.

By using synchronization barriers we could account for correct results. However, this would lead

to poor efficiency. The other opportunity is to use built-in atomic functions. The built-in atomic

functions are uninterruptable and force the work-items to read and modify the value in sequence

[32].

Fig. 5: Schematic of the GLCM implementation.

In order to better understand the implementation, consider the following simplified example, where

the pixel values can be 0, 1, 2, or 3. We want to process an image of size 3x5 as presented in Figure

5. Two work-groups are used. Work-group 1 is responsible for the blue tile of the GLCM in Figure

5, while work-group 2 updates the values of the red GLCM tile. Each work-group contains 4 work-

items. For simplicity, we assume that we want to calculate the horizontal (0 degree) GLCM of

the image with distance 1, i.e. we are looking at the pairs of pixels which are direct horizontal

neighbors to each other.

The kernel comprises several steps. First, a local memory array is created for each work-group.

This local array stores the values of the corresponding part of the GLCM. For example, if the pixel

values are between 0 and 255, the complete GLCM would have 65536 elements. If we use four

work-groups, the local GLCM arrays would have a size of 65536/4 = 16384 elements. To initialize

the local array, the values of the array elements are set to zero in parallel. For this purpose, each
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work-item in the work-group iterates over work-group-sized pieces of the local GLCM array and

sets the corresponding value to zero.

In the second step, the work-items iterate over their parts of the whole image and compute the

GLCM. Here it is necessary to check if the current work-group is responsible for the GLCM cell.

For this purpose, we check whether the position of the GLCM cell which we want to increment is

within a certain range. For instance, in our example with the four work-groups the range of the

first work-group would be 0 16383, the range of the second one would be 16384 32767, etc.

After that, to increment the GLCM values, the OpenCL built-in function atomic inc is used. Then,

following a synchronization barrier, the GLCM parts are copied to global memory.

5.2 Textural features

As can be seen from Equations 2, 3, 4, and 5, the calculation of the textural features is based

on summation of the GLCM values. As a result, one and the same approach can be applied for the

OpenCL implementation of the four features. Then, the implementation is modified according to

the corresponding feature (e.g. we take the square of the values for the angular second moment).

Summations are examples of the so-called reduction operations. They are called reduction opera-

tions because a vector of data is reduced to a single element (e.g. the sum of the elements). Another

example of a reduction operation is finding the maximum element of a vector.

AMD and NVIDIA have proposed several approaches to implement reductions on GPUs [2] [11].

The most intuitive approach is the tree-based approach, where the sums of pairs of elements are

calculated. In this case, the vector which initially contained N elements is reduced to N/2 elements

in the first step. The process continues recursively until the vector is reduced to a single element.

However, the number of active work-items gets smaller with each reduction step, which results

in poor SIMD efficiency (Single Instruction, Multiple Data). AMD and NVIDIA have observed

better performance by applying two-stage reduction. The idea behind the two-stage reduction is

that instead of parallelizing the reduction as much as possible, we combine sequential and parallel

reduction.

The input array (which in our case contains all the GLCM values) is split into multiple chunks.

Each work-item loops over its parts of the chunks and performs sequential reductions. In Figure 6,

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



16

the dark blue work-item computes sequentially the sum of all dark blue elements. Assuming that

we have two work-groups (a blue work-group and a red work-group), all the work-items within a

group perform the same operation as the dark blue work-item and they write their temporary re-

sults into an array located in local memory. In the case with two work-groups, there exist two local

arrays. Then, the local arrays are reduced to a single element with parallel tree-based reductions.

At the end of these parallel reductions, each work-group writes its partial result into a global mem-

ory array. When more than one work-group is required (i.e. when we have so many elements that

they dont fit in a single work-group), it is necessary to perform one more reduction on the result

to merge the partial results. For this purpose, a summation reduction kernel is invoked with the

result array as input. The latter array is reduced by the kernel to a single element which contains

the sum of all elements.

At this point, we should note that programmers usually tend to implement algorithms in such

Fig. 6: Schematic of the textural features implementation.

a way that logically independent pieces of code are defined in different code fragments (e.g. in

functions). If this programming paradigm is applied, each texture feature should be implemented

in its own kernel. However, since more than one feature is required to accurately classify a texture,

it is sensible to combine the computations of a set of features in one kernel. Thus, the performance

of the implementation is further enhanced, because some instructions are performed once instead

of four times.
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6 Performance evaluation

To evaluate the performance of the proposed implementation, performance tests were carried out.

