
1 

Prospects for Live Higher Resolution Video 

Streaming to Mobile Devices: Achievable Quality 

across Wireless Links 

A.O Adeyemi-Ejeye1, M. Alreshoodi2, L. Al-Jobouri3, M. Fleury3* 

1Univ. of Surrey, London, U.K. 

2Qassim Univ., Buraydah, Saudi Arabia 

3University of Essex, Colchester, United Kingdom 

*Communications should be addressed to M. Fleury: email fleum@essex.ac.uk, tel: +44 1206 873 333, fax. +44 

1206 872 900 

From a review of the literature and a range of experiments, this paper demonstrates that live video streaming to 

mobile devices with pixel resolutions from Standard Definition up to 4k Ultra High Definition (UHD) is now 

becoming feasible by means of high-throughput IEEE 802.11ad at 60 GHz or 802.11ac at 5 GHz, and 4kUHD 

streaming is even possible with 802.11n operating at 5 GHz. The paper, by a customized implementation, also 

shows that real-time compression, assisted by Graphical Processing Units (GPUs) at 4kUHD, is also becoming 

feasible. The paper further considers the impact of packet loss on H.264/AVC and HEVC codec compressed 

video streams in terms of Structural Similarity (SSIM) index video quality. It additionally gives an indication of 

wireless network latencies and currently feasible frame rates. Findings suggest that, for medium-range 

transmission, the video quality may be acceptable at low packet loss rates. For hardware-accelerated 4kUHD 

encoding, standard frame rates may be possible but appropriate higher frame rates are only just being reached in 

hardware implementations. The target bitrate was found to be important in determining the display quality, 

which depends on the coding complexity of the video content. Higher compressed bitrates are recommended, as 

video quality may improve disproportionately as a result. 
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1 Introduction 

Users' expectations of video display on mobile devices are growing [7]. In fact, they may 

expect similar quality video to that experienced on home televisions (TVs), as they become 

more aware of the advanced technology deployed in tablets and smartphones [49]. TV 

displays are moving away from Standard Definition (SD) (720 (horizontal) × 480 (vertical) or 

× 576 pixels/full frame) towards higher resolutions such as High Definition (HD) (1280 × 

720 or full 1920 × 1080 pixels/frame). With each increase in resolution, the work demanded 

of hardware engines for compression and display scales up in a super-linear fashion. 
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Nevertheless, System-on-Chips (SoCs) have been developed for HD video codecs [52] and 

are now under development for 4k Ultra High Definition (UHD) resolution (3840 × 2160 

pixels/frame, 16 × 9 aspect ratio) at 30 frames/s (fps) [45]. In fact, not only HD and 4kUHD 

video but also 3D in the 'video plus depth' format are of interest to mobile viewers [4].  

8kUHD (7680 × 4320 pixels/frame) video satellite broadcast has been developed by the state 

broadcaster of Japan, NHK [70]. In addition, there is a more general need for 8kUHD so as, 

through zooming, cropping, and down-sampling, to better produce 4kUHD sequences for 

digital cinema. The results of these developments may eventually enable mobile device 

reception, given the incremental improvements upon existing transmission technologies, 

namely dual-polarized 2 × 2 (or higher) Multiple Input Multiple Output (MIMO) antennas, 

with higher-order 1024- and 4096-Quadrature Amplitude Modulation (QAM), combined with 

Low Density Parity Check (LPDC) channel coding (at a cost in latency). Though, this paper 

confines itself to the potential for higher resolution video up to 4kUHD resolution for mobile 

devices, this could be a step towards 8kUHD video, which increases the realism still further 

because of its 100o Field of View (FoV) from 60o for 4kUHD. 

The ideal viewing distance for SD video is 7.1 multiplied by the picture height [67] or 

equivalently when the angular resolution is 30 cycles/degree, resulting in a score of five on a 

five-point subjective quality scale [80]. Therefore, SD displays (and still lower resolutions 

such as Common Interchange Format (CIF) at 352 × 240 pixels/frame) may result in 

unsatisfactory viewing because users of mobile devices normally position themselves closer 

to their screens and, thus, can see scan lines. However, for HD video the distance at which 

scan lines become invisible is only 3.1 multiplied by the picture height [67]. Therefore, HD 

resolutions are more suited to the closer viewing distances of mobile devices.  

Further, in the 2014 Broadcast Asia conference 4kUHD TV was actually broadcast to mobile 

devices equipped with embedded Digital Video Broadcast terrestrial second-generation 

(DVB-T2) receivers (DVB, 2014). Video compression was through an High Efficiency Video 

Coding (HEVC) standard codec, which can achieve up to 50% bitrate savings over a codec of 

its predecessor [58], the H.264/Advanced Video Coding (AVC) standard [85]. HEVC is 

targeted towards higher resolutions, as evidenced by the availability of the large 64 × 64 

Coding Tree Unit (CTU) (a restriction to a smaller-sized CTU results in a reduction in 

compression performance [58]).  

In early subjective tests with expert viewers [34] for three 4kUHD sequences, it was found 

that the average rate-distortion (RD) gain over H.264/AVC was 66.5% (measured as 

Bjøntegaard-Delta (BD) [11] -Mean Opinion Score (MOS)) and objectively the RD gain was 
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44.4% BD-PSNR. In [31], the BD-PSNR gain over the emerging (v.1 2016) Alliance for 

Open Media (AOM)/AVI encoder (in two-pass mode) was found to be about 38.4% using the 

HEVC Test Model (HM) codec implementation. However, as with its predecessor, that is the 

VP9 codec [53], AOM/AVI should be seen as part of the WebM open software project and 

may well find its way into web browsers on mobile devices, given savings in licensing fees 

over HM.  

In our paper, when a software HEVC is employed, it is the open-source x265 encoder (in 

one-pass mode). Tests were conducted by the authors of [31] over a set of video sequences 

satisfying the HM test conditions [14] (though excluding screen content sequences). The 

x265 encoder (in two-pass mode) was reported [31] as having a 13.9% BD-PSNR loss 

relative to the HM codec. However, the commercial version of the HM codec, the HHI-

HEVC codec, was reported [31] as having a 300% speedup over the HM codec. By the same 

speedup measure, HHI-HM’s speedup was 3.4% relative to the x265 codec. Therefore, for 

software or hardware accelerated implementations of HEVC, the x265 codec implementation 

represents a good compromise in terms of RD performance and speed (especially if in one-

pass mode) and, hence, is appropriate for operation on mobile devices. 

