
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2020) 17:787–797
https://doi.org/10.1007/s11554-018-0819-3

ORIGINAL RESEARCH PAPER

Parallelism exploration for 3D high-efficiency video coding depth
modeling mode one

Gustavo Sanchez1,2,3 · Luciano Agostini2,4 · Leonel Sousa2 · César Marcon1

Received: 24 January 2018 / Accepted: 23 August 2018 / Published online: 12 September 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
This article presents a parallelism exploration over the depth modeling mode 1 (DMM-1) encoding algorithm of the 3D
high-efficiency video coding (3D-HEVC) standard and applied the proposed solutions in a multicore central processing
unit (CPU) and two graphics processor unities (GPU). The article evaluates efficient parallel algorithms for DMM-1, which
also take advantage of simplifications proposed in our previous works. We demonstrate that DMM-1 can obtain a scalable
speedup when running in systems with several available cores even when simplifications are being applied. Experimental
results for 1920 × 1088 resolution videos show that the proposed parallel algorithms achieved up to 2 frames per second
(fps) in a four-cores (with eight threads) CPU and more than 30 fps in two different GPUs. Therefore, the speedup attained
with GPU enables real-time 3D-video encoding applying the proposed parallelism strategies together with the DMM-1
proposed simplifications.

Keywords  Depth modeling modes · 3D-HEVC · Multicore · Parallel algorithm · GPU

1  Introduction

High-efficiency video coding (HEVC) extensions [1] have
been proposed to improve the encoding efficiency, such as
3D video coding with 3D-HEVC [2], Multiview Video Cod-
ing using MV-HEVC, screen content using HEVC-SCC, and
Range Extension HEVC using RExt-HEVC [3]. However,
the encoding efficiency has as a counterpart, the rise of the

computational effort, demanding new methods and tech-
niques to speed up the encoding process.

The use of the multiview video plus depth (MVD) data
format [4] is one of the main reasons for the raising of the
computational effort of 3D-HEVC. MVD associates a depth
map to each texture frame, encoding and packing both into a
single bitstream. It allows synthesizing a dense set of inter-
mediary high-quality virtual views at the decoder using tech-
niques such as depth image-based rendering (DIBR) [5].

Figure 1a, b, from the Kendo video sequence [6], show
a texture view and the associated depth map. The texture
frame represents the color of the image while the depth map
provides the distance between the camera and the objects
of the scene. While texture frames typically exhibit smooth
transitions, depth maps are composed of homogeneous
regions and sharp edges. Homogeneous regions correspond
to the background of the scene and the body of the objects,
while sharp edges occur on the border of the objects.

The coding of depth maps has inherited algorithms
designed for HEVC texture coding, although those algo-
rithms are not specialized to explore the depth maps char-
acteristics. 3D-HEVC overcomes this problem by inserting
new encoding tools used as alternatives to the HEVC texture
tools. Depth modeling modes 1 and 4 (DMM-1 and DMM-4)
[7], segment-wise direct component coding (SDC) [8] and

 *	 Gustavo Sanchez
	 gustavo.sanchez@acad.pucrs.br

	 Luciano Agostini
	 agostini@inf.ufpel.edu.br

	 Leonel Sousa
	 las@inesc‑id.pt

	 César Marcon
	 cesar.marcon@pucrs.br

1	 Pontifical Catholic University of Rio Grande do Sul,
Porto Alegre, Brazil

2	 INESC-ID, IST, Universidade de Lisboa, Lisbon, Portugal
3	 IF Farroupilha, Alegrete, Brazil
4	 Video Technology Research Group (ViTech), Federal

University of Pelotas (UFPel), Pelotas, Brazil

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-018-0819-3&domain=pdf

788	 Journal of Real-Time Image Processing (2020) 17:787–797

1 3

depth intra skip (DIS) [9] are examples of tools for intra-
frame prediction. By combining the usage of these tools,
3D-HEVC reduces the bit rate required to encode homo-
geneous regions and sharp edges, defining new edge-aware
ways of prediction.

In a previous work [10], we have evaluated the computa-
tional time required by the encoding steps of the intra-frame
prediction. Figure 2 displays results of this study, highlight-
ing the impact of SDC and DMM-1 on the encoding time,
according to the quantization parameter (QP).

Limited parallelism can be exploited to speed up the com-
putation of SDC since there are data dependencies with the
entropy coding (EC). Thus, SDC is not a good target for
parallelism exploration, due to the sequential and irregu-
lar nature of the EC [11]. However, the DMM-1 encoding
tool can be parallelized up to a certain level by exploiting
the application of similar operations to encode a frame at
the right granularity level. Although techniques have been
already proposed to speed up the execution of DMM-1
[12–17], they impose encoding efficacy losses. Therefore,
an important challenge is to investigate ways to improve
the performance of the most time-consuming tools for
3D-HEVC depth maps coding.

This article exposes the parallelism of DMM-1 for devel-
oping efficient algorithms suited for multicore processors
and Graphics Processor Units (GPUs). The algorithms have
been programmed with OpenMP [18] and CUDA [19].
Experimental results obtained with Intel Core i7 6700 K

(Skylake) four-core processor and two GPUs (NVidia GTX
TITAN X and NVidia TITAN Xp) show the practical interest
of the proposed algorithms. To the best of our knowledge,
this is a pioneer work on exploring parallelism for efficiently
performing DMM-1 encoding.

The remaining of this article is organized as follows. Sec-
tion 2 presents the background of the 3D-HEVC depth map
intra-frame prediction, along with the related state-of-the-art
on DMM-1 encoding algorithms. Section 3 proposes parallel
algorithms to speed up the computation of DMM-1. Sec-
tion 4 provides an experimental evaluation of the parallel
algorithms on current multicore processors and GPUS. Sec-
tion 5 concludes the article.

2 � 3D‑HEVC depth maps intra‑frame
prediction

The 3D-HEVC depth maps intra-frame prediction adopted
in this article follows the implementation of the 3D-HEVC
Test Model 16.2 (3D-HTM) [20]. The encoding process
of 3D-HEVC was inherited from HEVC texture coding,
being the frame divided into coding tree units (CTUs) [21]
that are individually encoded. Improved coding efficiency
is achieved by splitting these CTUs into four coding units
(CUs), which in turn can be recursively subdivided into
smaller CUs. The encoding CU can also be partitioned into
Prediction Units (PUs) when a block is encoded by adopting
intra- or inter-frame prediction.

