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Abstract
This article presents a parallelism exploration over the depth modeling mode 1 (DMM-1) encoding algorithm of the 3D 
high-efficiency video coding (3D-HEVC) standard and applied the proposed solutions in a multicore central processing 
unit (CPU) and two graphics processor unities (GPU). The article evaluates efficient parallel algorithms for DMM-1, which 
also take advantage of simplifications proposed in our previous works. We demonstrate that DMM-1 can obtain a scalable 
speedup when running in systems with several available cores even when simplifications are being applied. Experimental 
results for 1920 × 1088 resolution videos show that the proposed parallel algorithms achieved up to 2 frames per second 
(fps) in a four-cores (with eight threads) CPU and more than 30 fps in two different GPUs. Therefore, the speedup attained 
with GPU enables real-time 3D-video encoding applying the proposed parallelism strategies together with the DMM-1 
proposed simplifications.

Keywords  Depth modeling modes · 3D-HEVC · Multicore · Parallel algorithm · GPU

1  Introduction

High-efficiency video coding (HEVC) extensions [1] have 
been proposed to improve the encoding efficiency, such as 
3D video coding with 3D-HEVC [2], Multiview Video Cod-
ing using MV-HEVC, screen content using HEVC-SCC, and 
Range Extension HEVC using RExt-HEVC [3]. However, 
the encoding efficiency has as a counterpart, the rise of the 

computational effort, demanding new methods and tech-
niques to speed up the encoding process.

The use of the multiview video plus depth (MVD) data 
format [4] is one of the main reasons for the raising of the 
computational effort of 3D-HEVC. MVD associates a depth 
map to each texture frame, encoding and packing both into a 
single bitstream. It allows synthesizing a dense set of inter-
mediary high-quality virtual views at the decoder using tech-
niques such as depth image-based rendering (DIBR) [5].

Figure 1a, b, from the Kendo video sequence [6], show 
a texture view and the associated depth map. The texture 
frame represents the color of the image while the depth map 
provides the distance between the camera and the objects 
of the scene. While texture frames typically exhibit smooth 
transitions, depth maps are composed of homogeneous 
regions and sharp edges. Homogeneous regions correspond 
to the background of the scene and the body of the objects, 
while sharp edges occur on the border of the objects.

The coding of depth maps has inherited algorithms 
designed for HEVC texture coding, although those algo-
rithms are not specialized to explore the depth maps char-
acteristics. 3D-HEVC overcomes this problem by inserting 
new encoding tools used as alternatives to the HEVC texture 
tools. Depth modeling modes 1 and 4 (DMM-1 and DMM-4) 
[7], segment-wise direct component coding (SDC) [8] and 
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depth intra skip (DIS) [9] are examples of tools for intra-
frame prediction. By combining the usage of these tools, 
3D-HEVC reduces the bit rate required to encode homo-
geneous regions and sharp edges, defining new edge-aware 
ways of prediction.

In a previous work [10], we have evaluated the computa-
tional time required by the encoding steps of the intra-frame 
prediction. Figure 2 displays results of this study, highlight-
ing the impact of SDC and DMM-1 on the encoding time, 
according to the quantization parameter (QP).

Limited parallelism can be exploited to speed up the com-
putation of SDC since there are data dependencies with the 
entropy coding (EC). Thus, SDC is not a good target for 
parallelism exploration, due to the sequential and irregu-
lar nature of the EC [11]. However, the DMM-1 encoding 
tool can be parallelized up to a certain level by exploiting 
the application of similar operations to encode a frame at 
the right granularity level. Although techniques have been 
already proposed to speed up the execution of DMM-1 
[12–17], they impose encoding efficacy losses. Therefore, 
an important challenge is to investigate ways to improve 
the performance of the most time-consuming tools for 
3D-HEVC depth maps coding.

This article exposes the parallelism of DMM-1 for devel-
oping efficient algorithms suited for multicore processors 
and Graphics Processor Units (GPUs). The algorithms have 
been programmed with OpenMP [18] and CUDA [19]. 
Experimental results obtained with Intel Core i7 6700 K 

(Skylake) four-core processor and two GPUs (NVidia GTX 
TITAN X and NVidia TITAN Xp) show the practical interest 
of the proposed algorithms. To the best of our knowledge, 
this is a pioneer work on exploring parallelism for efficiently 
performing DMM-1 encoding.