However, while an HEVC codec is suited to the storage of higher resolution video, an HEVC 

encoder is also significantly more complex [13] than an H.264/AVC encoder. Therefore, 

without a suitable hardware implementation, transmitted frame rates for HD and UHD video 

may be restricted to 30 fps or below. Particularly for mobile devices, energy consumption at 

24 fps or 30 fps is also an obstacle. On the other hand, frame rates of 60 fps or more may 

eventually be required [25] [80] to reduce flicker and motion blur at 4kUHD’s wider FoVs 

(60o for 4kUHD rather than the 30o of HD). However, the prospect of higher frame rates may 

be some way off in time because currently 4kUHD hardware designers and implementers of 

HEVC encoders for mobile devices need to make rapid coding mode decisions to reduce the 

coding overhead, even at 30 fps. Rapid coding mode decisions in turn result in 34.6% higher 

bitrates [45] for the equivalent quality achieved in the HM-13.0 codec’s Low Delay P mode. 

One of the contributions of this current paper is to show how hardware-assisted 

implementations show some prospects of approaching video rate encoding. The authors of 

[87] ported four major H264/AVC encoding processes to the Compute Unified Device 

Architecture (CUDA) for parallel processing on Graphical Processing Units (GPUs). They 

then employed data localization to enhance thread performance on a GPU. Nevertheless, the 

approach was unsuitable for resolutions beyond HD and for GPUs with constrained local 

memory. The implementation also suffered from excessive latency when applied to real-
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time/live encoding/decoding because data had to be transferred from and to the CPU main 

memory before accessed by other processes. The main way the 4kUHD CUDA 

implementation described in this paper offers an improvement is by its support for zero-copy 

memory, though other changes were also made. 

An important consideration, apart from that of increasing the speed of the codec encoders so 

that they approach real-time/live encoding rates, is the need to be able to effectively stream 

compressed video over wireless links, even though these are error prone.  Unfortunately, 

owing to the predictive nature of video coding video streams are sensitive to packet loss, 

when transported by the UDP protocol for live or real-time streaming. In [6], it was actually 

shown that increased HEVC compression of 4kUHD video causes greater loss of video 

quality compared to H.264/AVC, once coding gain is adjusted for. An earlier paper [66] 

made the same point when comparing MPEG-2 to H.264/AVC. The relative effect occurs 

because the increased compression of the later codecs makes them more vulnerable to packet 

loss, as the loss of a packet has more of an impact on the video quality. In general, though 

transmitted quality can be improved by application-layer Forward Error Control (FEC) or 

other forms of error control, these lead to increased bandwidth usage and/or increased 

latency. In fact, the long delays of large-block rateless coding was pointed out in [86]. 

Consequently, the authors of [86] introduced a framework for HD video frame transmission 

to mobile devices with adaptive low-block size FEC. 

Therefore, in this paper, we examine at low error rates (less than 1%) the resulting video 

quality of streaming high resolution video over short-range wireless links, without error 

protection at the application layer so as to reduce latency. However, standard ‘previous 

frame’ error concealment is still applied at the video decoder. To also facilitate real-time/live 

streaming we have employed the IP/UDP/Real-time Transport Protocol (RTP) suite of 

protocols [64], either with direct packetization of the compressed video content or indirect 

packetization of an MPEG2-Transport Stream (TS) [10], as may be preferred for IPTV. TCP-

based pseudo-streaming via some form of HTTP Adaptive Streaming (HAS) [79] can be 

applied to wireless communication. However, when an error occurs packets are retransmitted, 

which may lead to significant delays due to buffer underflow, resulting in freeze frames and 

user discomfort [73]. All the same, a demonstration of live 4kUHD wireless video streaming 

over HTTP Live Streaming (HLS), the Apple version of HAS, has been provided in [5]. The 

popularity of the HAS adaptive streaming process has led to proposals such as that in [39] to 

stabilize the end-buffer length to ensure smooth delivery while at the same time avoiding too 

frequent changes in the bitrate, which can have a disconcerting effect on the viewer. In 
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addition, there is the issue of arbitrating between the bandwidth allocation between multi-

users streaming from the same server, which [89] proposes to resolve through game theory, 

which can be employed in a non-cooperative manner [88], as well as a cooperative manner. 

High-throughput wireless technologies are, as is shown in this paper, a ‘bright spot’ for 

transmission of high resolution video, including 4kUHD. As reviewed in Section 2, since the 

acceptance of the draft standard IEEE 802.11 part n in 2007 [62], suitable high-throughput 

technologies have proliferated, including IEEE 802.11ac, building on IEEE 802.11n and 

operating at 5 GHz, and IEEE 802.11ad operating at 60 GHz at short ranges with directional 

antennas [27]. IEEE 802.11ac and IEEE 802.11ad are also briefly reviewed in Section 2. 

In regard to assessing video quality, studies have shown [38] that the widely used Peak 

Signal-to-Noise Ratio (PSNR) and Mean-Squared Error (MSE) are flawed in differentiating 

structural contents of video frames because different types of impairments can occur and still 

have the same MSE value. This paper, therefore, employs the efficiently-computed Structural 

Similarity (SSIM) index [84], especially since structural impairments will be easily noticed 

[54] at higher-resolutions, diminishing the end-user’s Quality of Experience (QoE). 

In summary, the contributions of this paper are as follows: 

 The reader is guided across the different wireless LAN (WLAN) technologies that can 

now enable mobile streaming access to higher resolution video, including 4kUHD. 

 Experiments and implementations of uncompressed and compressed video are 

analysed, including limitations of range and throughput. 

 For live streaming, real-time encoding is required. The paper introduces practical 

work in hardware acceleration of encoding, including that of the authors that may 

eventually complement the first chipsets recently reported or announced for 4kUHD 

encoding. 

 The paper also summarizes experiments across high-throughput WLAN links to 

determine network latencies, video quality in response to packet loss, and relative 

codec response, from either H.264/AVC or HEVC codecs. 

The remainder of this paper is organized as follows. Section 2 concisely reviews 

contemporary high-throughput indoor wireless standards and their appropriateness for 

streaming HD and 4kUHD video. The following Section 3 examines related research on 

wireless broadcast and streaming both of uncompressed and compressed video at high 

resolutions. Section 4 considers the feasibility of hardware acceleration of 4kUHD video with 

reference to a preliminary investigation by the authors. Section 5 then reports on streaming 

experiments for 4kUHD across each of the IEEE high-throughput standards, from 802.11n to 
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802.11ac and 802.11ad. Finally, Section 6 draws some conclusions about the prospects for 

higher-resolution streaming to mobile devices. 

2 Context 

There is a number of high-throughput indoor wireless standards, as summarized in Table 1. 