Figure 3 depicts the dataflow model for depth map
intra-frame prediction, with the encoding tools applied to
any block size. The best combination of block sizes and
encoding tools is selected at the cost of high computational
effort for minimizing the rate-distortion (RD-cost), which

Fig. 1   Kendo video sequence a texture view and b depth map [6]

0%

20%

40%

60%

80%

100%

4×4 8×8 16×16 32×32 64×64 4×4 8×8 16×16 32×32 64×64

54=PQ43=PQ

DIS evalua	on RMD and MPM Selec	on DMM-1 Wedgelet Search
DMM-4 Pa�ern Genera	on RD-list evalua	on in SDC RD-list evalua	on in TQ

Fig. 2   Profiling of the 3D-HEVC depth maps intra-frame prediction
[10]

Depth block

HEVC intra
predic�on

Bi-par��on Modes

DMM-1 DIS

TQ

Transform Quan�za�on

Final decision

RD-Cost

DMM-4

SDCRD-list

Entropy
coding

3D-HEVC Depth Maps
Intra Predic�on Encoder

Fig. 3   3D-HEVC depth maps intra-frame prediction dataflow model
[10]

789Journal of Real-Time Image Processing (2020) 17:787–797	

1 3

is a function that ponders the required bandwidth and the
quality of the encoded block. The encoding block should be
evaluated using HEVC intra-frame prediction, DMM-1 or
DMM-4 in transform–quantization (TQ) and SDC flows, and
DIS mode. These evaluations converge to the EC, the RD-
cost is estimated to identify the best solution to be inserted
in the final encoded stream.

Since most of the depth map information corresponds to
smooth areas, the DIS encoding mode focuses on achieving
considerable bitrate reduction in these areas by not packing
the residues into the bitstream. DIS allows four prediction
modes, based on the neighbor samples without using TQ and
SDC flows [9], being the results forwarded for EC.

The remaining encoding modes (i.e., DMM-1, DMM-4,
and HEVC intra prediction) employ the TQ or SDC flows.
The encoder performs local evaluation and selects a set of
modes to be inserted in the rate-distortion list (RD-list). Sub-
sequently, the modes inserted in this list are evaluated based
on their RD-cost in both TQ and SDC flows.

The HEVC intra-frame prediction [22] was inherited
from the texture coding, without any modification. It con-
tains 35 modes (i.e., planar, DC and 33 directional modes),
whose directions can be seen in Fig. 4. Instead of evaluating
all these encoding modes based on the RD-cost, 3D-HTM
evaluates these modes locally using Rough Mode Decision
(RMD) [23].

RMD applies the sum of absolute transform differences
(SATD) for comparing the block predicted with the original
encoding block samples. Eight modes for 4 × 4 and 8 × 8, and
three modes for 16 × 16, 32 × 32 and 64 × 64, with the lowest
SATD, are selected to insert into the RD-list. Besides, the
most probable modes (MPM) heuristic is applied after the
RMD for selecting modes that were used to encode neighbor
blocks (the left and above neighbors). Subsequently, MPM
inserts them into the RD-list if they were not inserted into
the RD-list in the RMD analysis.

DMM-1 and DMM-4 are edge-aware encoding tools.
They were developed for obtaining high quality when encod-
ing edges regions, since low-quality encoding may lead to
a wrog interpretation between background and foreground
pixels when synthesizing new virtual views [24].

Figure 5a shows DMM-1 divides the encoding block
using a wedgelet, which is a straight line that splits the
encoding block into two regions. While DMM-1 assumes
only the predefined wedgelets patterns defined by the
3D-HEVC standard, DMM-4 breaks the encoding block in
regions using contours; each region can assume arbitrary
patterns, consisting of several parts, as shown in Fig. 5b.
Both DMMs are applied on blocks sizes ranging from 4 × 4
to 32 × 32.

DMM-4 generates the segmentation pattern using texture
data. Since the texture data is available at both the decoder
and the encoder, the decoder can perform the same algo-
rithm to generate the pattern than the encoder, thus reducing
the bitstream size. After executing DIS, HEVC intra-frame,
DMM-1 and DMM-4 predictions, the depth maps encoding
process finishes applying TQ, SDC, and EC. The TQ flow
was inherited from the texture coding, without any modifica-
tion [25]. The SDC tool has been designed as an alternative
to TQ, to obtain higher efficiency by exploring depth maps
properties. It obtains a higher efficiency when the HEVC
intra prediction is used in a homogeneous region or DMMs
are used to segment a block well divided into two homo-
geneous regions. Finally, EC uses context-based adaptive
binary arithmetic coding (CABAC) [26], also inherited from
texture coding. Since the DMM-1 is the focus of this work,
the next subsection describes it more in detail.

2.1 � Depth modeling mode One (DMM‑1)

Figure 6 presents the encoding flowchart of the DMM-1
algorithm, composed of the Main, the Refinement and the
Residue stages. The Main stage evaluates an initial prede-
fined wedgelet set. It searches for the wedgelet that produces
the lowest distortion at the synthesized views, in comparison
to the synthesized view generated by the original encod-
ing samples. For finding the lowest distortion, the encoding

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

17

1819202122232425262728293031323334

0: Planar Mode
1: DC Mode
2-34: Direc�onal Modes

Fig. 4   HEVC intra-frame prediction directions

(a) Wedgelet (DMM-1) (b) Contour (DMM-4)

Fig. 5   Example of a wedgelet and a contour segmentation

790	 Journal of Real-Time Image Processing (2020) 17:787–797

1 3

block is mapped into the binary pattern defined by each
wedgelet and the average value of each region is computed
according to this mapping.

The Prediction step predicts the depth block using the
average value of each region. The synthesized view distor-
tion change (SVDC) [28] computes the distortion of a syn-
thesized block compared to the synthesizing texture views
using the original depth block values in the Distortion step.
The wedgelet that leads to the lowest distortion is selected.

The Refinement stage uses SVDC to evaluate up to eight
wedgelets (with slight differences from the best wedgelet
selected in the Main Stage). Subsequently, the wedgelet with
the lowest distortion is chosen to encode the current depth
map block. This wedgelet is inserted in the RD-list with the
residues of this block (that is generated in the Residue stage)
to be used in the TQ and SDC evaluations.