The remaining of this article is organized as follows. Sec-
tion 2 presents the background of the 3D-HEVC depth map 
intra-frame prediction, along with the related state-of-the-art 
on DMM-1 encoding algorithms. Section 3 proposes parallel 
algorithms to speed up the computation of DMM-1. Sec-
tion 4 provides an experimental evaluation of the parallel 
algorithms on current multicore processors and GPUS. Sec-
tion 5 concludes the article.

2 � 3D‑HEVC depth maps intra‑frame 
prediction

The 3D-HEVC depth maps intra-frame prediction adopted 
in this article follows the implementation of the 3D-HEVC 
Test Model 16.2 (3D-HTM) [20]. The encoding process 
of 3D-HEVC was inherited from HEVC texture coding, 
being the frame divided into coding tree units (CTUs) [21] 
that are individually encoded. Improved coding efficiency 
is achieved by splitting these CTUs into four coding units 
(CUs), which in turn can be recursively subdivided into 
smaller CUs. The encoding CU can also be partitioned into 
Prediction Units (PUs) when a block is encoded by adopting 
intra- or inter-frame prediction.

Figure  3 depicts the dataflow model for depth map 
intra-frame prediction, with the encoding tools applied to 
any block size. The best combination of block sizes and 
encoding tools is selected at the cost of high computational 
effort for minimizing the rate-distortion (RD-cost), which 

Fig. 1   Kendo video sequence a texture view and b depth map [6]
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is a function that ponders the required bandwidth and the 
quality of the encoded block. The encoding block should be 
evaluated using HEVC intra-frame prediction, DMM-1 or 
DMM-4 in transform–quantization (TQ) and SDC flows, and 
DIS mode. These evaluations converge to the EC, the RD-
cost is estimated to identify the best solution to be inserted 
in the final encoded stream.

Since most of the depth map information corresponds to 
smooth areas, the DIS encoding mode focuses on achieving 
considerable bitrate reduction in these areas by not packing 
the residues into the bitstream. DIS allows four prediction 
modes, based on the neighbor samples without using TQ and 
SDC flows [9], being the results forwarded for EC.

The remaining encoding modes (i.e., DMM-1, DMM-4, 
and HEVC intra prediction) employ the TQ or SDC flows. 
The encoder performs local evaluation and selects a set of 
modes to be inserted in the rate-distortion list (RD-list). Sub-
sequently, the modes inserted in this list are evaluated based 
on their RD-cost in both TQ and SDC flows.

The HEVC intra-frame prediction [22] was inherited 
from the texture coding, without any modification. It con-
tains 35 modes (i.e., planar, DC and 33 directional modes), 
whose directions can be seen in Fig. 4. Instead of evaluating 
all these encoding modes based on the RD-cost, 3D-HTM 
evaluates these modes locally using Rough Mode Decision 
(RMD) [23].

RMD applies the sum of absolute transform differences 
(SATD) for comparing the block predicted with the original 
encoding block samples. Eight modes for 4 × 4 and 8 × 8, and 
three modes for 16 × 16, 32 × 32 and 64 × 64, with the lowest 
SATD, are selected to insert into the RD-list. Besides, the 
most probable modes (MPM) heuristic is applied after the 
RMD for selecting modes that were used to encode neighbor 
blocks (the left and above neighbors). Subsequently, MPM 
inserts them into the RD-list if they were not inserted into 
the RD-list in the RMD analysis.

DMM-1 and DMM-4 are edge-aware encoding tools. 
They were developed for obtaining high quality when encod-
ing edges regions, since low-quality encoding may lead to 
a wrog interpretation between background and foreground 
pixels when synthesizing new virtual views [24].

Figure 5a shows DMM-1 divides the encoding block 
using a wedgelet, which is a straight line that splits the 
encoding block into two regions. While DMM-1 assumes 
only the predefined wedgelets patterns defined by the 
3D-HEVC standard, DMM-4 breaks the encoding block in 
regions using contours; each region can assume arbitrary 
patterns, consisting of several parts, as shown in Fig. 5b. 
Both DMMs are applied on blocks sizes ranging from 4 × 4 
to 32 × 32.