Both IEEE 802.11n and IEEE 802.11ac employ the 802.11 Medium Access Control (MAC) 

in the 5 GHz band, as does IEEE 802.11ad at 60 GHz,  and they can, therefore, be 

characterized as WiFi extensions. The IEEE 802.15.3c MAC [8] is organized as a piconet and 

does not employ the negotiable, distributed access of WiFi. Though the latter may be an 

advantage for IEEE 802.15.3c, it does not appear to have met the approval of the market 

place, as the task force ‘went into hibernation’ in 2009. Consequently, it is not considered 

further in this paper. As will be seen from Table 1, these wireless technologies have benefited 

from the widespread move to Orthogonal Frequency Division Multiplexing (OFDM) [72] 

(bringing increased resilience in the face of multipath interference) together with higher rates 

of modulation such as 256-QAM. Streaming over multiple channels through MIMO antennas 

along with space-time coding has also led to very significant rises in throughput.  

The unlicensed 60 GHz band is open to the interference that occurs in the crowded 

unlicensed 2.4 GHz. However, more importantly, oxygen absorption at 10 dB/km peaks at 

around 60 GHz [68] and remedial amplification is restricted both by practical considerations 

and national standards to around 10 dBm. Therefore, it is usually assumed that reliable indoor 

propagation without beam-forming is restricted to 10 m, though depending on the extent of 

shadowing, the range might be extended to 20 m. A 5×5 (or 6×6) antenna array can 

compensate by about 25 dB [59], leaving aside material absorption, such as by the concrete in 

walls. Fortunately, the antenna size is much reduced at 60 GHz because of the millimetre 

waves, allowing patch antenna chips to be incorporated into high-end laptops. 

Table 2, offers an interesting insight on the prospects of transmitting higher resolution video 

over high-throughput wireless. Notice that, though the majority of this paper is concerned 

with compressed video, uncompressed video in Table 2 avoids the additional latency arising 

at an encoder. Depending also on the expected compression ratio (approximately 100:1 for 

MPEG-2 video), the estimates in Table 2 can be scaled by the reader accordingly. Notice also 

that three 8-bit RGB color channels are assumed at the start of the Table but High Dynamic 

Range (HDR) of luminosity with a bit depth of 10-pixels per color channel is under active 

investigation [12] and, in fact, is specified in HEVC’s Main 10 profile, as are the higher 
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frame rates for higher resolution video discussed in Section 1.  (In fact, 8-bit sampling was 

dropped from the UHD Rec. ITU-R BT.2020 standard.) 4kUHD and HDR are combined in 

[41] and, as previously mentioned, HDR is integrated within HEVC [28]. Those proposals are 

for broadcast TV, while for mobile devices such prospects seem long in the future. 

Table 1 Features of indoor high-throughput IEEE wireless standards (other standards include ECMA 387 and 

WIGWAM) 

Standard  Features Modulation Spectrum band Max. gross 

datarate 
IEEE 802.11n (WiFi) MIMO up to 4 

streams, 40 MHz 

channels 

OFDM 2.4 GHz, 5 GHz 288.9/600 Mbps 

(20/40 MHz 

channels) 

IEEE 802.11ac (WiFi) 80-160 MHz 

channels,  up to 

256-QAM, MIMO 

up to 8 streams  

OFDM 5 GHz 1 Gbps 

IEEE 802.11ad 

(WiGigTM) 

Beam-forming, 

up to 4 channels 

BPSK/QPSK or 

OFDM 

60 GHz Approaching 7 

Gbps 

IEEE 802.15.3c 

(WirelessHDTM for 

AV OFDM) 

Beacon with 

superframe MAC 

OFDM (HSi and 

AV), SC-SDE 

60 GHz 5.28 Gbps (SC-

FDE), 25 Gbps 

(WirelessHDTM for 

< 1m) 
AV=Audio Video, HSI = High Speed Interface, MIMO = Multiple Input Multiple Output antennas, OFDM = Orthogonal 

Frequency Division Multiplexing, QAM = Quadrature Amplitude Multiplexing, SC-FDE = Single-Carrier Frequency 

Division Equalization 

 

  Then in Table 3 (after [69]) estimates are provided for the required compressed data-rates, 

including next generation 8kUHD video. The Table simply takes into account the 

approximate 50% increase of the compression ratio with the emergence of each new 

standardized codec, which on historical evidence seem to appear every ten years [29]. This 

Table implies that either an advanced WiFi solution will be needed, as experimented with by 

the authors, or a converged network coordinating two wireless technologies will be required 

to meet the datarate needs of mobile devices. Advanced WiFi solutions are now briefly 

reviewed. 

Table 2 Data-rates for emerging and projected uncompressed HDTV formats according to frame rate and bits 

per channel per pixel for a progressive display 

 

Pixels per line Active lines per 

picture 

Frame rate per 

second 

No. of bits per pixel Data rate  

(Gbps) 

1280 720 24 24 0.531 

1280 720 30 24 0.664 

1440 480 60 24 0.995 

1280 720 50 24 1.106 

1280 720 60 24 1.327 

1920 1080 50 24 2.488 

1920 1080 60 24 2.986 

1920 1080 60 30 3.732 

1920 1080 60 36 4.479 

1920 1080 60 42 5.225 

1920 1080 90 24 4.479 

1920 1080 90 30 5.599 
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Table 3 Estimated data-rates for compressed HD and UHD formats according to frame rate and codec type 

(without HDR) 

 

Codec HD 30 fps 

(1920 × 1080) 

(Mbps) 

4kUHD  

30 fps  

(Mbps) 

4kUHD 

60 fps  

(Mbps) 

8kUHD 60 fps 

(7680 × 4380) 

(Mbps) 

MPEG-2 16-20 64-80 90-112 360-448 

H.264/AVC 8-10 32-40 45-56 180-224 

HEVC 4-5 16-20 22-28 80-112 

 

 

2.1 IEEE 802.11n 

IEEE 802.11n [61] operates both at 2.4 GHz and 5 GHz. It is an improvement on previous 

IEEE 802.11 standards such as parts a/b/g mainly by the addition of MIMO. When operating 

at 2.4 GHz or 5 GHz it can employ 20 MHz-wide or 40 MHz-wide channels, the latter 

reducing the latency of the narrower channels. The introduction of frame aggregation allows 

the full exploitation of the available data rates arising from these advancements at the 

physical layer. Two types of frame aggregation standards are available, namely MAC 

Protocol Data Unit (MPDU) and the MAC Service Data Unit (MSDU). These frame 

aggregation standards group several data frames into one large frame [78]. However, the 

advantages of jumbo frames may be dependent on support within a mobile device for gigabit 

Ethernet. 

 

2.2 IEEE 802.11ac 

Of feasible wireless technologies, IEEE 802.11ac standard of 2013 [9] provides a high-

throughput wireless local area network (LAN) in the unlicensed 5 GHz and relative to 2.5 

GHz uncrowded band. In theory, a single spatial channel has a maximum throughput of 867 

Mbps. This is principally due to an increase in mandatory channel width to 80 MHz and up to 

256-QAM. However, when 256-QAM is selected, the impact of noise increases significantly. 