The tests were performed on an Intel(R) Core(TM) i7-4600U CPU @2.10GHz and an NVIDIA Tesla

C2070 GPU. To guarantee accurate measurements, the computational routine for the calculation

of the gray level co-occurrence matrices and the four features is invoked 10,000 times. Then, the

average execution time is used to deduct a conclusion on the performance enhancement.

A sequential C++ implementation and a GPU implementation are compared for performance

evaluation. Costly operations which do not belong to the set of mandatory operations required

to calculate the features were omitted when measuring the execution time in order to make sure

that exactly the same set of operations is wrapped in all cases. For the performance evaluation the

sequential C++ implementation was not runtime optimized and no processor-specific intrinsics

were used. The OpenCL code was also a general one (i.e., it was not specifically optimized for

the NVIDIA GPU) in order to provide a general intuition on the improvement which could be

achieved by utilizing GPU. However, in practice better results could be obtained by optimizing

the implementations for the specific hardware. For precise measurements of the OpenCL execution

time, the OpenCL profiling functionality is utilized. When evaluating the performance of OpenCL

it is recommended [13] to not only measure the kernel execution time, but to also take into account

the time required to transfer data between the host and the device, i.e. the time to write the input

values into the buffer and the time to read the result. The data transfer time and kernel execution

time were tracked separately, because the GLCM stays in the device memory buffer and is used

directly to compute the Haralick features. In this way, two data transfers are spared, because we

also do not need to transfer GLCM data to the device for the Haralick features kernel. Hence, the

OpenCL execution time is equal to the kernel execution time in the following subsections.

6.1 Performance evaluation GLCM

Figure 7 presents the results for the GLCM computation along all four directions (0, 45, 90 and 135

degrees) with the distance equal to 1 for images with a resolution of 256x256, 512x512, 1024x1024,

and 2048x2048 pixels. To evaluate the performance results, the speed-up achieved by executing the
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computations on GPU was calculated as defined in Equation 6.

Speed-up =
Sequential execution time

OpenCL execution time
(6)

The speed-up is above 55 for all resolutions. In case of images of size 2048x2048, the speed-up is

approximately 81. In all cases the OpenCL implementation is much faster than the sequential one.

Fig. 7: Comparison of the execution times of the different implementations of the GLCM compu-
tation.

6.2 Performance evaluation textural features

The textural features were computed for a GLCM with 256x256 elements. The results of the test

are presented in Table 1. The GPU execution of the implementation is approximately 1381 times

faster than the sequential execution, which in average took 6.85 milliseconds.

Table 1: Time required to calculate the textural features.

Execution type Average time in ms

Sequential C++ 6.85200
OpenCL 0.00496

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



19

Table 2: Classification results

Correctly classified images in % Precision Recall False positive rate

Without textural features 69.4366 0.693 0.694 0.354
With textural features 95.3756 0.954 0.954 0.063

6.3 Overall performance

The total execution time includes the time required to transfer the image data from the CPU

to the GPU, the execution time of the median filter, the top-hat transform, GLCM and textural

features kernels, as well as the time needed to transfer the HAWCP value and the values of the

textural features from the GPU to the CPU. As can be seen on Figure 8, the computation of the

gray level co-occurrence matrices is the most costly one, followed by the transfer time of the image

data. However, all these measurements depend strongly on the specific hardware. For example, the

time required for data transfers is lower on integrated GPUs.

The total execution time using this hardware enables processing more than 240 frames per second.

Fig. 8: Total GPU execution time.
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7 Case study

To validate the pavement assessment approach, a passenger vehicle equipped with a camera and a

GPS receiver was used to collect pavement images. Several road segments in Bochum and Witten,

Germany were chosen for the case study. Different types of pavement surface as shown in Figure

1 were present on the roads. In total, 16,601 images were acquired using the camera, examples

of which are shown in Figure 9. In contrast to the general idea of the approach to discard im-

ages where no distress is detected, here all images were saved for validation purposes. 66% of the

images were manually labeled as images of distress or of intact pavement and were used as train-

ing data for a machine learning algorithm. In order to test the classification accuracy of different

machine learning algorithms, a third-party machine learning workbench was utilized. Using the

data obtained for the case study, several classification algorithms were preliminary tested, namely

Support vector machines, Multilayer perceptron and Rotation forest. The Waikato Environment

for Knowledge Analysis (WEKA) [40] provides implementations of these algorithms. The results

implied that Rotation forest is the most appropriate algorithm among the tested ones. However,

future research may include validating with variety of machine learning algorithms and fine tuning

classification parameters in order to further improve the classification performance of the approach

presented in this paper. In addition, the classification of single instances will also be implemented

on GPU to reduce the time required to classify a new image.