Table 1 shows the number of wedgelets required to
compute the DMM-1. Notice that there is a vast number of
wedgelets evaluated on the Main stage and a high number
of total possible wedgelets that needs to be stored and used
during the DMM-1 computation.

The encoding of a DMM-1 block is independent of the
encoding of other blocks. Therefore, parallelism can be
explored at two different granularities to accelerate DMM-1
execution in a parallel system: (1) block granularity—each

core encodes a given block, and (2) pattern granularity—the
effort spent on encoding several wedgelets for a block is
divided between the available cores.

2.2 � Speeding up DMM‑1: related work

Several algorithms/schemes have been proposed to sim-
plify the DMM-1 computation, by skipping the entire
DMM-1 computation or reducing the DMM-1 wedgelet list
evaluation.

The works [12–14] proposed to skip the entire DMM-1
computation based on whether the coding block is smooth or
represents an edge. Gu et al. [12] verify the block variance
and the best-ranked mode at HEVC intra prediction to estab-
lish if the blocks tend to be smooth, the case when DMMs
are rarely selected. It decides to skip the DMMs evaluation
when the best-ranked mode in RD-list is the planar, or the
variance of the encoding block is small. Zhang et al. [13]
recommend skipping the DMMs evaluation if the best mode
selected by HEVC intra-frame prediction is the planar or the
DC mode. We have proposed the simplified edge detector
(SED) for classifying the encoding block into homogene-
ous or edge [14]. SED computes the maximum difference
of the four corner samples and compares this value with a
defined threshold—when a block is classified as homogene-
ous, the DMMs are skipped. Among these approaches, only
SED [14] does not depend on other encoding modules, such
as HEVC intra prediction. Consequently, SED can be eas-
ily adopted to speed up the encoding process by exploiting
parallelism, given its independence to the other encoding
modules.

Several works ([13, 15–17]) simplify the DMM-1 algo-
rithm reducing the wedgelet evaluation list. Zhang et al.
[13] shrink the DMM-1 search only to the wedgelets that
follow six HEVC intra prediction directions, without any
pre-processing. It statically defines a sub-set of wedgelets
to be always evaluated. Fu et al. [15] decrease DMM-1
wedgelet search space by organizing the encoding blocks
into orientation classes. This classification is performed
according to the variance on sub-regions of the encoding
block, reducing the wedgelet pattern search only to the
ones with similar orientations. In [16], we have designed
the Gradient-based Mode One Filter (GMOF), which filters
the encoding block borders seeking for the most promising
wedgelets, thus skipping wedgelets evaluation that does not
start on a block edge. Sanchez et al. [17] proposed the use
of neighborhood blocks information to speed up the current
DMM-1 encoding through the DMM-1 fast pattern selec-
tor (DFPS). This last method imposes data dependencies
with neighbor blocks preventing block granularity accelera-
tion. Except [17], which has these data dependencies, all
other solutions for reducing the wedgelet assessment can be

Residue
Stage

Main Stage

Predic�on stepDistor�on step

Select first
pa�ern

En�re ini�al
 set evaluated?

Select next
pa�ern

Compute
average value of

each region

Define the
predict block

Compute
Distor�on

Update best
Distor�on

Refinament
Stage

Refinement
process

Residues
computa�on

yes

no

Depth block

Selected
wedgelet and

residues

Fig. 6   DMM-1 encoding algorithm [27]

Table 1   Number of evaluated wedgelets in DMM-1

Block size Total of possible wedge-
lets

Evaluated wedge-
lets in the main
stage

4 × 4 86 58
8 × 8 802 314
≥ 16 × 16 510 384

791Journal of Real-Time Image Processing (2020) 17:787–797	

1 3

easily integrated into data parallel algorithms to speed up
the DMM-1 computation.

Table 2 summarizes the related work on simplifying the
DMM computation. As a representative case of study, this
work uses the SED [14] and GMOF [16] to assess the impact
of skipping the DMM-1 computation and reducing the
DMM-1 wedgelet evaluation in parallel processing systems.

Although works referred in this section may reduce the
DMM-1 encoding time significantly, they also impose losses
on the encoding quality. This work investigates the speedup
of DMM-1 computation by balancing the encoding effort
through multiple processing cores in a process that does not
imply encoding losses. Besides, we show that by simplifying
the DMM-1 procedure, we can take also an advantage of the
proposed parallel approach aiming to reduce the encoding
time significantly.

3 � Parallel algorithms for DMM‑1 encoding

This work targets the following parallel architectures: (1)
a symmetric multiprocessor, with few but powerful multi-
cores and memory coherence supported by hardware, as the
current multi-core processors; and (2) a massively parallel
GPU, with thousands of simple cores operating under the
single instruction multiple data (SIMD) paradigm, which
enables to explore data parallelism in a stream computing
approach. In particular, as an example, the experiments of
this work target CPUs, typically with 8 cores (16 threads),
and GPUs with more than 3000 stream processors (simple
cores). Although the experiments have been performed on a
4-core CPU, the proposed methodology is scalable for sys-
tems with a larger number of cores.

This article investigates two parallel approaches to han-
dle the DMM-1 computation, which allow data parallelism
exploration at block-based and pattern-based granularities.
Figure 7a illustrates how the block-based approach explores
parallelism. Since DMM-1 evaluates a block independent of
its neighborhood, each block can be assigned to a given pro-
cessing unit for parallel encoding. In this approach, we can
consider that a thread is responsible for the entire DMM-1

encoding of a depth bloc, applying the Main, Refinement
and Residue stages (see Fig. 6).

Since DMM-1 evaluates several wedgelets patterns, the
proposed pattern-based approach assigns the evaluation of
each pattern to a thread, as shown in Fig. 7b. The wedgelets
evaluated in the Main stage are distributed by the threads
balancing the computational effort between them. Therefore,
the loop presented in Fig. 6 is eliminated, and each thread
evaluates the encoding blocks for a given pattern using the
flow presented in Fig. 7c. After computing the distortion of
all wedgelets, the threads are synchronized and the distor-
tion results are compared for selecting the best one. In the
Refinement stage, the wedgelet patterns are also assigned to
multiple threads for similar processing.