The increased channel width that restricts 802.11ac operation to the 5 GHz band also results 

in shorter wavelengths at this frequency. Prior study reported in [21] considered the likely 

IEEE 802.11ac data-rates (in the earlier Wave 1 version) in an indoor environment. A number 

of smartphones support IEEE 802.11ac, such as Samsung’s Galaxy S7 of 2016 which 

supports Wave 2 802.11ac. Wave 2 of 802.11ac includes Multi-User (MU)-MIMO antennas 

(2 × 2 configuration). MU-MIMO allows high datarate downloads even when several such 

devices are connected to the same access point.  
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2.3 IEEE 802.11ad 

The IEEE 802.11ad amendment to the IEEE 802.11 standard was ratified in 2012 [55], with 

the WiGig industry-supported standard integrated into it. The need for directional beam-

forming at 60 GHz was mentioned earlier in this Section. IEEE 802.11ad introduced the 

concept of virtual antenna sectors to formalize the selection of antennas to focus a beam, with 

an antenna array varying in size between classes of device types. Phase-weighted arrays have 

been implemented [81] as patch antennas within radio transceiver chipsets.  

Modulation over a single carrier can be relatively simple, given the high data rates anyway 

achievable at 60 GHz, Binary Phase-Shift Keying (BPSK) or Quadrature Phase Shift Keying 

(QPSK). Using Reed-Solomon (RS) channel coding distinguishes a low-power, single-

carrier, mode over using LDPC codes.  Multi-carrier OFDM is a higher-energy alternative, 

not suited to the mobile devices of this paper. Because directional beam-forming results in 

‘deaf’ spots outside the beam, it is necessary to modify the IEEE contention-based MAC, 

which IEEE 802.1ad does by offering a choice of three solutions [18]. A polling-based 

solution is similar to IEEE 802.11’s Point Coordination Function (PCF), hitherto defunct, but 

now adapted to directional beams. A time-scheduled allocation of access, likewise is similar 

to IEEE 802.11’s Hybrid Coordination Function (HCF). Finally, 802.11ad also offers the 

usual CSMA/CA contention, provided a pseudo-omnidirectional beam pattern is employed. 

By 2016, notebooks such as the Acer TMP648-MG-789T had incorporated 802.11ad wireless 

interfaces as part of a ‘triband’ offering (with 2.4 and 5 GHz). 

3 Related work 

Uncompressed 4kUHD video over optical networks has been evaluated in [74] and [32], with 

an application in digital cinema. The minimum requirement for uncompressed UHD video 

starts at 2.39 Gbps for 8-bit 4:2:0 chroma subsampling at 24 fps (with 3.98 Gbps for 8-bit 

4:2:2 subsampling at 30 fps). All the same, uncompressed 4kUHD wireless transmission has 

been implemented [2] (with four wireless 60-GHz parallel HD channels, though the range 

was very short to reduce interference between the channels). An earlier transmission of 

uncompressed HD was reported in [76], which reduced delay from retransmissions by a 

combination of unequal error protection between MSBs and LSBs, multiple Cyclic 

Redundancy Checks (CRCs) and error concealment.  Uncompressed video transmission 

avoids coding delay when streaming live video such as for sports. It is also attractive for 

applications such as streaming to a wireless monitor, TV, and projector [44], as delay when 
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streaming compressed video to such displays is noticeable, being as much as an average of 

170 ms [17].  

 However, particularly for uncompressed video, an issue is how to deliver the video stream to 

the wireless access point. The research in [17] provided a proof-of-concept of transmission of 

HD video formatted for High Definition Multimedia Interface (HDMI) across a single-mode 

optical fiber, known as Radio over Fiber (RoF). The wireless video transmission was by horn 

antennas over no more than a third of a metre at 60 GHz or 100 GHz. It is also worth noting 

that 4 Gbps transmission of uncompressed video at 60 GHz was demonstrated in [51] using 

Orbital Angular Momentum (OAM) antennas, though, as with horn antennas, these may not 

be applicable to mobile devices. All the same, without streaming support, the storage 

requirements for uncompressed video are considerable. Thus, an uncompressed 4kUHD 30-

minute video clip will require 537.75 GB of storage. Therefore, compressed formats are 

currently preferred, especially for mobile devices.  

Compressed UHD video transmission over optical networks has also been extensively 

explored over the years. For example, a JPEG 2000 codec was used in [75] to compress/send 

or receive/decompress 4kUHD video in real time with visually-lossless quality at bit rates of 

200-500 Mbps over a 1-Gbps IP network. Turning to wireless transmission, H.264/AVC 

compressed 4kUHD over IEEE 802.11n wireless operating at 5 GHz has been experimented 

with [3]. The chroma subsampling was varied between 4:2:0, 4:2:2, and 4:4:4 (the modes in 

the UHD Rec. ITU-R BT.2020 standard) at 20 Mbps with a Group of Pictures (GOP) length 

of 40 and frame structure of IPPP….  

In [33], 4kUHD was split into a base layer (BL) and an enhancement layer (EL) to allow 

transmission of broadcast video as two streams, with a reported rate-distortion loss of 10% to 

30%. In preliminary tests, scalable 4kUHD video allowed either full HD to be decoded or 

4kUHD to be decoded at an average rate of 38 fps. It also allowed the 4kUHD scalable 

streams to be transmitted over separate wireless media (DVB-T2 and satellite are planned). 

However, only HEVC decoder rates were reported in [33], as a broadcast service was 

assumed.  

This scalable coding scheme for transmission has recently been extended up to 8kUHD (7680 

× 4320 pixels/frame) in [69] with two ELs for 4kUHD and three ELs for 8kUHD. 

Transmission is split between the BL and lowest EL through DVB-T2 broadcast and the 

higher two ELs by Long Term Evolution (LTE). Thus, without transmission over high-

throughput IEEE 802.11ac or 802.11ad then scalable coding and network convergence may 

well become a necessity. 
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As mentioned in Section 2, 60 GHz transmission is vulnerable to oxygen absorption, severely 

limiting its effective range to below 10 m, which is why the feasibility of multi-hop 

transmission has been explored and shown by the authors of [1] to be achievable with low 

latency. However, streaming HD and 4kUHD streaming was at only 24 fps. The use of relays 

to increase the 60 GHz transmission range for uncompressed HD video broadcast at 1.5 Gbps 

is treated in a theoretical fashion in [42], though it is assumed that high-gain antenna are 

already used between camera and relay to increase the 60 GHz range up to 100 m.  

Adaptive transmission of H.264/AVC HD video according to the Modulation and Coding 

Scheme (MCS) of IEEE 802.11ad was shown by simulation in [90]. In terms of choosing the 

MCS to maximize the video quality, the decision is based on an estimate from the built-in 

Channel State Information (CSI). There are ten non-OFDM MCSs in IEEE 802.11ad, one of 

which is selected in [90], along with a quantization parameter (QP), and a delivery deadline. 

