
HAL Id: hal-04497911
https://hal.science/hal-04497911

Submitted on 11 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GPU acceleration of NL-means, BM3D and VBM3D
Axel Davy, Thibaud Ehret

To cite this version:
Axel Davy, Thibaud Ehret. GPU acceleration of NL-means, BM3D and VBM3D. Journal of Real-Time
Image Processing, 2020, 18 (1), pp.57-74. �10.1007/s11554-020-00945-4�. �hal-04497911�

https://hal.science/hal-04497911
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

GPU acceleration of NL-means, BM3D and VBM3D

Axel Davy · Thibaud Ehret

the date of receipt and acceptance should be inserted later

Abstract Denoising is an essential part of any image or
video processing pipeline. Unfortunately, due to time pro-
cessing constraints, many pipelines do not consider the use
of modern denoisers. These algorithms have only CPU im-
plementations or suboptimal GPU implementations. We pro-
pose a new efficient GPU implementation of NL-means and
BM3D, and, to our knowledge, the first GPU implementation
of the video denoising algorithm VBM3D. The performance
of these implementations enable their use in real-time scenar-
ios.

Keywords Image Denoising · Video Denoising · OpenCL ·
GPU · NL-means · BM3D · VBM3D

1 Introduction

Denoising is a fundamental problem of image and video pro-
cessing. Its relevance has increased with the democratization
of mobile imaging devices such as smartphones. These small
devices are often used in poor lighting condition. This de-
grades the quality of the output image, and the dominant fac-
tor in that quality loss is noise. Non-optical imaging devices
also suffer from high noise and have seen the development
of relevant denoising algorithms, such as MRI images [18],
ultrasound images [16], fluorescence microscopy images [8]
and SAR images [7,6].

The most common noise model is the additive white
Gaussian noise. In the following we denote by u a clean
data (either an image or a video) that has been contaminated

Axel Davy · Thibaud Ehret
CMLA, ENS Cachan, CNRS, Université Paris-Saclay 94235 Cachan,
France
Axel Davy
E-mail: axel.davy@ens-cachan.fr
Thibaud Ehret
E-mail: thibaud.ehret@ens-cachan.fr

by an additive Gaussian white noise n of (known) standard
deviation σ, meaning that only v = u+n is observed. While
simplistic, this white noise model is sufficient to deal with the
more realistic Poisson-Gauss model. Indeed, Poisson noise
can be brought back to a nearly white Gaussian noise by the
application of a variance stabilizing transform [46].

Several of the current state-of-the-art image denoising
algorithms are based on an image redundancy assumption
stating that for each image patch there exist similar ones in
other locations of the image (by patch we mean a small rect-
angular part of an image). This assumption was first used for
denoising purposes by Buades et al. in their non-local means
(NL-means) [12] denoising algorithm. For every image patch,
NL-means computes a weighted average of patches located
in a local region. These estimations are then aggregated by
averaging all contributions to a pixel to produce the final
denoised image. This idea is generalized by Dabov et al. in
BM3D [19]. For every patch of an image, BM3D searches
for similar patches in the image and produces a denoising
estimate by transform domain thresholding or Wiener filter-
ing. Other more recent methods such as NL-Bayes [41] or
WNNM [34] are other extensions of NL-means achieving
state-of-the-art.

More recently deep learning methods have also bril-
liantly tackled the problem of image denoising. DnCNN
[55] and FFDNet [56] achieve currently the best denoising
performance. Their main difficulty was a training requiring a
large amount of pairs of noisy and clean images. However,
Noise2Noise [42] has recently shown how to train with real
data without the necessity of disposing of (noisy, clean) pairs.
Contrarily to the classic methods presented previously, deep
learning methods can, straight out of the box, deal with differ-
ent types of noise without having to change the architecture,
as long as they were trained for each specific noise. A similar
principle is used in [28] for a model-blind video denoising
method.



2 Axel Davy and Thibaud Ehret

Video denoising is very similar to image denoising. In
fact image denoising can be applied frame per frame to pro-
duce video denoising. However while the denoising is good
when looking at each frame independently, it does not pro-
duce a good denoised video. Indeed, temporal consistency in
a video is crucial and needs to be imposed in the denoised
estimate: When the residual noise of the output video is not
temporally consistent, annoying flickering effects appear. In-
deed, each frame of the video should be well predicted from
the previous frames by following the motion of the objects
in the scene. Exploiting this redundancy is crucial to produce
the result with the best peak signal-to-noise ratio (PSNR).
Another major difference between image and video denois-
ing is the increased computation time efficiency challenge.
While computation time efficiency is usually not an issue for
image denoising, it can become a major bottleneck for video
denoising.