The SED [14] and GMOF [16] heuristics were also
applied to the block-based parallel approach to evaluate the
gains the DMM-1 simplification could bring into a paral-
lel platform. Besides, we are interested in investigating the
characteristics of the simplification algorithms that allow
obtaining the best benefits from parallel architectures with
different characteristics. The evaluation of these two heuris-
tics was initially done through sequential processing using
3D-HTM. The SED algorithm skips the DMMs evaluation

Table 2   Related work for simplifying the DMM-1 algorithm

Simplifying type Work Technique

Skip entire DMM-1 calculation Gu et al. [12] Computes the variance and verifies the best-ranked modes in RD-list
Zhang et al. [13] Verifies the best-ranked modes in RD-list
Sanchez et al. [14] Computes the maximum difference of four corners samples

Reducing wedgelet list evaluation Fu et al. [15] Classifies the encoding block for finding the best wedgelets orientations
Zhang et al. [13] Reduces the wedgelet list to wedgelets that follow the HEVC intra prediction directions
Sanchez et al. [16] Filters the borders and select the most promising wedgelets to be evaluated
Sanchez et al. [17] Uses neighbor encoded blocks information to accelerate the DMM-1 encoding

Block1

Thread1

DMM-1

Block2

Thread2

DMM-1

Blockn

Threadn

DMM-1

(a) Block-based approach

Block1

DMM-1
pa�ern
exec.

DMM-1
pa�ern
exec.

DMM-1
pa�ern
exec.

(b) Pa�ern-based approach

Select Best Distor�on

P1 P2 Pn

DMM-1
pa�ern
exec.

DMM-1
pa�ern
exec.

DMM-1
pa�ern
exec.

Select Best Distor�on

P1 P2 Pn

Compute Residues

M
ai

n
St

ag
e

Re
fin

em
en

tS
ta

ge

(c) DMM-1 pa�ern exec.

Block
Pa�ern

Compute Average
value of each region

Define the
Predicted Block

Compute the
Distor�on

Fig. 7   Parallelism exploration: a block-based, b pattern-based, and c
DMM-1 pattern execution

792	 Journal of Real-Time Image Processing (2020) 17:787–797

1 3

for homogeneous blocks since they tend not to be selected in
this scenario. This pre-processing reduces the DMM-1 com-
putational effort in 93.4% (speedup of 15.1) with a degrada-
tion of 0.94% in the BD-rate. The GMOF directly simplifies
the DMM-1 evaluation by applying a gradient filter in the
border of the encoding block to identify the most promis-
ing wedgelets for block segmentation. Several wedgelets
evaluations are skipped with this algorithm (reducing the
DMM-1 computational effort in 66.9%, corresponding to
a speedup of 3.0) with minor degradation in the encoding
efficacy (0.33% in BD-rate, on average).

The parallelization strategies presented in this article do
not insert any additional BD-rate degradation when using
SED and GMOF algorithms. Then, the BD-rate obtained
using the parallel coding is exactly the same result reached
with a single thread execution.

4 � Experimental results

Considering 3D-HTM was developed to evaluate the effi-
ciency of the encoder tools, not being suitable for evaluat-
ing computational performance, we programmed in C++ a
single-thread efficient implementation of DMM-1. Besides
this base original algorithm, two other versions were imple-
mented, one using the SED heuristic and another one apply-
ing the GMOF heuristic. OpenMP 3.1 and CUDA 7.0 were
used to program the proposed algorithms for CPUs and
GPUs, respectively.

In our experiments, the developed programs encoded the
central view of the eight videos available at common test
conditions (CTC) for 3D experiments [29]. Inputs to the
developed program are the raw data of depth maps and the
reconstructed texture video obtained with 3D-HTM. The
programs, based on the proposed parallel algorithms, pro-
vide at the output residual data and the selected DMM-1
pattern.

We performed the experiments on an Intel Core i7 6700K
(Skylake) with 4 cores (8 threads) running at 3.5 GHz and
with 32 GB DDR3 memory. Two GPUs were used in this
evaluation: (1) NVidia GTX Titan X (GM200—Max-
well) with 3072 CUDA cores running at 1.08 GHz (called
Titan X in the rest of this article) and; (2) NVidia Titan
Xp (GP102—Pascal) with 3840 CUDA cores running
at 1.48 GHz (called Titan Xp in the rest of this article).
Although we performed the evaluations using a four-core
CPU and using two NVIDIA GPUs, the presented experi-
ment aims to show that encoding blocks can be assigned to
multiple cores to speed up the encoding process. Besides,
the proposed methods and algorithms can be directly applied
in systems with different levels of parallelism, resources and
programmability characteristics, such as MPSoCs or dedi-
cated hardware designs.

In this section, we present experimental results and per-
form the analysis considering: (1) parallelism granularity;
(2) scalability; and (3) DMM-1 simplifications in multicore
CPU.

4.1 � Parallelism granularity analysis

Figure 8 displays the evaluation of both block- and pattern-
based approaches in the CPU, comparing the execution time
of eight threads to the execution time of a single thread.
For a 1024 × 768 pixels frame, the average time required
is 5.0 and 5.9 s for the block and pattern-based parallel
approaches, respectively, whereas the sequential time is
30.5 s. For a frame with 1920 × 1088 pixels, the execution
time was reduced from 83.2 to 16.2 s and 13.6 s, when the
pattern and block-based parallel approaches are applied,
respectively. These results highlight the timesaving when
blocks are encoded in parallel on a multicore CPU.

The attained speedup over the single thread version is
similar for the two frame sizes, reaching on average 6.1 and
5.1 for block- and pattern-based approaches, respectively.
Since best results were always achieved for the block-based
approach, it is the approach adopted in the next experiments
for evaluating the scalability and the impact of DMM-1 sim-
plifications. It is worthwhile to mention that the proposed
parallel approaches do not insert any losses, regarding both
the 3D-HEVC encoded video quality and bitrate.

4.2 � Scalability analysis

We have evaluated the scalability of the block-based
approach by varying the number of threads in the CPU from
one to eight. Figure 9a shows the obtained results taking
the single-thread as the baseline implementation. One can
notice that the results obtained in different video sequences
are very similar, (the curves are almost overlapped).

Figure 9b shows the efficiency regarding the number
of threads that is given by Eq. (1), where E

N
 is the effi-

ciency using N threads, Time
1
 is the average time required

0
10
20
30
40
50
60
70
80
90

Balloons Kendo News Dancer Pstreet Phall GTFly Shark

Se
co

nd
s p

er
 fr

am
e

Single Thread Block Granularity Pa�ern Granularity

Fig. 8   Encoding time per frame considering the evaluated approaches
for eight threads and one thread

793Journal of Real-Time Image Processing (2020) 17:787–797	

1 3

to encode with a single thread and Time
N

 is the average
time required to encode using N threads.