DMM-4 generates the segmentation pattern using texture 
data. Since the texture data is available at both the decoder 
and the encoder, the decoder can perform the same algo-
rithm to generate the pattern than the encoder, thus reducing 
the bitstream size. After executing DIS, HEVC intra-frame, 
DMM-1 and DMM-4 predictions, the depth maps encoding 
process finishes applying TQ, SDC, and EC. The TQ flow 
was inherited from the texture coding, without any modifica-
tion [25]. The SDC tool has been designed as an alternative 
to TQ, to obtain higher efficiency by exploring depth maps 
properties. It obtains a higher efficiency when the HEVC 
intra prediction is used in a homogeneous region or DMMs 
are used to segment a block well divided into two homo-
geneous regions. Finally, EC uses context-based adaptive 
binary arithmetic coding (CABAC) [26], also inherited from 
texture coding. Since the DMM-1 is the focus of this work, 
the next subsection describes it more in detail.

2.1 � Depth modeling mode One (DMM‑1)

Figure 6 presents the encoding flowchart of the DMM-1 
algorithm, composed of the Main, the Refinement and the 
Residue stages. The Main stage evaluates an initial prede-
fined wedgelet set. It searches for the wedgelet that produces 
the lowest distortion at the synthesized views, in comparison 
to the synthesized view generated by the original encod-
ing samples. For finding the lowest distortion, the encoding 
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block is mapped into the binary pattern defined by each 
wedgelet and the average value of each region is computed 
according to this mapping.

The Prediction step predicts the depth block using the 
average value of each region. The synthesized view distor-
tion change (SVDC) [28] computes the distortion of a syn-
thesized block compared to the synthesizing texture views 
using the original depth block values in the Distortion step. 
The wedgelet that leads to the lowest distortion is selected.

The Refinement stage uses SVDC to evaluate up to eight 
wedgelets (with slight differences from the best wedgelet 
selected in the Main Stage). Subsequently, the wedgelet with 
the lowest distortion is chosen to encode the current depth 
map block. This wedgelet is inserted in the RD-list with the 
residues of this block (that is generated in the Residue stage) 
to be used in the TQ and SDC evaluations.

Table  1 shows the number of wedgelets required to 
compute the DMM-1. Notice that there is a vast number of 
wedgelets evaluated on the Main stage and a high number 
of total possible wedgelets that needs to be stored and used 
during the DMM-1 computation.

The encoding of a DMM-1 block is independent of the 
encoding of other blocks. Therefore, parallelism can be 
explored at two different granularities to accelerate DMM-1 
execution in a parallel system: (1) block granularity—each 

core encodes a given block, and (2) pattern granularity—the 
effort spent on encoding several wedgelets for a block is 
divided between the available cores.

2.2 � Speeding up DMM‑1: related work

Several algorithms/schemes have been proposed to sim-
plify the DMM-1 computation, by skipping the entire 
DMM-1 computation or reducing the DMM-1 wedgelet list 
evaluation.

The works [12–14] proposed to skip the entire DMM-1 
computation based on whether the coding block is smooth or 
represents an edge. Gu et al. [12] verify the block variance 
and the best-ranked mode at HEVC intra prediction to estab-
lish if the blocks tend to be smooth, the case when DMMs 
are rarely selected. It decides to skip the DMMs evaluation 
when the best-ranked mode in RD-list is the planar, or the 
variance of the encoding block is small. Zhang et al. [13] 
recommend skipping the DMMs evaluation if the best mode 
selected by HEVC intra-frame prediction is the planar or the 
DC mode. We have proposed the simplified edge detector 
(SED) for classifying the encoding block into homogene-
ous or edge [14]. SED computes the maximum difference 
of the four corner samples and compares this value with a 
defined threshold—when a block is classified as homogene-
ous, the DMMs are skipped. Among these approaches, only 
SED [14] does not depend on other encoding modules, such 
as HEVC intra prediction. Consequently, SED can be eas-
ily adopted to speed up the encoding process by exploiting 
parallelism, given its independence to the other encoding 
modules.