4 Accelerating video encoding 

Hardware acceleration will be necessary for any HD and particularly 4kUHD encoder 

implementation if real-time streaming is to be supported. As discussed below, H.264/AVC 

acceleration via GPUs for 4kUHD video is within reach, albeit reaching beyond 25 fps may 

be problematic, despite the desirability for display rates of 60 fps and higher, discussed in 

Section 1. In respect, to HEVC, Nvidia have released a number of GPU implementations in 

support of the Main 10 (8- to 10-bit with support for 4:2:0 chroma subsampling) and Main 12 

(with additional support for 12-bit pixel depths) profiles. In addition, the GP1 chip from the 

GoPro Hero6 camera in 2017 is said to be able to encode 4kUHD at 60 fps.  

After examining hardware acceleration, this Section then rounds off by considering 

optimization of HEVC codec software, through pruning of intra-coding modes and increased 

accuracy of rate control. 

 

4.1 CUDA programming 

CUDA programming has proven effective as a way to transfer compute intensive components 

to a GPU. A source function is compiled, becoming a ‘kernel’. One or more kernels are 

subsequently downloaded to a GPU, which acts as a coprocessor to the CPU. Within the 

GPU, ‘threads’ are the mechanism for parallel processing, with the threads executing 

instances of the kernel code in parallel. Threads within a thread block can co-work with each 

other through the shared memory and can synchronize their execution to coordinate memory 
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access, though there is a limit to the number of threads within any one block. However, 

though in one CUDA example, [87], major H.264/AVC processing components were 

parallelized, memory transfer latency for resolutions beyond HD was not considered. Data 

localization allows threads to work efficiently on a GPU. However, in [87] data must pass via 

GPU memory before it can be accessed. The implementation by the authors of the current 

paper supports zero-copy memory, taking data from CPU memory and passing it directly to 

the GPU threads executing the kernels.  

In addition, the GPU architecture of the Streaming Multiprocessor (SMX) architecture with 

CUDA compute capability enables dynamic parallelism. In dynamic parallelism, a kernel 

spawns new threads to receive CPU instructions. Consequently, a CPU no longer needs to 

issue new instructions when (say) a macroblock is to be divided into smaller units. Dynamic 

parallelism is now employed in the authors’ implementation for: inter- and intra-prediction; 

entropy coding; and de-blocking filter components.  Additionally, the number of intra-

prediction modes has been drastically pruned. This and the other two main implementation 

contributions are now described in more detail. 

 

4.2 CUDA implementation details 

Zero-copy memory mapping 

Irregular memory access patterns can be successfully handled by a conventional CPU due to 

its extensive memory hierarchy, which reduces access latency by caching. Unfortunately, the 

same patterns may hinder the efficient utilization of GPU memory bandwidth because of 

restrictions on access patterns if efficient memory performance is to be achieved. 

In a normal CUDA application, memory is allocated as pageable. Consequently, memory is 

only allocated when needed. However, pageable memory results in an increase in memory 

access latency, as this memory will eventually page out and it will only be reallocated when 

needed. In the current implementation, to counteract the increase in memory latency, an 

independent CPU (or host in CUDA parlance) Memory Management allocation Unit (MMU) 

was implemented. In this way, the implementation caters for live video streaming (or real-

time streaming for interactive video applications such as video conferencing). It was assumed 

that the maximum memory size for the application was 2 GB, based on practical experiments 

with x264 video streaming. 

At start-up time, the implementation enables host mapping and the MMU allocates CPU 

pinned memory for input data. (Pinned memory is memory that cannot be swapped out, thus 

improving access time.) CUDA kernel pointers were set to allow access from the GPU. Then 
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the kernel pointers were allocated addresses from the host memory, as if it were the GPU’s 

global memory. This memory allocation technique enables the overlaping of encoding and 

packetization for video transport, as data are accessed via Direct Memory Access (DMA) 

(residing on the GPU) from the CPU, without any explicit data transfer to the GPU memory. 

At runtime, CUDA kernels are normally asynchronous in respect to the CPU; therefore, each 

block also created an atomic counter for synchronization purposes. All blocks were executed 

with non-divergent branching [35] and data could also be read from previous threads. Notice 

that the CPU does wait until the encoding process is complete before releasing the memory 

buffers for packetization and buffer refill of unprocessed frames. 

The disadvantage of direct GPU access of CPU memory is that such transactions were not as 

fast as might have been expected because the bandwidth of the Peripheral Component 

Interconnect express (PCIe) expansion bus could not be fully exploited. Because the paged 

memory could be swapped or reallocated, the PCIe driver needed to access each page, copy it 

to a buffer, and then pass it on to DMA. Nevertheless, memory access overhead was 

substantially reduced, resulting in an overall saving in execution time, Fig. 1 illustrates. The 

test video sequences in Fig. 1 were obtained from [24] and [77].    

 

Fig. 1 Average execution time comparison between CUDA memcpy and CUDA zero copy 
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Dynamic parallelism 

To obtain accurate inter-prediction values, H.264/AVC standard allows partitioning of a 

standard-sized 16 × 16 macroblock (MB). Each MB may be split into 4 × 4, 4 × 8, 8 × 4, 8 × 

8, 16 × 8, 8 × 16 sub-MBs or blocks. In the current implementation, using dynamic 

parallelism in the CUDA implementation, the 16 × 16 macroblock acting as a parent kernel 

spawned thread blocks for the sub-MB blocks, without needing any extra instructions from 

the CPU, which instructions would otherwise add considerably to the computation time (see 

frame rate comparison in Section 4.3).  

Pruning of intra-prediction modes 

During intra-prediction, previously reconstructed blocks of pixels act as reference pixels. 

Strong correlations exist across neighboring blocks resulting in multiple prediction modes, 

with nine such modes in H.264/AVC intra-prediction. This makes intra-prediction an obstacle 

to parallel execution, particularly when an MB is decomposed into 4 × 4 blocks. In the latter, 

by default the reconstruction of one block cannot begin before another has finished and 

follows a zig-zag pattern across the blocks in order to synchronize the decoder with the 

encoder. In [46], the zig-zag processing order of the blocks at the encoder was modified to 

allow processing at the decoder of two blocks at a time. Thus, a block could be predicted 

while a previously predicted block was being reconstructed in a two-stage pipeline. In [40], 

the order of block encoding was also changed but in this case so as to prune the number of 

prediction modes in the most judicious manner. In fact, only three prediction modes, DC 

mode, horizontal and vertical mode were used for nine of the blocks, allowing pipelining, 

while compression of the remaining seven blocks was unaffected by pruning because of the 

prediction reordering. According to [40], compared to the reference JM algorithm without 

pipelining, there was a 41% reduction in processing time, with virtually no loss of 

compression efficiency.  