Notice that when using eight threads, the proposed
approach speeds up processing in average 6.1. Besides,
the efficiency decreases after five threads. This behavior is
explained by the fact that the system has only four physical
cores. When more than four threads are launched, hyper-
threading is activated limiting the efficiency. However, the
speedup curve does not saturate with a modest number of
cores like the ones in current multicore systems, showing
that higher speedups could be attained using processors
with a higher number of CPU cores.

4.3 � DMM‑1 simplification analysis

To show that the proposed parallel algorithms can further
integrate the DMM-1 simplification techniques, parallel
programs were adapted to implement SED [14] and GMOF
[16] techniques. Figure 10 depicts the speedup achieved
with the two simplification schemes and varying the num-
ber of threads. The results are normalized according to the
computation time of a single thread DMM-1 algorithm
without any simplification.

The y axis of Fig. 10 shows that both algorithms scale
with the number of cores. Table 3 summarizes the aver-
age time per encoded frame in the multicore CPU. For
the 1024 × 768 videos, the encoding time per frame can
be further reduced to 1.7 and 0.6 s when the GMOF and
SED simplifications are applied, respectively. While for
the 1920 × 1088 frames, GMOF and SED can reduce the
encoding time per frame to 4.5 and 0.5 s, respectively.

(1)E
N
=

Time
1

Time
N
× N

× 100%

4.4 � DMM‑1 implementation using GPU

We first used the TITAN X GPU in our analysis and later we
used the TITAN Xp GPU to obtain the final results, to show
the potential of further data parallelism in DMM-1 execu-
tion. We implemented the DMM-1 algorithm for the TITAN
X adopting the same block-based approach employed in
the multicore CPU implementation. It is expected that this
approach provides even better results since data parallel-
ism is fundamental to use the GPU resources efficiently.
We have evaluated the processing rate in frames per second
(fps) and the speedup achieved using the GPU programmed
with CUDA, using as the baseline for the single thread CPU
execution time. These results, along with the time spent dur-
ing data transfer between CPU and GPU, are rendered in
Table 4.

This basic GPU implementation running at the TITAN X
achieves 18.6 fps@1024 × 768 and 14.6 fps@1920 × 1088.
Comparing the processing rate with the CPUs one, one
can notice that a higher increase in the processing rate is
obtained for higher resolution videos, because more blocks
are encoded by the CUDA cores, increasing the data paral-
lelism explored. Moreover, the time spent on data transfers
represents less than 2%, which means that most of the time is
spent on the GPU processing. However, further investigation

100.00% 95.71% 95.51% 95.48% 87.21%
82.32%

78.68%
76.21%

Effi
ci
en

cy

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

Number of threads

Sp
ee

du
p

Balloons Kendo Newspaper Dancer
Pstreet Phall GTFly Shark

(a)

(b)

Fig. 9   Scalability analysis—a eight speedups and b the efficiency
according to the number of threads for the block granularity

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

Sp
ee

du
p

Number of Threads

Block-based (BB)
BB and GMOF
BB and SED

Fig. 10   Scalability analysis with DMM-1 simplifications

Table 3   Multicore CPU results

Implementation Time per frame (s)

1024 × 768 1920 × 1088

Single thread 30.5 83.2
Eight threads
 Block-based approach 5.0 13.6
 Block-based approach with GMOF 1.7 4.5
 Block-based approach with SED 0.6 0.5

794	 Journal of Real-Time Image Processing (2020) 17:787–797

1 3

is required to obtain an improved processing rate for real-
time encoding of HD 1080p videos.

We improved the basic TITAN X GPU implementation
by increasing the number of CUDA streams to maximize
the usage of CUDA cores and by taking advantage of the
GPU constant memory. With the CUDA streams optimiza-
tion, data transfers between CPU and GPU are performed

asynchronously, and each kernel is executed in a different
stream, improving the use of the CUDA cores. Moreover,
the constant memory was used to store the 4 × 4 and 8 × 8
pattern blocks. The 16 × 16 patterns were not stored in the
constant memory because there was not enough space for
them in TITAN X (neither in TITAN Xp that will be used
later). Therefore, higher processing rates can be achieved
employing a GPU with larger constant memory.

Figure 11 shows the processing rate obtained. On average,
the system was capable of reaching 26.3 fps for 1024 × 768
videos and 18.2 fps for 1920 × 1088 videos.

We have also implemented and evaluated the two sim-
plification techniques for DMM-1, GMOF and SED, in the
TITAN X GPU, keeping the streams and the constant mem-
ory optimizations. Table 5 shows that, on average, GMOF
and SED allow encoding 1024 × 768 resolution videos at
48.1 and 30.1 fps, respectively, while around 30 fps are
encoded for 1920 × 1088 resolution videos. The best per-
formance is achieved with GMOF, unlike the multicore CPU
that takes more advantage of the SED. It happens because all
threads of the GPU have to execute the same code in parallel
in each warp. Consequently, if the SED algorithm of a thread
decides to skip the DMM-1 evaluation, threads diverge and
have to wait until the remaining blocks finish their computa-
tion. In this context, SED only takes full advantage of the
GPU resources when all blocks inside a warp are skipped,
i.e., when all blocks in the warp are classified as homogene-
ous. However, GMOF algorithm always provides a signifi-
cant speedup. Considering the different characteristic of the
two types of architectures, one can conclude that a multicore
CPU execution can obtain higher benefits from algorithms
that skips the entire DMM-1 evaluation, while GPUs obtain
better results when applying algorithms that accelerate the
processing of every executing block in a convergent way.