Several works ([13, 15–17]) simplify the DMM-1 algo-
rithm reducing the wedgelet evaluation list. Zhang et al. 
[13] shrink the DMM-1 search only to the wedgelets that 
follow six HEVC intra prediction directions, without any 
pre-processing. It statically defines a sub-set of wedgelets 
to be always evaluated. Fu et al. [15] decrease DMM-1 
wedgelet search space by organizing the encoding blocks 
into orientation classes. This classification is performed 
according to the variance on sub-regions of the encoding 
block, reducing the wedgelet pattern search only to the 
ones with similar orientations. In [16], we have designed 
the Gradient-based Mode One Filter (GMOF), which filters 
the encoding block borders seeking for the most promising 
wedgelets, thus skipping wedgelets evaluation that does not 
start on a block edge. Sanchez et al. [17] proposed the use 
of neighborhood blocks information to speed up the current 
DMM-1 encoding through the DMM-1 fast pattern selec-
tor (DFPS). This last method imposes data dependencies 
with neighbor blocks preventing block granularity accelera-
tion. Except [17], which has these data dependencies, all 
other solutions for reducing the wedgelet assessment can be 
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Table 1   Number of evaluated wedgelets in DMM-1

Block size Total of possible wedge-
lets

Evaluated wedge-
lets in the main 
stage

4 × 4 86 58
8 × 8 802 314
≥ 16 × 16 510 384
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easily integrated into data parallel algorithms to speed up 
the DMM-1 computation.

Table 2 summarizes the related work on simplifying the 
DMM computation. As a representative case of study, this 
work uses the SED [14] and GMOF [16] to assess the impact 
of skipping the DMM-1 computation and reducing the 
DMM-1 wedgelet evaluation in parallel processing systems.

Although works referred in this section may reduce the 
DMM-1 encoding time significantly, they also impose losses 
on the encoding quality. This work investigates the speedup 
of DMM-1 computation by balancing the encoding effort 
through multiple processing cores in a process that does not 
imply encoding losses. Besides, we show that by simplifying 
the DMM-1 procedure, we can take also an advantage of the 
proposed parallel approach aiming to reduce the encoding 
time significantly.

3 � Parallel algorithms for DMM‑1 encoding

This work targets the following parallel architectures: (1) 
a symmetric multiprocessor, with few but powerful multi-
cores and memory coherence supported by hardware, as the 
current multi-core processors; and (2) a massively parallel 
GPU, with thousands of simple cores operating under the 
single instruction multiple data (SIMD) paradigm, which 
enables to explore data parallelism in a stream computing 
approach. In particular, as an example, the experiments of 
this work target CPUs, typically with 8 cores (16 threads), 
and GPUs with more than 3000 stream processors (simple 
cores). Although the experiments have been performed on a 
4-core CPU, the proposed methodology is scalable for sys-
tems with a larger number of cores.

This article investigates two parallel approaches to han-
dle the DMM-1 computation, which allow data parallelism 
exploration at block-based and pattern-based granularities. 
Figure 7a illustrates how the block-based approach explores 
parallelism. Since DMM-1 evaluates a block independent of 
its neighborhood, each block can be assigned to a given pro-
cessing unit for parallel encoding. In this approach, we can 
consider that a thread is responsible for the entire DMM-1 

encoding of a depth bloc, applying the Main, Refinement 
and Residue stages (see Fig. 6).

Since DMM-1 evaluates several wedgelets patterns, the 
proposed pattern-based approach assigns the evaluation of 
each pattern to a thread, as shown in Fig. 7b. The wedgelets 
evaluated in the Main stage are distributed by the threads 
balancing the computational effort between them. Therefore, 
the loop presented in Fig. 6 is eliminated, and each thread 
evaluates the encoding blocks for a given pattern using the 
flow presented in Fig. 7c. After computing the distortion of 
all wedgelets, the threads are synchronized and the distor-
tion results are compared for selecting the best one. In the 
Refinement stage, the wedgelet patterns are also assigned to 
multiple threads for similar processing.