There are two current trends in video denoising. The first
one aims at producing the best video denoising possible what-
ever the computation required, while the second trend focuses
on producing the fastest causal video denoising algorithm
with the goal of real-time processing.

The methods trying to produce the best denoising are
often extensions of image denoising methods. VBM3D [20]
and VBM4D [44] extend BM3D. VNLB [4], Global denois-
ing [27] and SPTWO [14] are extensions of NL-Bayes. They
all exploit better the self-similarity inside videos, namely the
fact that patches have several similar patches around them
temporally following the movement. Moreover some of these
methods also use patches with a third temporal dimension
to better take into account the motion coherence. This helps
with the temporal consistency. While these algorithms per-
form very well, they are often impractical: they use a frame’s
past and future and therefore can only be used off-line. How-
ever they can be adapted to only use the past frames. Though
because of their running time they are unfit for high reso-
lution video processing. CNNs have also caught back with
the state-of-the-art recently. In particular VNLnet [22,21]
extends DnCNN to video.

Fast algorithms rely on much simpler principles which
can be implemented efficiently on GPUs or FPGAs. For
example [50] relies on a bilateral filter and a Kalman filter to
produce a real-time video denoising algorithm. A recursive
version of NL-means is proposed in [1]. Ehmann et al. [25]
combine optical flow and temporal averaging. These methods
use simple denoising strategies that generally result in poor
denoising quality for high noise levels. A recent trend tries to
include mechanisms from state-of-the-art methods into these
fast methods to help with the denoising quality; see [29] and
[5]. However current implementations of these methods are
not fast enough to be real-time.

An interesting middle ground is to produce optimized im-
plementations of the well performing denoising methods for

optimized hardware such as GPUs or FPGAs. This has often
been done for image denoising with optimized implemen-
tations of NL-means [47,23] and BM3D [35,54]. However,
even though performance is even more crucial for video, little
work has been done to optimize video denoising methods.
The only exception being for video versions of NL-means
[33].

In this work, we propose real-time GPU implementa-
tions of an improved patchwise NL-means and BM3D. Both
implementations outperform all previous proposed GPU im-
plementations, without diminishing the quality of the results.
We also use the same backbone to get the first optimized
GPU implementation of VBM3D. The performance of this
implementation is sufficient for real-time video filtering. This
is achieved by regrouping all the filtering operations (fetch-
ing the patch data, the data transpositions, the 1D filterings
and the thresholding) into one kernel without requiring an
intermediate buffer for the patches being processed. This sig-
nificantly reduces the use of memory bandwidth. Moreover,
all memory accesses are designed so as to reduce bandwidth
and benefit from the cache.

The paper is organized as follows. Section 2 presents
the studied methods. Section 3 presents the specificity of
GPU implementations. Section 4 presents the efficient GPU
implementations for the methods presented in Section 2. The
efficiency of the proposed implementations are measured in
Section 5. Finally Section 6 concludes.

2 Architecture of the implemented Non-local denoising
algorithms

Both NL-means and BM3D (and their video extensions) are
based on a self-similarity principle. This means that their ar-
chitectures are relatively similar; built around a patch search
step as well as a patch group processing step. We present
the different methods in detail in Sections 2.1, 2.2 and 2.3 as
well as the different implementation options.

2.1 NL-means and its extension to video

Original NL-means. NL-means [12] is a popular image and
video denoising algorithm, due to its simplicity and speed.
It introduced the self-similarity hypothesis: for a patch (a
small region of the image) of a natural image, many similar
patches can be found in its neighborhood. For noisy images,
these similar patches will have different noise realizations
and therefore their information can be combined to estimate
the restored information. The original NL-means works as
follows: for each position (x, y) of an image u, consider
the corresponding reference patch P (x, y) centered at this
position. The value of the estimated image û at position (x, y)

is computed as a weighted average of all patches in the small



GPU acceleration of NL-means, BM3D and VBM3D 3

local neighborhood N(x, y) centered on (x, y). While the
self-similarity hypothesis says that similar patches should
be found, not all patches in the local region are similar. The
weights are therefore used to reduce the impact of patches
that are too different. The original NL-means suggested the
weighted average presented in Equation (1) where the only
parameter h is here to take into account the noise.