We also evaluated these two DMM-1 simplification tech-
niques into a quite recent GPU platform: the NVidia TITAN
Xp. The reached results for this second GPU implementation
is also presented in Table 5, considering the block-based

Table 4   results for the basic GPU implementation—TITAN X

Resolution Videos fps Communication and
frame read percentage
(%)

1024 × 768 Balloons 18.6 0.9
Kendo 18.6 0.9
News 18.5 0.9
Average 18.6 0.9

1920 × 1088 Dancer 14.6 1.8
PStreet 14.6 1.8
PHall 14.7 1.7
GTFly 14.7 1.8
Shark 14.6 2.0
Average 14.6 1.8

0

5

10

15

20

25

30

Pr
oc

es
si

ng
 ra

te
 (f

ra
m

es
 p

er
 se

co
nd

)

Fig. 11   Results of the optimization for TITAN X

Table 5   Titan X and
Titan Xp processing rates
results for GMOF and SED
implementations

Resolution Videos TITAN X (fps) TITAN Xp (fps)

Block-based GMOF SED Block-based GMOF SED

1024 × 768 Balloons 26.3 50.3 30.2 40.5 106.8 42.3
Kendo 26.4 49.2 31.7 40.6 102.4 45.0
News 26.3 44.9 28.7 40.4 87.2 40.3
Average 26.3 48.1 30.1 40.5 98.8 42.5

1920 × 1088 Dancer 18.3 30.9 27.3 26.3 56.1 36.9
PStreet 18.2 30.1 37.1 26.2 51.7 56.1
PHall 18.3 31.3 32.9 26.5 57.7 46.8
GTFly 18.2 30.0 31.6 26.2 53.3 56.3
Shark 18.1 29.9 27.0 26.0 54.2 37.6
Average 18.2 30.4 30.8 26.2 54.6 44.6

795Journal of Real-Time Image Processing (2020) 17:787–797	

1 3

approach with optimizations, and with the usage of GMOF
and SED techniques. Similar conclusions than that reached
for the previous experiment with the TITAN X GPU can be
drawn. Again, GMOF algorithm presented higher processing
rates because SED algorithm requires that some threads per-
form the full DMM-1 algorithm without any simplification.
Therefore, the threads that skip DMM-1 processing early
wait until all threads inside the warp finish. The processing
rates in this evaluation reached up to 98.8 fps for 1024 × 768
videos and 54.6 fps for 1920 × 1088 videos using GMOF
algorithm.

Finally, Table 6 summarizes the multicore CPU and GPU
results obtained along this work. Our GPU implementa-
tion increases the processing rate from 0.03/0.01 fps (for
1024 × 768/1920 × 1088 videos) to 98.8/54.6 for these reso-
lutions when using GMOF technique running on a TITAN
Xp.

Experimental evaluation in this article was made for a
specific CPU and two specific GPUs. However, one can con-
clude that the proposed parallel approach is scalable, then
it can be extended to speed up the DMM-1 execution on
other parallel systems, with different characteristics, such
as MPSoCs or dedicated hardware design.

The best performance was achieved by applying the pro-
posed parallel strategies and exploring the SED and GMOF
simplification techniques. The parallelism exploration using
both SED and GMOF techniques can be reached because
these simplifications do not contain dependencies with the
remaining blocks in the current frame.

SED skips the entire DMM-1 evaluation for some blocks,
without any dependency on neighbor blocks. Simplifica-
tions like the ones presented in [12, 13] cannot obtain these
acceleration benefits because they use the data contained

in RD-list, and the RD-list construction requires data from
neighbor blocks, avoiding a massively parallel exploration.

The GMOF technique reduces the number of wedge-
lets evaluated in DMM-1 execution. Again, for the paral-
lelization purpose, it is necessary that the algorithm does
not contain dependencies with neighbor blocks. Therefore,
the algorithms designed in [13, 15] should obtain similar
processing rate results than GMOF algorithm, while the
algorithm proposed in [17] should not be a good candidate
for exploring the parallelism since it has dependencies with
neighbor blocks.

Considering the previous discussions about the reached
results one can conclude that DMM-1 can be a good candi-
date for being accelerated using massive parallel approaches.
In all cases, the frame rates were scalable with the explored
parallelism according to the target CPU/GPU architectures.
It is important to emphasize that the DMM-1 tool represents
around 20% of the 3D-HEVC computational effort [10], then
this is an important tool that must be accelerated to allow the
design of real-time encoders able to process high-resolution
videos at 30 fps or more. A similar approach than that used
in this article for DMM-1 tool can be used for other encoder
tools allowing a high throughput also for these modules.
Besides, other solutions can also be explored in the other
encoder modules, targeting the system acceleration, includ-
ing the use of multiple GPUs, MPSoCs, dedicated VLSI
designs or other high-performance solutions. Then, inte-
grating these solutions will be possible to have a complete
3D-HEVC encoder processing high-resolution videos in
real-time.

5 � Conclusions and future work

This article presented a parallelism exploration over the 3D
high-efficiency video coding (3D-HEVC) Depth Modeling
Mode 1 (DMM-1) encoding tool through multicore CPU
and GPU implementations. Parallel exploration strategies
were proposed for the DMM-1 tool and programmed using
OpenMP and CUDA. Three main features were evaluated
when defining the used strategy: parallelism granularity,
scalability, and compatibility with simplification techniques.
We used an Intel Core i7 6700K and two NVidia GPUs
(GTX Titan X and Titan Xp) to evaluate the parallelism
exploration results.

Our analysis demonstrated that the designed parallel
approach can obtain scalable speedup benefits when run-
ning in systems with more available cores even using sim-
plification heuristics. Two simplifications were explored
together with the parallelism exploration: SED and
GMOF. These heuristics can reduce significantly the pro-
cessing time causing a BD-rate drop of only 0.94% and
0.33%, respectively. With the usage of our best parallel

Table 6   Summary of the reached results

Implementation Frames per second

1024 × 768 1920 × 1088

Single thread 0.03 0.01
 Eight threads
 Block-based approach 0.22 0.07
 Block-based approach with GMOF 0.59 0.22
 Block-based approach with SED 1.80 2.05

TITAN X
 Block-based approach 26.30 18.20
 Block-based approach with GMOF 48.10 30.10
 Block-based approach with SED 30.40 30.80

TITAN Xp
 Block-based approach 40.50 26.20
 Block-based approach with GMOF 98.80 54.60
 Block-based approach with SED 42.50 44.60

796	 Journal of Real-Time Image Processing (2020) 17:787–797

1 3

approach together with a DMM-1 simplification algo-
rithm, we demonstrated that up to 98.8 and 54.6 frames
per second can be encoded using the massive parallelism
provided by GPUs for 1024 × 768 and 1920 × 1088 video
resolutions, respectively. Therefore, the results achieved
with GPU enables real-time 3D-video encoding for these
high resolutions.

This approach can be extended for other encoder tools
also intending to design 3D-HEVC encoders able to process
high-resolution videos in real-time.