The SED [14] and GMOF [16] heuristics were also 
applied to the block-based parallel approach to evaluate the 
gains the DMM-1 simplification could bring into a paral-
lel platform. Besides, we are interested in investigating the 
characteristics of the simplification algorithms that allow 
obtaining the best benefits from parallel architectures with 
different characteristics. The evaluation of these two heuris-
tics was initially done through sequential processing using 
3D-HTM. The SED algorithm skips the DMMs evaluation 

Table 2   Related work for simplifying the DMM-1 algorithm

Simplifying type Work Technique

Skip entire DMM-1 calculation Gu et al. [12] Computes the variance and verifies the best-ranked modes in RD-list
Zhang et al. [13] Verifies the best-ranked modes in RD-list
Sanchez et al. [14] Computes the maximum difference of four corners samples

Reducing wedgelet list evaluation Fu et al. [15] Classifies the encoding block for finding the best wedgelets orientations
Zhang et al. [13] Reduces the wedgelet list to wedgelets that follow the HEVC intra prediction directions
Sanchez et al. [16] Filters the borders and select the most promising wedgelets to be evaluated
Sanchez et al. [17] Uses neighbor encoded blocks information to accelerate the DMM-1 encoding
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for homogeneous blocks since they tend not to be selected in 
this scenario. This pre-processing reduces the DMM-1 com-
putational effort in 93.4% (speedup of 15.1) with a degrada-
tion of 0.94% in the BD-rate. The GMOF directly simplifies 
the DMM-1 evaluation by applying a gradient filter in the 
border of the encoding block to identify the most promis-
ing wedgelets for block segmentation. Several wedgelets 
evaluations are skipped with this algorithm (reducing the 
DMM-1 computational effort in 66.9%, corresponding to 
a speedup of 3.0) with minor degradation in the encoding 
efficacy (0.33% in BD-rate, on average).

The parallelization strategies presented in this article do 
not insert any additional BD-rate degradation when using 
SED and GMOF algorithms. Then, the BD-rate obtained 
using the parallel coding is exactly the same result reached 
with a single thread execution.

4 � Experimental results

Considering 3D-HTM was developed to evaluate the effi-
ciency of the encoder tools, not being suitable for evaluat-
ing computational performance, we programmed in C++ a 
single-thread efficient implementation of DMM-1. Besides 
this base original algorithm, two other versions were imple-
mented, one using the SED heuristic and another one apply-
ing the GMOF heuristic. OpenMP 3.1 and CUDA 7.0 were 
used to program the proposed algorithms for CPUs and 
GPUs, respectively.

In our experiments, the developed programs encoded the 
central view of the eight videos available at common test 
conditions (CTC) for 3D experiments [29]. Inputs to the 
developed program are the raw data of depth maps and the 
reconstructed texture video obtained with 3D-HTM. The 
programs, based on the proposed parallel algorithms, pro-
vide at the output residual data and the selected DMM-1 
pattern.

We performed the experiments on an Intel Core i7 6700K 
(Skylake) with 4 cores (8 threads) running at 3.5 GHz and 
with 32 GB DDR3 memory. Two GPUs were used in this 
evaluation: (1) NVidia GTX Titan X (GM200—Max-
well) with 3072 CUDA cores running at 1.08 GHz (called 
Titan X in the rest of this article) and; (2) NVidia Titan 
Xp (GP102—Pascal) with 3840 CUDA cores running 
at 1.48 GHz (called Titan Xp in the rest of this article). 
Although we performed the evaluations using a four-core 
CPU and using two NVIDIA GPUs, the presented experi-
ment aims to show that encoding blocks can be assigned to 
multiple cores to speed up the encoding process. Besides, 
the proposed methods and algorithms can be directly applied 
in systems with different levels of parallelism, resources and 
programmability characteristics, such as MPSoCs or dedi-
cated hardware designs.

In this section, we present experimental results and per-
form the analysis considering: (1) parallelism granularity; 
(2) scalability; and (3) DMM-1 simplifications in multicore 
CPU.

4.1 � Parallelism granularity analysis

Figure 8 displays the evaluation of both block- and pattern-
based approaches in the CPU, comparing the execution time 
of eight threads to the execution time of a single thread. 
For a 1024 × 768 pixels frame, the average time required 
is 5.0 and 5.9 s for the block and pattern-based parallel 
approaches, respectively, whereas the sequential time is 
30.5 s. For a frame with 1920 × 1088 pixels, the execution 
time was reduced from 83.2 to 16.2 s and 13.6 s, when the 
pattern and block-based parallel approaches are applied, 
respectively. These results highlight the timesaving when 
blocks are encoded in parallel on a multicore CPU.