û(x, y) =
1

C

∑
x′,y′∈N(x,y)

w(x′, y′)u(x′, y′). (1)

with

w(x′, y′) = exp

(
−‖P (x, y)− P (x

′, y′)‖22
h2

)
(2)

and

C =
∑

x′,y′∈N(x,y)

w(x′, y′) (3)

Improved NL-means. In this work, an alternative version of
NL-means is implemented. The alternative version was pre-
ferred since it is more efficient (it requires less computations)
while still achieving denoising on par with the original im-
plementation. The improved version follows the same global
structure as the NL-means presented in the previous para-
graph. The alternative relies on four major differences.

First, we use Equation (4) instead of Equation (2). This
improvement proposed in [13] was shown to reduce a bias
that could lead to overfitting to noise in [31].

w(x′, y′) = exp

(
−
(‖P (x,y)−P (x′,y′)‖22−2σ

2)
+

h2

)
(4)

We decided to limit the number of patches used in Equa-
tion (1). Indeed instead of using all patches from the local
search region N(x, y), only use a subset comprised of the n
best nearest neighbors is used. This is possible since most
patches in the search contribute very little in Equation (1).
Very often only a few patches have a distance small enough
to contribute. The exception of the flat regions is mentioned
later. This choice is principally for computation reasons as
it speeds up the method as shown in [45] and [17]. However
it can also improve the quality of the results, acting as a
regularizer as shown in [32] and [39].

We also added a “flat patch trick” similar to NL-Bayes
[41]. For that, a simple test on the variance of the n patches
found is added. A flat region is detected when this variance is
too close to the variance of the noise (see Equation (5) with
β = 1.05).

V ar[{Pi | i ∈ {1, . . . , n}}] < βσ2 (5)

In that case we simply average the contribution of all pixels to
produce the estimated patch (all pixels of the estimated patch

Table 1 Difference between the original NL-means and the improved
NL-means version used for this work.

Original NL-means Improved NL-means

Patches used All patches in
the local region

n patches in
the local region closest

to the reference
Flat patches Same as other patches Average all pixels

Weights e

(
− ‖p−p

′‖22
h2

)
e

− (‖p−p′‖22−2σ2)
+

h2



Aggregation Center pixel of
the estimated patch

All pixels of
the estimated patch

with bilinear weights

have the same value). This means that n×p×p contributions
are averaged instead of only n contributions where p is the
width of the patch. This is done to improve the quality of
the denoising in flat regions, especially when the number of
patches used is small.

The last improvement is the use of a patchwise NL-means
as proposed in [13]. In the patchwise NL-means variant, the
entire patch is denoised by averaging and the entire estimated
patch is aggregated instead of just its center pixel. However,
instead of using the uniform weighting of [13] for the ag-
gregation, we use bilinear weighting. This means that pixels
close to a patch center will be more impacted by that patch.
The advantage of the patchwise NL-means variant is that
an aggregation step can be introduced to skip some pixels
like in BM3D [19] and NL-Bayes [41] and thus limits the
amount of computation. The final estimate of these pixels
comes from the aggregation of the overlapping results from
the other patches. The improved version of NL-means is de-
scribed in Algorithm 1 and the differences are summarized
in Table 1.

This is not the first work to try to improve NL-means
running time or improve the denoising performance. Exam-
ples of acceleration are [11] which uses a cluster tree for
the patch search and [52] which use FFT and the Summed
Squares Image for the filter computation. Examples of de-
noising performance improvements are [39] which uses a
Bayesian model to replace the NL-means weights. Instead
of using all the patches in the window, a locally adapted
dictionary is extracted locally from the image in a first pass,
and from a first denoising result - or oracle - in a second,
[24] proposes a local adaptation of the smoothing param-
eter h using a method based on SURE, [51] improves the
output of NL-means, especially on regions with few good
neighbors, by minimizing a global cost function involving
the NL-means weights, the NL-means output and the TV
norm, [37] replaces the NL-means weights with triangular
kernels and a scheme to automatically adapt the smoothing
parameter. The authors claim that their proposed kernels can
be compared to the one proposed in [13] which we use. How-



4 Axel Davy and Thibaud Ehret

Weighted

average

Aggregation

Final 

estimate

Noisy

image

Patch 

search

�at patch

trick

Fig. 1 Scheme of the NL-means algorithm

ever all these works focus on CPU implementations. Indeed
their modifications are not adapted for GPU contrary to our
improved NL-means that is specifically adapted for GPU.