Rotation forest is an ensemble classifier based on decision trees. In the implementation that we

adopted, the C4.5 decision trees [28] are used. Rotation forest splits the feature set (i.e., the set

of the HAWCP and mean and range values of ASM, contrast, IDM and entropy) into subsets and

principal component analysis is applied to each subset. Then, the algorithm reassembles a new ex-

tracted feature set and transforms the training data into the new features. Based on these features,

ten decision tree classifiers are trained. At the end, Rotation forest combines the outputs of the

classifiers and calculates the probability assigned to an instance by using an average combination

method. Rotation Forest [30] was used to generate a classification model based on the training

images and classify the remaining 34% of the images.
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(a) (b) (c) (d) (e)

Fig. 9: Examples of images obtained for the case study.

In order to evaluate the improvement of the approach, the results of the classification before and

after incorporating textural features were compared. The results are presented in Table 2 in terms

of the percentage of correctly classified images, precision, recall, and false positive rate.

The results show that a significant improvement of the classification is achieved by incorporating

textural features. The percentage of the correctly classified images when using textural features is

approximately 27% higher than the one without using textural features, while the false positive rate

is significantly lower. For example, images, such as the one on Figure 2c are correctly classifed as not

containing distress. Table 3 presents additional examples of images, which were classified differently

with and without using textural features. WEKA associates probabilities with the predictions.

The probabilities assigned to these images are also presented in Table 3. As can be seen, the

classificator assigns higher probabilities to the correct category when textural features are used

than without them. The first of the images is classified incorrectly when textural features are not

employed. However, approximately 5% of the images were still classified incorrectly. These were

Table 3: Images classified differently with and without textural features.

Distress probability without texture 41% 22% 51%
No distress probability without texture 59% 78% 49%
Distress probability with texture 79% 5% 79%
No distress probability with texture 20% 95% 21%
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mainly images of very small cracks (Figure 9b) present on an extremely rough pavement surface.

Images that illustrate this issue are shown in Figure 10. To compensate these errors, further

methods for pavement distress detection could be implemented and the results could be combined.

Nevertheless, combined with the textural features, HAWCP is a reliable pavement distress detection

feature in most cases. If it was omitted and only textural features were considered, a detection

of distress in the images would still be possible due to the impact of distress on texture in the

images. Yet, the detection would not be as accurate as when a combination of the HAWCP and

textural features is used. Moreover, although the HAWCP value is a good indicator of the type

of the distress as presented by Zhou [42], it does not give any precise information about the type

and the extent of the distress. To this end, methods specifically developed to classify the distress

could be incorporated. Nevertheless, the methodology and implementation presented here could

be applied to roughly define the condition of the pavement surface in order to reduce the amount

of data which has to be processed by more complicated and compute-intensive algorithms.

Fig. 10: Incorrectly classified pavement images.

8 Conclusions

Pavement condition assessment is a key component of road maintenance programs. In current prac-

tice, pavement images and data are collected by vehicles equipped with cameras and sensors in

order to enable autonomous pavement distress detection. However, the collected data and images

are usually processed offline. The authors have previously proposed a methodology and implemen-

tation of a pavement distress detection system which is capable of processing pavement images in
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real time. Yet, although good results have been achieved, the methodology could be improved by

incorporating textural features.

In this paper, an implementation of Haralick textural features was presented. As a preliminary step,

a new approach towards comuting gray-level co-occurrence matrices was proposed and implement-

ed. The implementation is based on the Open Computing Language (OpenCL). To evaluate its

performance, the OpenCL implementation was compared against a sequential C++ implementa-

tion of the textural features. The results show that a significant improvement in terms of speed-up

was achieved. Moreover, by incorporating textural features, better classification results were ob-

tained than without using them, as proved by conducting a case study.

The achieved execution time enables real-time processing and analysis of various pavement images.

As a result, the amount of data stored for offline processing as well as the costs for pavement con-

dition assessment is reduced.

Future research and development may include considering other issues related to pavement con-

dition assessment. For example, methods for calculating more accurate distress positions than

the ones provided by single GPS receivers will be investigated. In addition, the classification into

different types (cracks, potholes, etc.) is currently in the development phase. The results of this

subsequent classification, which is performed offline, could be used as a form of feedback for the

rough classification. As a result, the already generated rough classification model could be improved

by updating the predictor dynamically.
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