The attained speedup over the single thread version is 
similar for the two frame sizes, reaching on average 6.1 and 
5.1 for block- and pattern-based approaches, respectively. 
Since best results were always achieved for the block-based 
approach, it is the approach adopted in the next experiments 
for evaluating the scalability and the impact of DMM-1 sim-
plifications. It is worthwhile to mention that the proposed 
parallel approaches do not insert any losses, regarding both 
the 3D-HEVC encoded video quality and bitrate.

4.2 � Scalability analysis

We have evaluated the scalability of the block-based 
approach by varying the number of threads in the CPU from 
one to eight. Figure 9a shows the obtained results taking 
the single-thread as the baseline implementation. One can 
notice that the results obtained in different video sequences 
are very similar, (the curves are almost overlapped).

Figure 9b shows the efficiency regarding the number 
of threads that is given by Eq. (1), where E

N
 is the effi-

ciency using N threads, Time
1
 is the average time required 
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to encode with a single thread and Time
N

 is the average 
time required to encode using N threads.

Notice that when using eight threads, the proposed 
approach speeds up processing in average 6.1. Besides, 
the efficiency decreases after five threads. This behavior is 
explained by the fact that the system has only four physical 
cores. When more than four threads are launched, hyper-
threading is activated limiting the efficiency. However, the 
speedup curve does not saturate with a modest number of 
cores like the ones in current multicore systems, showing 
that higher speedups could be attained using processors 
with a higher number of CPU cores.

4.3 � DMM‑1 simplification analysis

To show that the proposed parallel algorithms can further 
integrate the DMM-1 simplification techniques, parallel 
programs were adapted to implement SED [14] and GMOF 
[16] techniques. Figure 10 depicts the speedup achieved 
with the two simplification schemes and varying the num-
ber of threads. The results are normalized according to the 
computation time of a single thread DMM-1 algorithm 
without any simplification.

The y axis of Fig. 10 shows that both algorithms scale 
with the number of cores. Table 3 summarizes the aver-
age time per encoded frame in the multicore CPU. For 
the 1024 × 768 videos, the encoding time per frame can 
be further reduced to 1.7 and 0.6 s when the GMOF and 
SED simplifications are applied, respectively. While for 
the 1920 × 1088 frames, GMOF and SED can reduce the 
encoding time per frame to 4.5 and 0.5 s, respectively.

(1)E
N
=

Time
1

Time
N
× N

× 100%

4.4 � DMM‑1 implementation using GPU

We first used the TITAN X GPU in our analysis and later we 
used the TITAN Xp GPU to obtain the final results, to show 
the potential of further data parallelism in DMM-1 execu-
tion. We implemented the DMM-1 algorithm for the TITAN 
X adopting the same block-based approach employed in 
the multicore CPU implementation. It is expected that this 
approach provides even better results since data parallel-
ism is fundamental to use the GPU resources efficiently. 
We have evaluated the processing rate in frames per second 
(fps) and the speedup achieved using the GPU programmed 
with CUDA, using as the baseline for the single thread CPU 
execution time. These results, along with the time spent dur-
ing data transfer between CPU and GPU, are rendered in 
Table 4.

This basic GPU implementation running at the TITAN X 
achieves 18.6 fps@1024 × 768 and 14.6 fps@1920 × 1088. 
Comparing the processing rate with the CPUs one, one 
can notice that a higher increase in the processing rate is 
obtained for higher resolution videos, because more blocks 
are encoded by the CUDA cores, increasing the data paral-
lelism explored. Moreover, the time spent on data transfers 
represents less than 2%, which means that most of the time is 
spent on the GPU processing. However, further investigation 
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Table 3   Multicore CPU results

Implementation Time per frame (s)

1024 × 768 1920 × 1088

Single thread 30.5 83.2
Eight threads
 Block-based approach 5.0 13.6
 Block-based approach with GMOF 1.7 4.5
 Block-based approach with SED 0.6 0.5
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is required to obtain an improved processing rate for real-
time encoding of HD 1080p videos.

We improved the basic TITAN X GPU implementation 
by increasing the number of CUDA streams to maximize 
the usage of CUDA cores and by taking advantage of the 
GPU constant memory. With the CUDA streams optimiza-
tion, data transfers between CPU and GPU are performed 

asynchronously, and each kernel is executed in a different 
stream, improving the use of the CUDA cores. Moreover, 
the constant memory was used to store the 4 × 4 and 8 × 8 
pattern blocks. The 16 × 16 patterns were not stored in the 
constant memory because there was not enough space for 
them in TITAN X (neither in TITAN Xp that will be used 
later). Therefore, higher processing rates can be achieved 
employing a GPU with larger constant memory.