Algorithm 1: Proposed improved NL-means version
Input: Input image u, N the number of similar neighbors, s the

patch step
1 Create an empty image v (using u size)
2 for each patch p of u on a grid of step s do
3 Search p1, . . . , pN the N nearest neighbors of p
4 if p1, . . . , pN are all flats (test with (4)) then
5 Average all pixels into a flat patch p̂
6 Aggregate all pixels of p̂ in v
7 else
8 Compute the aggregation weights wi for pi with (4)
9 p̂ =

∑N
i=1 wipi

10 Aggregate all pixels of p̂ in v

11 return v

NL-means extension to video. The extension of NL-means
to video is simply done by searching patches in a 3D neigh-
borhood as mentioned in [45].

2.2 BM3D by Dabov et al.

The denoising principle of BM3D exploits the redundancy of
similar patches. Groups of similar 2D patches are assembled
in a 3D stack. A separable 3D orthonormal transform is ap-
plied to this stack. The stack is denoised by applying a shrink-
age operator to the coefficients in a transformed domain. The
transform is selected to reveal sparsity in the transformed
domain. Most DCT patch coefficients are for example negli-
gible in natural images. However the transform being a patch
isometry, the noise remains spread evenly among all DCT
coefficients. The algorithm follows four basic steps:

1. Search for similar patches in the image and group them
in 3D stacks,

2. Apply a 3D linear domain transform to the 3D blocks,

3. Shrink the transformed coefficients,
4. Apply the inverse transform,
5. Aggregate the resulting patches in the image.

The construction of the estimated image is done by aggre-
gation, i.e. by combining the results of all the different esti-
mations. This principle is applied twice, once to compute a
basic estimate and a second time, using the basic estimate as a
guide, for a final estimation. In the second stage, this process
is indeed repeated but uses the denoised patches of the first
"basic" step to find similar patches. Furthermore, transform
thresholding is also replaced by a Wiener denoising using
the denoised patch as oracle. The method is synthesized in
Figure 2. In short, we implement exactly the same method as
the one presented in [19].

2.3 VBM3D by Dabov et al.

VBM3D is a straightforward extension of BM3D to video.
The only major difference lies in the patch search. While
BM3D looks for similar patches in a square search region
centered on the query patch, the patch search of VBM3D
takes advantage of the temporal dimension of videos. It also
starts by looking for similar patches in a square search re-
gion centered on the query patch, but then also searches in
neighboring frames in smaller square search regions cen-
tered at the same spatial positions as the patches found in
the neighboring frames. The method is synthesized in Fig-
ure 3. Parameters are also different. Most importantly, the
patch size for the Wiener step is different. It was 8 × 8 for
BM3D and is 7 × 7. Since 7 × 7 is more complicated to
implement we decided to continue using 8× 8. We checked,
using the implementation from [26], that this choice incurs
in no significant performance loss. See Table 2. This is the
only difference compared to the method proposed in [20].

3 An introduction to GPU architecture

To understand some of the implementation choices in Sec-
tion 4, some knowledge about GPU computing workloads is
required. We shall thus give an overview of the main particu-
larities and challenges of GPU programming. In this section,
we define a coherent hardware terminology.

GPUs and OpenCL for highly parallel workloads. Modern
GPUs have a highly superior computing power compared
to modern CPUs; they are highly multithreaded. There can
be 105 to 106 threads running at the same time. While par-
allelization of many data processing algorithms is generally
straightforward on CPU since CPUs’ cores are fairly inde-
pendent, GPUs need more care to take advantage of their
highly parallelized architecture. In OpenCL, the programmer



GPU acceleration of NL-means, BM3D and VBM3D 5

3D transform

Hard thresholding

Inverse

3D transform

Block-wise

estimates Aggregation

Weight

Step 1

R

R
3D transform

Wiener �ltering

Inverse

3D transform

Block-wise

estimates Aggregation

Weight

Step 2

Basic 

estimate
Final

estimate

Noisy

image

Patch 

search

Patch 

search

Fig. 2 Scheme of the BM3D algorithm

3D transform

Hard thresholding

Inverse

3D transform

Block-wise

estimates Aggregation

Weight

Step 1

R
3D transform

Wiener �ltering

Inverse

3D transform

Block-wise

estimates Aggregation

Weight

Step 2

Basic 

estimate
Final

estimate

Noisy

video

Predictive

Patch 

search

Predictive

Patch 

search

Fig. 3 Scheme of the VBM3D algorithm

Table 2 Comparison of denoising quality using either 7× 7 or 8× 8 patches for the Wiener estimation of VBM3D. Both have very similar results
and therefore justify our usage of 8× 8 patches instead of the suggested 7× 7 in [26].