However, the current implementation increases the degree of parallelism further still by 

reducing the direction of predictions to just the horizontal intra mode. This enables four-way 

parallelism across the four rows of each MB when decomposed into 4 × 4 blocks. Thus, the 

main criterion for the drastic pruning was to optimize parallelism for live- and real-time 

streaming. There is consequently a loss of compression efficiency with its relative assessment 

being part of future work.  
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4.3 Implemented frame rates 

Table 4 reports the H.264/AVC codec settings (with HEVC settings reported for a later 

experiment) for a performance text of the authors’ implementation of live streaming. The 

relative frame rates for HD and 4kUHD video Constant Bitrate (CBR) encoding are reported 

in Fig. 2. Inspection of the 4kUHD output frame rates of the hardware accelerated encoder 

showed that coding complexity reduced Sintel’s output to 15 fps, whereas Coast’s output 

approached 20 fps, with the other two clip’s rate between that in order of motion activity, as 

further discussed in Section 5.  

 

 

Fig. 2 Mean frame rates either by H.264/AVC CPU encoding or by GPU accelerated encoding 

 

 

Table 4 Codec parameters for test 

 

Parameter H.264/AVC HEVC 

Profile High (5.1) Main 10 

Processing unit Macroblock (MB) CTU 

Processing unit size 16×16 64×64 

GoP size 40 25 

GoP frame structure IPPPP… IBBPBBP… 

CBR bitrates 20 Mbps 13.5 Mbps 

 

 

Prior implementation of GPU acceleration for H.264/AVC concentrated on variable block 

size motion estimation (ME), not surprisingly as ME can contribute to up to 70% of the 

computational complexity on a CPU [50]. For example, the authors of [15] contributed a 

CUDA thread scheduler and additionally organized the variable blocks so that there was a 

more even flow of computation (by splitting variable sized blocks into 4 × 4 blocks). A 

speed-up of 12 with a GPU over a purely CPU executed codec. Then to further improve the 

speed-up, a task scheduler was developed, as described in [65], so that ME computations 
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could take place across multiple GPUs. By those means, it was reported in [65] that four 

GPUs can achieve real-time, full ME (without using a fast, approximate search) with a 32 × 

32 search window for an HD (1280 × 720 pixels/frame) video.  

 

4.4 HEVC acceleration 

Turning to HEVC inter-prediction, compared to the seven ME block sizes of H.264/AVC, 

there are 12 different HEVC block sizes (with blocks now arranged as Prediction Units (PUs) 

within each Coding Unit (CU), a CU being a subdivision of a CTU). When Rate-Distortion 

analysis is turned on, up to 425 different ME calculations may be needed before a prediction 

mode is selected (if a fast mode decision algorithm is not deployed). In [83], variable block 

size ME along with fractional pixel interpolation was performed on a GPU in parallel with 

the other processing tasks performed on the CPU. For a 2560 × 1600 pixels/frame video 

sequence, a speed-up of 113 was reported with a frame rate of 24. However, because in [83] 

ME was performed on a CTU line-by-line basis there was a cost of 0.7 dB degradation in 

video quality. To further reduce the loss in video quality, in [50], processing was reorganized 

in the Low Delay P profile so that a CTU pipeline was created, with adaptive ME range based 

on the motion found in co-located blocks.  

To achieve 60 fps for HEVC encoding of 4kUHD in the Main 10 profile, further 

computational resources were needed in [36], namely 2 PCs each with 32 cores. ME was 

again GPU assisted but additionally Sum of Absolute Difference (SAD) calculations were 

delegated to the Single Instruction Multiple Data (SIMD) hardware assistance present on x86 

processors. The authors of [36] report a speedup of 13 over the well-known, open source 

x265 codec, with 0.03 dB video quality loss (0.5 dB loss measured against the HM reference 

codec).  

The need to deploy multiple levels of parallelism and several forms of hardware support 

indicates that software-based real-time 4kUHD at appropriate frame rates may be some way 

off in time for mobile devices. The aforementioned GP1 chip for the GoPro Hero6 appears to 

deliver this performance, though video quality and configuration details appear to be 

unavailable. Nvidia GPUs have built-in support for HEVC encoding, with some said to 

support resolutions up to 8kUHD. It should be noted that Nvidia does not provide encoding 

support for the VP8 and VP9 codecs, though it does provide decoding support for those 

codecs. Unlike the one-pass HEVC reference software (though not the later open-source x265 

implementation) VP9 is a two-pass codec by default, which may explain the Nvidia policy. 
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Two-pass features, e.g. adjusting the  bit-allocation according to the video content, especially 

the motion characteristics found in the first pass, are likely to result in coding gains, allowing 

reduced bitrates for the same video quality. However, in [30], comparing low-delay settings 

in High profiles, it was found that one-pass HEVC reference software achieved a reduction in 

bitrate for equal video-conference quality (assessed by PSNR)  relative to two-pass mode 

VP9 of 30.6% (in units of BD-bitrate (BR)). On the other hand, HEVC reference software 

was slower than two-pass VP9 by a factor of 6.12. However, considerable research has now 

been undertaken to improve the encoding time of HEVC codecs. 

In terms of HEVC intra-prediction, some important contributions have been made, of which a 

few highlights are now reviewed. There are up to 35 intra modes available in HEVC. 

However, early tests showed that when HEVC is confined to intra frames, HEVC’s coding 

efficiency gain over H.264/AVC is limited to about 22% [48], providing a case for intra-

mode pruning. In a full implementation of the standard, the rate-distortion (RD) of each 

candidate mode needs to be evaluated after each Large Coding Unit (LCU) is split into CUs, 

which in turn are split into Prediction Units (PUs). The size and shape of a PU determines the 

number of intra-modes that can be applied. In [19], the edges within each PU were first 

categorized into five directional types. The dominant edge type of the five then guided the 

selection of the intra-modes to be evaluated. For each type, a set of just nine angular intra-

modes along with the DC and planar modes were evaluated. [19] reports an average 20% 

reduction in encoding time compared to version 4.0 of the reference software, with negligible 

reduction in video quality (assessed by PSNR). Then in [71], for lossless HEVC encoding 

used in screen-content compression on mobile devices, selection of intra mode was confined 

to just three modes designed by the author for up to 54% reduction in encoding time for a 7% 

reduction in bitrate (without loss).  For ‘lossy’ compression, in [91], a speed-up over the 

default reference software method of approximately 2.5 is reported. This is achieved by 

performing a progressive rough search beforehand by means of a fast Hadamard transform in 

a way that returns fewer candidates for RD evaluation. CU splitting into sub-CUs is also 

terminated at an early stage to reduce the number of evaluations.  