Acknowledgements  This article was achieved in cooperation with
Hewlett–Packard Brazil Ltda. using incentives of Brazilian Infor-
matics Law (Law no. 8.248 of 1991). Authors would like to thanks
CNPq, FAPERGS and CAPES Brazilian research agencies (processes
88881135737/2016-01 and 88881119481/2016-01) to support the
development of this work. National Funds also supported this work
by the through Fundação para a Ciência e a Tecnologia (FCT) under
Project UID/CEC/50021/2013.

References

	 1.	 Sullivan, G., Ohm, J., Han, W., Wiegand, T.: Overview of the high
efficiency video coding (HEVC) standard. IEEE Trans. Circuits
Syst. Video Technol. 22(12), 1649–1668 (2012)

	 2.	 Tech, G., Chen, Y., Muller, K., Ohm, J., Vetro, A., Wang, Y.:
Overview of the multiview and 3D extensions of high efficiency
video coding. IEEE Trans. Circuits Syst. Video Technol. 26(1),
35–49 (2016)

	 3.	 Sullivan, G., Boyce, J., Chen, Y., Ohm, J., Segall, C., Vetro, A.:
Standardized extensions of high efficiency video coding (HEVC).
IEEE J. Sel. Topics Signal Process. (J-STSP) 7(6), 1001–1016
(2013)

	 4.	 Kauff, P., Atzpadin, N., Fehn, C., Muller, M., Schreer, O., Smolic,
A., Tanger, R.: Depth map creation and image-based rendering
for advanced 3DTV services providing interoperability and scal-
ability. Sig. Process. Image Commun. 22(2), 217–234 (2007)

	 5.	 Fehn, C.: Depth-image-based rendering (DIBR), compression,
and transmission for a new approach on 3D-TV. Stereosc. Disp.
Virtual Real. Syst. (SPIE) 5291, 93–104 (2004)

	 6.	 Nagoya University. FTV Test Sequences. (2018). http://www.fujii​
.nuee.nagoy​a-u.ac.jp/~fukus​hima/mpegf​tv/. Accessed Jun 2018

	 7.	 Merkle, P., Muller, K., Marpe, D., Wiegand, T.: Depth intra cod-
ing for 3D video based on geometric primitives. IEEE Trans. Cir-
cuits Syst. Video Technol. 26(3), 570–582 (2015)

	 8.	 Liu, H., Chen, Y.: Generic segment-wise DC for 3D-HEVC depth
intra coding. In: Proc. IEEE International Conference on Image
Processing (ICIP), pp. 3219–3222, (2014)

	 9.	 Lee, J., Park, M., Kim, C.: 3D-CE1: depth intra skip (DIS) mode.
document JCT3V-K0033, Geneva, Switzerland (2015)

	10.	 Sanchez, G., Agostini, L., Marcon, C.: 3D-HEVC depth maps
intra prediction complexity analysis. In: Proc. IEEE international
conference on electronics, circuits, & systems (ICECS), pp. 348–
351 (2016)

	11.	 Souza, D., Ilic, A., Roma, N., Sousa, L.: GHEVC: an efficient
HEVC decoder for graphics processing units. IEEE Trans. Mul-
timed. 19(3), 459–474 (2017)

	12.	 Gu, Z., Zheng, J., Ling, N., Zhang, P.: Fast intra prediction mode
selection for intra depth map coding. ISO/IEC JTC1/SC29/WG11,
Vienna (2013)

	13.	 Zhang, Q., Yang, Q., Chang, Y., Zhang, W., Gan, Y.: Fast intra
mode decision for depth coding in 3D-HEVC. Multidimension.
Syst. Signal Process. 28(4), 1203–1226 (Oct. 2017)

	14.	 Sanchez, G., Saldanha, M., Balota, G., Zatt, B., Porto, M.,
Agostini, L.: Complexity reduction for 3D-HEVC depth maps
intra-frame prediction using simplified edge detector algorithm.
In: Proc. International Conference on Image Processing (ICIP),
pp. 3209–3213 (2014)

	15.	 Fu, C., Zhang, H., Su, W., Tsang, S., Chan, Y.: Fast wedgelet pat-
tern decision for DMM in 3D-HEVC. In: Proc. IEEE International
Conference on Digital Signal Processing (DSP), pp. 477–481
(2015)

	16.	 Sanchez, G., Saldanha, M., Balota, G., Zatt, B., Porto, M., Ago-
stini, L.: A Complexity reduction algorithm for depth maps intra
prediction on the 3D-HEVC. In: Proc. Visual Communications
and Image Processing (VCIP), pp. 137–140 (2014)

	17.	 Sanchez, G., Jordani, L., Marcon, C., Agostini, L.: DFPS: a fast
pattern selector for depth modeling mode 1 in three-dimensional
high-efficiency video coding standard. J. Electron. Imaging 25(6),
063011–063011 (2016)

	18.	 Dagum, L., Menon, R.: OpenMP: an industry standard API for
shared-memory programming. IEEE Comput. Sci. Eng. 5(1),
46–55 (1998)

	19.	 NVIDIA CUDA Programming guide, NVIDIA Corporation, ver-
sion 2.0 (2008)

	20.	 3D-HEVC Test Model. (2017). https​://hevc.hhi.fraun​hofer​.de/svn/
svn_3DVCS​oftwa​re/tags/HTM-16.2/. Accessed Oct 2017

	21.	 Marpe, D., Schwarz, H., Bosse, S., Bross, B., Helle, P., Hinz, T.,
Kirchhoffer, H., Lakshman, H., Nguyen, T., Oudin, S., Siekmann,
M., Suhring, K., Winken, M., Wiegand, T.: Video compression
using nested quadtree structures, leaf merging, and improved tech-
niques for motion representation and entropy coding. IEEE Trans.
Circuits Syst. Video Technol. (TCSVT) 20(12), 1676–1687 (2010)

	22.	 Lainema, J., Bossen, F., Han, W., Min, J., Ugur, K.: Intra coding
of the HEVC standard. IEEE Trans. Circuits Syst. Video Technol.
22(12), 1792–1801 (2012)

	23.	 Zhao, L., Zhang, L., Ma, S., Zhao, D.: Fast mode decision algo-
rithm for intra prediction in HEVC. In: Proc. IEEE visual com-
munications and image processing (VCIP), pp. 1–4 (2011)