σ Method Crowd Park Pedestrians Station Sunflower Touchdown Tractor Average
10 VBM3D (7× 7) 35.57 34.66 40.84 38.60 40.18 39.14 37.08 38.01

VBM3D (8× 8) 35.55 34.68 40.88 38.70 40.30 39.16 37.12 38.06
20 VBM3D (7× 7) 32.06 31.16 36.88 35.22 36.14 36.13 33.11 34.39

VBM3D (8× 8) 32.06 31.20 36.97 35.33 36.27 36.15 33.19 34.45
40 VBM3D (7× 7) 28.40 27.68 32.61 31.84 32.36 33.37 29.45 30.82

VBM3D (8× 8) 28.40 27.69 32.62 31.85 32.36 33.38 29.44 30.82

writes kernels, which are functions executing on the GPU.
All assigned threads execute the same kernel code but start
with a different work-item index. This leads each kernel to
do different portions of the work that needs to be parallelized.
Alongside kernels, an OpenCL program also needs CPU code
to manage the GPU memory and define when and with which
arguments these kernels should be executed.

The programmer has some control on how indices are
assigned to GPU threads. First, threads are assigned linearly.
This enables optimizations so to have consecutive threads
access consecutive memory regions. Second, the programmer
can define a workgroup size (called local size). The global
size is divided into regions of size defined by the local size.
Each region is assigned to a workgroup. The main interest of
a workgroup is that its threads have access to a common local
shared memory only visible to them. This memory enables

fast communications between threads. It can be used to store
common computations or to cache memory accesses.

A single instruction multiple threads (SIMT) model When
assigning indices to threads, the hardware groups consecu-
tive indices of a same workgroup into a warp. Each thread
inside a warp will execute in lockstep. Thus every thread will
execute the same instruction at the same time. For example
their memory accesses will be simultaneous. This knowledge
can be used to reduce the cost of memory accesses. However
this model also implies that if several threads need to take
different code paths – this phenomenon is called thread diver-
gence – all code paths taken need to be executed by the warp,
disabling the threads that should not take this code path.



6 Axel Davy and Thibaud Ehret

Memory accesses with GPUs Memory accesses are affected
by both latency and bandwidth. Latency is the time taken
for an operation to complete. GPUs have two ways of hid-
ing latency. First the code instructions can be organized to
have non-dependent computations inserted between a mem-
ory access and the code requiring its result. In this case the
hardware only needs to wait if the memory access has not
finished when the code requiring its results needs to be ex-
ecuted. Second several warps are scheduled on the same
computing resources. When a warp has to wait, other warps
can be executed.

The bandwidth is the maximum amount of data the hard-
ware can read or write from the memory per second. To max-
imize the usage of available bandwidth, optimized memory
access patterns are required. Any access to read memory at a
given location actually loads a batch of consecutive elements
(called cache line).

Memory accesses are cached to improve latency and
bandwidth. Reading the same data again while it is still in
cache enables faster access. However, GPU caches are very
small relative to the number of threads executing. To com-
pensate for this, GPU threads have access to a significant
number of registers, which are local storage only accessible
by a given thread.

More details on GPUs can be found in technical docu-
ments such as [38,2,49].

4 Implementation details

4.1 Patch search with a large, 2D or 3D, fixed window

In this section we shall describe how to implement an ef-
ficient patch search in a predefined 2D (or 3D in the case
of video) search window. The problem can be described as
such: Given an image subgrid with a pixel spacing of step
pixels, we want to compute the n best neighbors for each
position (the distance between patches used can be L1 or
L2 for example). The patch is of size p × p and the w × w
search window is centered on the reference patch. In the case
of a video, a temporal depth is added to the window. Typical
values for the parameters are p = 8, w = 21, n in {8, 16, 32}
and step in {3, 4}.

4.1.1 Design choices

Implementing this algorithm raises several challenges. Mem-
ory accesses must be optimized to make optimal use of the
cache. Indeed some computation is common for neighboring
patches when p > step and therefore can be shared. Writing
in memory all the computed distances would be heavy and
thus only a table of the best n patches must be maintained
during patch comparison. Only the positions (and if needed
the distances) of the n best patches are written at the end.

For the best efficiency, tables of best patch positions and
their weights must be stored in GPU registers. This leads to
solutions where one thread will manage all the best neigh-
bors for a given location. This also discourages solutions
where a given thread would compute, for a given window
offset, the distances between several reference patches and
their compared patches. Or solutions where a given thread
would handle all distances for a compared patch rather than
a reference patch. Thus in the following a given thread will
always track distances for a fixed reference position.