Figure 11 shows the processing rate obtained. On average, 
the system was capable of reaching 26.3 fps for 1024 × 768 
videos and 18.2 fps for 1920 × 1088 videos.

We have also implemented and evaluated the two sim-
plification techniques for DMM-1, GMOF and SED, in the 
TITAN X GPU, keeping the streams and the constant mem-
ory optimizations. Table 5 shows that, on average, GMOF 
and SED allow encoding 1024 × 768 resolution videos at 
48.1 and 30.1 fps, respectively, while around 30 fps are 
encoded for 1920 × 1088 resolution videos. The best per-
formance is achieved with GMOF, unlike the multicore CPU 
that takes more advantage of the SED. It happens because all 
threads of the GPU have to execute the same code in parallel 
in each warp. Consequently, if the SED algorithm of a thread 
decides to skip the DMM-1 evaluation, threads diverge and 
have to wait until the remaining blocks finish their computa-
tion. In this context, SED only takes full advantage of the 
GPU resources when all blocks inside a warp are skipped, 
i.e., when all blocks in the warp are classified as homogene-
ous. However, GMOF algorithm always provides a signifi-
cant speedup. Considering the different characteristic of the 
two types of architectures, one can conclude that a multicore 
CPU execution can obtain higher benefits from algorithms 
that skips the entire DMM-1 evaluation, while GPUs obtain 
better results when applying algorithms that accelerate the 
processing of every executing block in a convergent way.

We also evaluated these two DMM-1 simplification tech-
niques into a quite recent GPU platform: the NVidia TITAN 
Xp. The reached results for this second GPU implementation 
is also presented in Table 5, considering the block-based 

Table 4   results for the basic GPU implementation—TITAN X

Resolution Videos fps Communication and 
frame read percentage 
(%)

1024 × 768 Balloons 18.6 0.9
Kendo 18.6 0.9
News 18.5 0.9
Average 18.6 0.9

1920 × 1088 Dancer 14.6 1.8
PStreet 14.6 1.8
PHall 14.7 1.7
GTFly 14.7 1.8
Shark 14.6 2.0
Average 14.6 1.8
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Fig. 11   Results of the optimization for TITAN X

Table 5   Titan X and 
Titan Xp processing rates 
results for GMOF and SED 
implementations

Resolution Videos TITAN X (fps) TITAN Xp (fps)

Block-based GMOF SED Block-based GMOF SED

1024 × 768 Balloons 26.3 50.3 30.2 40.5 106.8 42.3
Kendo 26.4 49.2 31.7 40.6 102.4 45.0
News 26.3 44.9 28.7 40.4 87.2 40.3
Average 26.3 48.1 30.1 40.5 98.8 42.5

1920 × 1088 Dancer 18.3 30.9 27.3 26.3 56.1 36.9
PStreet 18.2 30.1 37.1 26.2 51.7 56.1
PHall 18.3 31.3 32.9 26.5 57.7 46.8
GTFly 18.2 30.0 31.6 26.2 53.3 56.3
Shark 18.1 29.9 27.0 26.0 54.2 37.6
Average 18.2 30.4 30.8 26.2 54.6 44.6
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approach with optimizations, and with the usage of GMOF 
and SED techniques. Similar conclusions than that reached 
for the previous experiment with the TITAN X GPU can be 
drawn. Again, GMOF algorithm presented higher processing 
rates because SED algorithm requires that some threads per-
form the full DMM-1 algorithm without any simplification. 
Therefore, the threads that skip DMM-1 processing early 
wait until all threads inside the warp finish. The processing 
rates in this evaluation reached up to 98.8 fps for 1024 × 768 
videos and 54.6 fps for 1920 × 1088 videos using GMOF 
algorithm.

Finally, Table 6 summarizes the multicore CPU and GPU 
results obtained along this work. Our GPU implementa-
tion increases the processing rate from 0.03/0.01 fps (for 
1024 × 768/1920 × 1088 videos) to 98.8/54.6 for these reso-
lutions when using GMOF technique running on a TITAN 
Xp.