In terms of improving HEVC rate control, i.e. optimizing the bitrate according to the 

distortion, QP is no longer the dominant parameter determining RD characteristics. This is 

because in HEVC there is no longer a fixed-size transform block, which the prior ρ–model 

relied upon when modeling RD. Instead, [14] advocates the λ-domain, where λ, the 

Lagrangian multiplier, is the slope of the RD curve, from which the optimal RD point is 
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selected.  As a result, HEVC now incorporates R-λ modeling in rate control, whereby a set of 

coding parameters are employed to select for λ. However, when HDR is implemented, more 

bits may be needed in some regions relative to others, especially in very bright, high-contrast 

areas that may occur within CUs. Thus, in [63] three different R- λ models are selected from 

according to regional contrast, with encouraging results in more accurate modeling of the 

RD. 

5 4kUHD transmission over WLANs 

Experiments in 4kUHD resolution video streaming across the IEEE 802.11 high-throughput 

standard wirelesses are considered in this Section. 

 

5.1 IEEE 802.11n streaming 

This Section demonstrates that 4kUHD video streaming is even possible with H.264/AVC 

compression across an IEEE 802.11n WLAN operating at 5 GHz [62]. The video was 

transmitted indoors over 20m from a PC 802.11n dongle to an Access Point (AP) and 

onwards over 20m to another PC 802.11n dongle. To reduce external interference within the 

laboratory, experiments were conducted at night. At the time of the experiments a mobile 

display at the requisite resolution was not available and, therefore, four HD (1080p) displays 

were mosaicked by means of a Nvidia NVS 450 GPU with support software (Nvidia, 2008). 

The test video was Sintel (see Fig. 1) in YUV format and compressed with the x264 codec 

implementation according to the settings for H.264/AVC of Table 4. However, the CBR 

bitrate was varied according to chroma subsampling mode and target frame rate, as recorded 

in Table 5, with a maximum average compression ratio of 160. Owing to the network 

transmission software configuration, MPEG2-TS encapsulation was employed at the 

application layer, rather than direct IP/UDP/RTP resulting in a maximum of seven 188 B 

MPEG2-TS packets within each IP/UDP/RTP packet. 

From Table 6’s results, 4kUHD video quality was reasonable for a wireless link, given the 

SSIM range from 0 to 1. One-way network latency of 100 ms is typically aimed at [26], 

allowing time for IPTV channel changes or Video-on-Demand (VoD) responses of 1 to 2 s. 

In Table 6, the average network latency over two 20 m hops was found to be 71 ms, with the 

majority of that time likely to have been traversing the AP. At 30 fps, a delay of 71 ms is just 

over two frames at 30 fps. That is to say, for real-time video such as of sports events, two 

frames delay between capture and display if other components of streaming delay were not 
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present. Given the average PLRs of Table 6, as further discussed in Section 5.2, one might 

expect, if the HEVC codec had been used, lower video quality. However, intuitively using the 

less efficient H.264/AVC codec actually results in less compressed data per packet than had 

an HEVC stream been packetized.   

 

 Table 5 Streaming configuration of 1000 frames of Sintel  

 

Subsampling mode Frame rate (fps) 
Uncompressed 

bitrate (Gbps) 

Avg. compressed 

bitrate (Mbps) 

4:2:0 24 2.39 20 

 30 2.99 30 

4:2:2 24 3.19 20 

 30 3.99 30 

 

Table 6 Experimental results from streaming 4kUHD over IEEE 802.11n 

 

Subsampling  

mode 

Frame rate  

(fps) 

Avg. video 

quality 

(SSIM) 

Avg.  

network 

latency (s) 

Avg. packet loss 

rate (%) 

4:2:0 24 0.87 0.040 0.80 

 30 0.80 0.065 1.65 

4:2:2 24 0.82 0.045 0.90 

 30 0.70 0.071 2.85 

 

5.2 IEEE 802.11ac streaming 

 

This Section reports high-resolution video streaming experiments over IEEE 802.11ac 

wireless. The same test sequences as used for Fig. 1’s results were employed, with Table 7 

recording their characteristics in terms of recommendation ITU-T P.910’s Spatial Index (SI) 

and Temporal Index (TI). (The much higher temporal complexity of Sintel explains its lower 

frame rates in Fig. 2). To compress 500 frames of each of the sequences prior to packet loss 

visibility (PLV) assessment, the x265 implementation of HEVC was employed. HEVC was 

configured in its Main 10 profile, with settings as in Table 4 with 8-bit depth and 4:2:0 

chroma subsampling. The configuration of IEEE 802.11ac was similar to that in [21], using 

the high-throughput features present in the Broadcom BCM4360 chipset. The settings are 

given in Table 8. 
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Table 7 Test video sequences content type 

 

Video sequence SI TI Motion classification 

Coast 10.84 16.92 Moderate 

News 17.52 21.24 Moderate 

Foreman 19.71 38.29 High 

Sintel 16.39 72.26 High 

 

Table 8 Settings for IEEE 802.11ac measurements 

Setting Value 

Channel bandwidth 80 MHz 

Channel number 36 (5.180 GHz) 

No. of spatial channels 3 (3 × 3 MIMO) 

Transport protocol UDP 

Datagram size 

Modulation 

1472 B 

256-QAM 

 

Fig. 3 considers packet losses at 10 m and 20 m (average of 20 tests). For 10 m transmission 

was unimpeded but for 20 m standard office furniture was present. Unreported tests showed 

that any intervening partition walls led to a sharp fall in datarates. From Fig. 3, it may appear 

that up to 20 m Packet Loss Rates (PLRs) are not distinguished by distance. However, the 

PLRs for higher-activity Sintel in particular are certainly higher. We, therefore, hypothesize 

that the total time during which a video was transmitted (according to the frame rates 

reported in Table 1 as output from the in-house CUDA encoder) exposed the video to more 

packet loss events. This was despite the fact that channel 36 (Table 8) was chosen and 

transmission was at night, both to reduce external interference. 

 

Fig. 3 PLRs at two distances during IEEE 802.11ac transmission of 4kUHD video sequences 
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Video quality in Fig. 4 with similar PLRs to those recorded in Fig. 3 was assessed by the 

SSIM index (see Section 1). From Fig. 4’s plots, especially for PLRs between 0.2% and 

0.5%, it is apparent that motion activity of a test video sequence (refer back to Table 5) 

strongly influences of the packet loss impact. Coast in particular benefits in that way. It 

would be unwise to stream 4kUHD video without error protection if the PLR was over 0.5%. 