When a given thread computes the distances between
a reference patch and patches in a window, a lot of data is
shared between the computations: the reference patch data is
used for all computations and most of the data is in common
between a compared patch and its neighbor. The distances
must however be recomputed from scratch as different pix-
els are compared. Because of the restricted register space,
storing in registers the equivalent of two p × p patches per
thread may not be possible or be desirable. This encourages
spreading distance computations for a given reference patch
among several threads. These threads would store a part of
the reference patch as well as a part of compared patches and
reuse them across computation.

Efficient nearest neighbor table Since writing all patch dis-
tances in memory would not only require a lot of memory
space, but also bandwidth, we want to only store the final best
n neighbors. This implies at any point of the algorithm to re-
member the best n neighbors seen so far (their positions and
their distances), and forget the other positions and distances.

On many hardware, accessing an array with a dynamic
index (an index unknown at compilation time) requires stor-
ing the array in memory rather than registers. Even if the
array ends up staying in cache, the accesses would suffer
from latency and bandwidth limitations. Thus to prevent sub-
optimal performance, the table accesses must always be done
with a fixed index. When accessing the array with an index
depending on a loop counter, for example, the loop must be
unrolled (compiler hints enable that operation). Unrolling
the loop means the generated code does not contain the loop
jump. Instead the loop content is repeated for each loop in-
dex value, thus the array index is known during compilation.
Small arrays with only fixed indices accesses can have their
content assigned to registers instead of memory.

We propose two alternative algorithms to keep the n best
distances and positions: Algorithms 2 and 3. Keeping an
ordered table (Algorithm 2) has several advantages over an
unordered table (Algorithm 3): The maximum distance is
known directly and does not need to be recomputed, and
thread divergence is lower. Indeed in Algorithm 3, threads
are more likely to insert their elements at different indices
than in Algorithm 2.



GPU acceleration of NL-means, BM3D and VBM3D 7

Algorithm 2: Keeping an ordered table of distances
and positions

Input: New position pos and distance dist, two tables Positions
and Distances of length n each.

1 if dist < Distances[n-1] then
2 for i from n-1 to 1 do
3 insert← Distances[i-1] ≤ dist
4 Positions[i]← pos if insert else Positions[i-1]
5 Distances[i]← dist if insert else Distances[i-1]
6 quit function if insert

7 Positions[0]← pos
8 Distances[0]← dist

Algorithm 3: Keeping an unordered table of distances
and positions

Input: New position pos and distance dist, two tables Positions
and Distances of length n each.

1 max_distance← max(Distances[0], . . . , Distances[n-1])
2 if dist < max_distance then
3 for i from 0 to n-1 do
4 if Distances[i] = max_distance then
5 Positions[i]← pos
6 Distances[i]← dist

7 quit function
8 end
9 end

10 end

We found Algorithm 2 to be slightly faster indeed in our
tests on a NVIDIA GPU. However, in our tests on INTEL
and AMD GPUs, the performance was significantly lower
due to the compiler reorganizing the iterations in an unopti-
mized way for this algorithm, while not having issues with
Algorithm 3.

4.1.2 Naïve algorithm

In this naïve algorithm, each thread is assigned a different
reference patch for which to compute all the distances and
maintain the best n neighbors. No particular effort is spent to
encourage the compiler to use registers as a cache to reduce
the number of memory accesses.

Threads of the same workgroup are assigned to reference
patches on the same row. Thus all memory accesses are done
on the same image rows, to minimize the number of cache
lines per memory accesses in a warp, and more generally
improve the cache usage in our scenario. The efficient nearest
neighbor table presented above is used.

4.1.3 Convolution algorithm

This algorithm conceptually implements distance computa-
tions as separable convolutions while avoiding storing dis-
tances. Threads of a workgroup get assigned consecutive

positions on a row. For each window offset, each thread will
compute the distance between the p pixels of the column
at its reference position and at the compared position. This
partial result is written in local shared memory. Each thread
then reads the results of neighboring threads in order to de-
termine the distance for the whole current p× p patch. Only
threads with positions on the image subgrid maintain the best
n neighbors. For step = 1, this algorithm is the best perform-
ing among the proposed algorithms, due to its very efficient
work-sharing and memory pattern. However for higher steps,
some computation resources are wasted as a lot of threads do
not maintain any nearest neighbor table, an operation with
non-negligible cost (due to the phenomenon described in
Section 3). Note that no threads are assigned to rows which
do not intersect with the image subgrid of reference patches.