Experimental evaluation in this article was made for a 
specific CPU and two specific GPUs. However, one can con-
clude that the proposed parallel approach is scalable, then 
it can be extended to speed up the DMM-1 execution on 
other parallel systems, with different characteristics, such 
as MPSoCs or dedicated hardware design.

The best performance was achieved by applying the pro-
posed parallel strategies and exploring the SED and GMOF 
simplification techniques. The parallelism exploration using 
both SED and GMOF techniques can be reached because 
these simplifications do not contain dependencies with the 
remaining blocks in the current frame.

SED skips the entire DMM-1 evaluation for some blocks, 
without any dependency on neighbor blocks. Simplifica-
tions like the ones presented in [12, 13] cannot obtain these 
acceleration benefits because they use the data contained 

in RD-list, and the RD-list construction requires data from 
neighbor blocks, avoiding a massively parallel exploration.

The GMOF technique reduces the number of wedge-
lets evaluated in DMM-1 execution. Again, for the paral-
lelization purpose, it is necessary that the algorithm does 
not contain dependencies with neighbor blocks. Therefore, 
the algorithms designed in [13, 15] should obtain similar 
processing rate results than GMOF algorithm, while the 
algorithm proposed in [17] should not be a good candidate 
for exploring the parallelism since it has dependencies with 
neighbor blocks.

Considering the previous discussions about the reached 
results one can conclude that DMM-1 can be a good candi-
date for being accelerated using massive parallel approaches. 
In all cases, the frame rates were scalable with the explored 
parallelism according to the target CPU/GPU architectures. 
It is important to emphasize that the DMM-1 tool represents 
around 20% of the 3D-HEVC computational effort [10], then 
this is an important tool that must be accelerated to allow the 
design of real-time encoders able to process high-resolution 
videos at 30 fps or more. A similar approach than that used 
in this article for DMM-1 tool can be used for other encoder 
tools allowing a high throughput also for these modules. 
Besides, other solutions can also be explored in the other 
encoder modules, targeting the system acceleration, includ-
ing the use of multiple GPUs, MPSoCs, dedicated VLSI 
designs or other high-performance solutions. Then, inte-
grating these solutions will be possible to have a complete 
3D-HEVC encoder processing high-resolution videos in 
real-time.

5 � Conclusions and future work

This article presented a parallelism exploration over the 3D 
high-efficiency video coding (3D-HEVC) Depth Modeling 
Mode 1 (DMM-1) encoding tool through multicore CPU 
and GPU implementations. Parallel exploration strategies 
were proposed for the DMM-1 tool and programmed using 
OpenMP and CUDA. Three main features were evaluated 
when defining the used strategy: parallelism granularity, 
scalability, and compatibility with simplification techniques. 
We used an Intel Core i7 6700K and two NVidia GPUs 
(GTX Titan X and Titan Xp) to evaluate the parallelism 
exploration results.

Our analysis demonstrated that the designed parallel 
approach can obtain scalable speedup benefits when run-
ning in systems with more available cores even using sim-
plification heuristics. Two simplifications were explored 
together with the parallelism exploration: SED and 
GMOF. These heuristics can reduce significantly the pro-
cessing time causing a BD-rate drop of only 0.94% and 
0.33%, respectively. With the usage of our best parallel 

Table 6   Summary of the reached results

Implementation Frames per second

1024 × 768 1920 × 1088

Single thread 0.03 0.01
 Eight threads
  Block-based approach 0.22 0.07
  Block-based approach with GMOF 0.59 0.22
  Block-based approach with SED 1.80 2.05

TITAN X
  Block-based approach 26.30 18.20
  Block-based approach with GMOF 48.10 30.10
  Block-based approach with SED 30.40 30.80

TITAN Xp
  Block-based approach 40.50 26.20
  Block-based approach with GMOF 98.80 54.60
  Block-based approach with SED 42.50 44.60
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approach together with a DMM-1 simplification algo-
rithm, we demonstrated that up to 98.8 and 54.6 frames 
per second can be encoded using the massive parallelism 
provided by GPUs for 1024 × 768 and 1920 × 1088 video 
resolutions, respectively. Therefore, the results achieved 
with GPU enables real-time 3D-video encoding for these 
high resolutions.

This approach can be extended for other encoder tools 
also intending to design 3D-HEVC encoders able to process 
high-resolution videos in real-time.
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