	24.	 Vosters, L., Varekamp, C., Haan, G.: Overview of efficient high-
quality state-of-the-art depth enhancement methods by thorough
design space exploration. J. Real-Time Image Process. (JRTIP)
1–21 (2015)

	25.	 Budagavi, M., Fuldseth, A., Bjontegaard, G.: HEVC transform and
quantization. In: High Efficiency Video Coding (HEVC): Algo-
rithms and Architectures, Springer, New York (2014)

	26.	 Marpe, D., Schwarz, H., Wiegand, T.: Context-based adaptive
binary arithmetic coding in the H.264/AVC video compression
standard. IEEE Trans. Circuits Syst. Video Technol. (TCSVT)
13(7), 620–636 (2003)

	27.	 Sanchez, G., Marcon, C., Agostini, L.: Real-time scalable archi-
tecture for 3D-HEVC bipartition modes. J. Real-Time Image Pro-
cess. (JRTIP) 13(1), 71–83 (2017)

	28.	 Tech, G., Schwarz, H., Müller, K., Wiegand, T.: 3D video coding
using the synthesized view distortion change. In: Proc. Picture
Coding Symposium (PCS), pp. 25–28, (2012)

	29.	 Rusanovskyy, D., Muller, K., Vetro, A.: Common test condi-
tions of 3DV Core experiments. ISO/IEC JTC1/SC29/WG11
MPEG2011/N12745, Geneva (2013)

Gustavo Sanchez  is Professor at the IF Farroupilha, Brazil, since 2014.
Sanchez received the Electrical Engineer degree from the Sul-Rio-
Grandense Federal Institute of Education, Science and Technology
(2013) and B.S. degree in Computer Science from the Federal Uni-
versity of Pelotas (2012). In 2014, he received his M.Sc. degree in

http://www.fujii.nuee.nagoya-u.ac.jp/~fukushima/mpegftv/
http://www.fujii.nuee.nagoya-u.ac.jp/~fukushima/mpegftv/
https://hevc.hhi.fraunhofer.de/svn/%20svn_3DVCSoftware/tags/HTM-16.2/
https://hevc.hhi.fraunhofer.de/svn/%20svn_3DVCSoftware/tags/HTM-16.2/

797Journal of Real-Time Image Processing (2020) 17:787–797	

1 3

Computer Science from the Federal University of Pelotas. Sanchez is
currently pursuing his Ph.D. degree in Computer Science at the Pon-
tifical Catholic University of Rio Grande do Sul. He has 9+ years of
research experience in algorithms and hardware architectures for video
coding. His research interests include complexity reduction algorithms,
hardware-friendly algorithms and dedicated hardware design for 2D
and 3D video coding.

Luciano Agostini  received the M.S. and Ph.D. degrees from Federal
University of Rio Grande do Sul, Porto Alegre, Brazil, in 2002 and
2007 respectively. He is a Professor since 2002 at Federal University of
Pelotas (UFPel), Brazil, where he leads the Video Technology Research
Group (ViTech) and the Group of Architectures and Integrated Circuits
(GACI). From 2013 to 2017, he was the Executive Vice President for
Research and Graduate Studies of UFPel. He has more than 200 pub-
lished papers in journals and conference proceedings. His research
interests include 2D and 3D video coding, algorithmic optimization,
arithmetic circuits, FPGA-based design and microelectronics. Dr. Ago-
stini is a Senior Member of IEEE and ACM, and he is a member of the
IEEE CAS, CS, and SPS societies. He is also a member of the Multi-
media Systems & Applications Technical Committee (MSATC) at the
IEEE CAS and a member of SBC and SBMicro Brazilian societies.

Leonel Sousa  received the Ph.D. degree in electrical and computer
engineering from the Instituto Superior Técnico, Universidade de Lis-
boa (UL), Lisbon, Portugal, in 1996. He is currently a Full Profes-
sor with UL. He is also a Senior Researcher with the Research and
Development Instituto de Engenharia de Sistemas e Computadores. His
research interests include VLSI architectures, computer architectures,

parallel computing, computer arithmetic, and signal processing sys-
tems. He is a fellow of the IET and a Distinguished Scientist of ACM.
He has contributed over 200 papers in journals and international con-
ferences, for which he got several awards, such as, the DASIP’13 Best
Paper Award, the SAMOS’11 Stamatis Vassiliadis Best Paper Award,
the DASIP’10 Best Poster Award, and the Honorable Mention Award
UTL/Santander Totta for the quality of the publications in 2009. He
has contributed to the organization of several international conferences
and has given keynotes in some of them. He has edited four special
issues of international journals, and he is currently an Associate Edi-
tor of the IEEE Transactions on Multimedia, the IEEE Transactions
on Circuits and Systems for Video Technology, the IEEE Access, the
IET Electronics Letters, and the Springer Journal of Real-Time Image
Processing, and an Editor-in-Chief of the EURASIP Journal on Embed-
ded Systems.

César Marcon  is Professor at the School of Computer Science of Pon-
tifical Catholic University of Rio Grande do Sul (PUCRS), Brazil,
since 1995. He received his Ph.D. in Computer Science from Federal
University of Rio Grande do Sul, Brazil, in 2005. Professor Marcon is
member of the Institute of Electrical and Electronics Engineers (IEEE)
and of the Brazilian Computer Society (SBC). He is advisor of MsC.
and Ph.D. graduate students at Graduate Program in Computer Science
of PUCRS. He has more than 100 papers published in prestigious jour-
nals and conference proceedings. Since 2005, prof. Marcon coordinated
nine research projects in areas of telecom, healthcare, and telemedi-
cine. His research interests are in the areas of embedded systems in
the telecom domain, MPSoC architectures, partitioning and mapping
application tasks, fault-tolerance and real-time operating systems.

	Parallelism exploration for 3D high-efficiency video coding depth modeling mode one
	Abstract
	1 Introduction
	2 3D-HEVC depth maps intra-frame prediction
	2.1 Depth modeling mode One (DMM-1)
	2.2 Speeding up DMM-1: related work

	3 Parallel algorithms for DMM-1 encoding
	4 Experimental results
	4.1 Parallelism granularity analysis
	4.2 Scalability analysis
	4.3 DMM-1 simplification analysis
	4.4 DMM-1 implementation using GPU

	5 Conclusions and future work
	Acknowledgements
	References