As p is small enough, the reference pixels can be stored in
registers and not reloaded. As for the pixels of the compared
patches, on systems with fast local shared memory, memory
accesses can be sped up by storing once (and reusing multiple
times) the data required for all the comparisons for a given
row of the search window.

4.1.4 Square algorithm

This algorithm is optimized for the case p = 8 and step = 4.
In that specific case, the distances between a reference patch
and its compared patches can be split into four distances of
4 × 4 smaller patches, and these sub-distances are exactly
shared among four reference patches. Thus this algorithm
proposes to divide the image subgrid into 16 × 16 squares.
Each square is assigned to a workgroup (thus workgroups
of 256 threads). Each thread tracks the distances for a given
reference patch, but only needs to compute the distances
for the top 4 × 4 region of its reference patch. Each thread
writes its intermediate result to local shared memory. They
can then retrieve the distance for the entire 8 × 8 patch by
reading the results from three other threads. Naturally, threads
at the bottom and right borders of the square workgroup
cannot compute the full distances, as no thread computed the
required remaining distances outside the square. Thus the
workgroup computes the neighbors for a 15× 15 region of
the subgrid. Some overlapping is required to cover the whole
image.

This work subdivision reduces efficiently memory ac-
cesses (the reference 4× 4 patch can be stored in registers,
and the memory accessed for the compared patch can be
reused for the next patch and kept in registers). Moreover,
threads can use memory commands to load four consecutive
pixels per call, which reduces the memory instruction count.

4.1.5 Column computations algorithm

This algorithm is an extension of the convolution algorithm,
adapting ideas from the square algorithm. It is less efficient



8 Axel Davy and Thibaud Ehret

than the square algorithm due to p not being as neatly divided
by step, but is more efficient than the convolution algorithm
when step > 1. Similarly to the convolution algorithm, a
group of threads is assigned on a row to compute distances
between a reference column and a compared column each.
However, contrarily to the convolution algorithm, each thread
computes not one, but k + 1 distances. The columns are
composed of p+ k ∗ step pixels, and the computed distances
are the k + 1 partial distances for the intersecting reference
patches on the subgrid. The partial results are written in local
shared memory and some threads (possibly the same ones)
access the results to track the distances for a given reference
patch. While for the convolution algorithm, the number of
reference patches tracked per thread was low (on average
1/step), in this algorithm k can be controlled to have almost
one patch tracked per thread.

Optionally, the partial distance computations and the
neighbor tracking can be done on different threads (from sep-
arate warps preferably to not waste computational resources),
and thus the total register need can be reduced per thread.
Indeed if threads do either the partial distance computations
or the best distances tracking, the registers used to keep the
best weights and distances can be the same as the ones used
to store the column reference pixels for example. While for
some algorithms and hardware, it is advised to use a low
number of registers to have better memory latency reduction,
in our case performance was not affected. We believe latency
was not an issue for our algorithm.

4.2 VBM3D’s patch search

In this section we shall describe how to implement an effi-
cient video patch search on the model of VBM3D’s patch
search. This patch search is similar to the one of Section 4.1.
However this time the search is performed in multiple frames
of the video. First, the q most similar patches are found in
each frame. Then, the n best among these neighbors are kept
for the rest of the processing. The reference frame (frame
containing the reference patch) has a search window of size
w1 × w1 centered on the reference patch while the other
frames have search regions that are the union of q search win-
dows of size w2 × w2 centered on the best neighbors of the
previous frame. Each time the reference patch is of size p×p
and is sampled on a subgrid of pixel spacing of step pixels.
Default VBM3D parameters are p = 8, w1 = 7, w2 = 5,
q = 2, n = 8, step = 6 for the first pass and step = 4 for
the second.

4.2.1 Design choices

The challenge of this patch search compared to the one of
Section 4.1 is that, except for the reference frame, the search
windows are shifted by an offset that depends on the patch.

While threads treating patches on the same row of the subgrid
would access the same rows at the same time for Section 4.1,
in this section different rows would be accessed because of
the patch-dependent shifts. Moreover a step of 6 means there
is quite a gap between the areas accessed by the threads, thus
more cache lines would be accessed if using such a partition.

To keep efficient memory access patterns, several threads
can be assigned to the same reference patch. Threads can
either handle comparisons for different parts of the search
windows or the reference patch can be separated into sub-
patches where each thread is assigned the comparisons of one
subpatch. In both cases, the partial results computed from
each thread must be communicated to a main thread that will
combine them.