On the other hand, Fig. 3 gives an indication that a PLR of 0.5% over a short to medium 

distance may be a rarity for 802.11ac streaming when reduced external interference is 

present. However, SSIM does not assess temporal quality and a frame rate of 50 to 60 fps 

rather than 25 fps may be preferable.  Further comparing SSIMs for Sintel with those for the 

same video under H.264/AVC compression in Table 6, it is apparent that the video quality is 

generally lower under similar PLRs. As remarked in Section 5.1, though the comparison is an 

approximate one owing to the changed experimental circumstances, the main reason that the 

video quality is degraded is likely to be due to the greater compression efficiency of HEVC. 

The latter leads to a greater impact upon video quality from the loss of a packet. 

Fig. 4 SSIM video quality assessment for a range of PLR percentages with HEVC codec encoding and 4kUHD 

resolution 

 

5.3 IEEE 802.11ad streaming 

In this Section, an IEEE 802.11ad 60 GHz transmitter took the place of the IEEE 802.11ac 

transmitter in the previous Section. The video configuration was similar to that for the same 

video sequences as in the previous Section. However, the target CBR bitrate was 

incrementally increased. The PLRs were recorded as approximately 0.1%. The results of 
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these experiments are shown in Fig. 5, which includes standard error bars (one standard 

deviation of the mean).  

It can be seen that, as the compressed bitrate is increased, the relative effect of the packet 

losses seems to reduce. This can be attributed to the amount of coded information that is 

distributed amongst the packets, each of the same size, except the final packet, i.e. larger 

packets did not lead to increased PLR [43]. For example, at a CBR rate of 13.5 Mbps video 

will have a fewer number of packets but this means that the amount of coded information per 

packet is higher compared to a 25 Mbps stream, where the distribution of compressed data 

over multiple packets reduces the sensitivity to packet loss. Notice that the PLR, that is not 

the number of lost packets, remained approximately the same, 0.1%, as a result of stable 

wireless channel conditions during the experiments. This is the same effect that was 

previously remarked upon when going from H.264/AVC to HEVC compression. The general 

point is that, despite the coding efficiency of HEVC, for high throughput 60 GHz 

transmission, it is better to select as high a bitrate as is available to fully exploit the available 

bandwidth.  

For comparison purposes CBR encoding was used in the above experiments. In practice, for 

live streaming, Constant Rate Factor (CRF) with a Video Buffer Verifier (VRF) limit may be 

preferable for streaming.  This is because CBR encoding with a hard bitrate runs the risk of 

additional bits being added by the encoder to the compressed stream simply to meet the hard 

bitrate. CRF is a form of Variable Bitrate (VBR) but takes motion across frames into account 

rather than simply imposing a hard QP limit. For live streaming, one-pass encoding was 

preferred to reduce latency. Two-pass encoding is available in the open-source x265 codec 

implementation of HEVC and for VoD applications allows file storage limits to be matched 

more accurately. However, two-pass encoding is not appropriate for live streaming because 

of potential latencies involved and in the above experiments two-pass encoding was not used. 

The gain in x265 codec video quality from two-pass encoding relative to the extra latency 

involved in gathering content statistics in a first pass are reserved for future research. 
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Fig. 5 Video quality after transmission over IEEE 802.11ad link for 4kUHD video compressed by HEVC at 

various bitrates (PLR approx. 0.1%) 

 

5.4 Discussion: Internet latency 

This paper has considered delay over a wireless network, which in the experimental 

environment was low.  However, in the journey over the wired Internet to the wireless access 

network, levels of end-to-end delay and jitter, variation in delay, may well be higher. 

Consequently, a corrective to the findings of this paper in that respect may be needed. As 

remarked in Section 1, for HAS-type streaming, start-up-delay, which combines end-to-end 

delay and buffer filling, as well as jitter has an important impact on QoE [73]. It has long 

been known that the length of stalls and their frequency, arising from jitter-induced 

congestion, has a considerable impact on QoE [60 [82]. Initial delay is largely preferred by 

end users rather than stalls [37]. Given that in HAS streaming, the QoE is already impacted 

by bitrate switches, infrequent though they may be, studies such as [22] identify the buffering 

ratio, i.e. in HAS when the video chunks are being stored rather than displayed, as the most 

important factor affecting QoE. In general, buffer size can be increased or more sensibly 

dynamically adapted according to network conditions [26]. However, live video streaming, 

especially sports events, is generally not streamed through HAS. This is because buffer size is 

limited to a few seconds and all viewers are approximately synchronized.  Thus, sports 

viewers are particularly sensitive to the buffering ratio, as they are to video quality [22], 

which implies a dedicated optical path in the Internet optical core to reduce this issue. There 

is also variation in the subjective response according to the type of VoD, either long (over 35 

mins.) or a short clip, and the level of end user engagement, which can be forgiving of 
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Internet jitter if the content is of interest.  In summary, the behavior of the wireless access 

network needs correction, in all but home cinema applications, to the impact of network jitter 

in the Internet. QoE is dependent on the behavior of the network core, the type of content, the 

user engagement, and, for HAS-type streaming, on the buffering size and adaptability. 

6 Conclusion 

This paper has provided an overview of research activity towards real-time transmission of 

high resolution video over wireless links. Some current smart phones such as the Sony Xperia 

Z5 Premium, iPhone 6s, and  Nokia Lumia 1520, to select a few at random, can capture 

4kUHD video. Nevertheless, they do not currently display such a high resolution, even 

though the ideal viewing distance of HD already matches how handheld devices are viewed. 

at close range. However, given that a good number of smartphones and tablets already 

support IEEE 802.11ac, it may not be long before these phones not only capture and transmit 

video but may also be used for live streaming and display. Dell’s Wireless Dock D5000 is a 

means of transmitting video at 60 GHz based upon available triband chips, with a maximum 

throughput of 4 Gbps. Together with the Dell Latitude 6430u Ultrabook with a 1601 WiGig 

network card, this wireless dock or AP was used in multi-hop streaming experiments of 

4kUHD video. Thus, uncompressed or compressed video may already be streamed with 

commercial products at a maximum of 1 Gbps because of the WiGig Ethernet interface.  

The paper has presented experiments at 4kUHD resolutions showing the likely video quality 

at short range over low packet loss channels. Findings show that though motion complexity 

strongly influences the attainable quality at a given CBR. However, by using a less efficient 

codec, e.g. H.264/AVC rather than HEVC, it is possible to reduce the impact of any packet 

loss. Given the available bandwidths, especially over an IEEE 802.11ad link, increasing the 

target bitrate is sensible, as this results in a disproportionate gain in video quality whenever 

packet loss does occur. Encoding latency is important for live streaming and in these 

circumstances there is a tradeoff between latency and resilience to packet loss. Application 

layer channel coding and its impact is a subject for future work. It too can have an impact on 

latency during live streaming. Energy consumption and battery longevity on mobile devices 

is also an important factor and a subject of future research in respect to the arrival of high 

resolutions on such devices.  
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