4.2.2 Naive algorithm

For this naive algorithm, each reference patch is assigned
one thread that computes all distances and determines the n
best neighbors with the required temporal constraints (a max-
imum of q neighbors per frame). Except for the differences
in handling the search region, it is essentially similar to the
naive algorithm of Section 4.1.

4.2.3 Subdividing the test window

For this algorithm, t threads are assigned per reference patch.
For example t can be set to w1 or w2. The search windows
are divided into columns, and each thread searches for the
q nearest neighbors in its assigned column(s). One thread
combines the results of the other threads using local shared
memory. This work partition optimizes the memory access
pattern. Indeed all t threads will access neighboring data.

However, as said in Section 4.1.1, due to the restricted
register space, storing the equivalent of two p × p patches
in registers may not be possible or desirable. Thanks to the
subdivision in columns, the number of distances computed
per thread is small enough so that distances can be computed
in several steps by storing partial results in registers. In order
to do that, the patches are divided into l blocks (composed
of columns of the patch). We compute all the distances for
a given block, then the next, until the whole distances have
been computed. With this method, the partial patch data is
small enough to be kept in registers during the computation
of the partial distances for a given block. This optimization
reduces the number of memory operations significantly.

4.2.4 Subdividing the tested patches

For this algorithm, p threads are assigned per reference patch.
Each thread computes all partial distances for one column of
the patch. The partial distances are added to get the actual
distance (reduce-add). Since p is small enough, each thread



GPU acceleration of NL-means, BM3D and VBM3D 9

Patch search Averaging Aggregation

Input

Numerator

Denominator

Patch positions
Results

Fig. 4 Memory layout of NL-means. Buffers in green are read-only and
buffers in blue are read-write. Note that there is no intermediate buffer
for the processing of the patches.

can keep the reference data in registers and thus avoid reload-
ing the full compared data every time a different position is
tested. Moreover the memory accesses are optimized as each
thread loads consecutive data.

Compared to Section 4.2.3, this algorithm requires much
more communication between threads. However, some hard-
ware support specific fast instructions to share data between
threads, which can be used to implement an efficient reduce-
add operation. For hardware with such support, this variant
can be faster than the previous algorithm.

4.3 NL-means’ averaging and aggregation

4.3.1 Design choices

Once the best neighbors and their distances are computed,
patch distances need to be converted to NL-means weights.
We chose to do this computation before saving the results
of the patch search, thus saving directly NL-means weights.
While it is possible to do both averaging and aggregation at
the same time (using a scheme inspired from Section 4.1.4),
we did not obtain good performance. Thus we separated the
averaging and the aggregation steps. The memory layout of
the proposed improved NL-means is presented in Figure 4.

4.3.2 Naive averaging

In the naive algorithm, a thread computes the averages for a
single patch. In order to keep register usage low, all computa-
tions are divided per row, moving to the next row only when
the results of the previous row has been saved for aggrega-
tion.

4.3.3 Optimized averaging

GPUs have specific instructions to access several consecutive
data elements per threads. However depending on the data
type and the patch width p, it is not possible to read or save a
whole patch row in a single memory instruction when using a
single thread. Keeping that in mind, in this optimized variant
several threads are used to reduce even further the number of
memory commands required. Instead of assigning one thread
per patch, p threads can be assigned per patch. Each thread

Algorithm 4: Proposed NL-means filtering kernel
Input: Input image u, the output accumulator’s numerator num

and denominator den, the positions of the nearest
neighbors positions and the corresponding weights w,
the reference patch position and the column j to process

1 mean← 0
2 var← 0
3 for i from 0 to p-1 do
4 for k from 0 to n-1 do
5 data← u[k-th neighbor row i col j] // for patches of

width p, p consecutive threads access the same patch
at consecutive columns

6 mean← mean + data
7 var← var + data * data

8 mean← reduce_add(mean) / (p*p*n)
9 var← reduce_add(var) / (p*p*n) // The reduce operation is only

among the p threads treating a same patch
10 var← var - mean * mean
11 flatpatch← var <= βσ2

12 for i from 0 to p-1 do
13 if flatpatch then
14 denoised_pixel← mean
15 else
16 denoised_pixel← 0
17 for k from 0 to n-1 do
18 denoised_pixel← denoised_pixel + w[k-th

neighbor] * u[k-th neighbor row i col j]

19 Accumulate denoised_pixel on num and den with bilinear
weighting

handles the averaging for a column of the patch. Reading
or writing a row is done in one memory command, thus
guaranteeing optimal memory access patterns. The resulting
kernel is summarized on Algorithm 4.

4.3.4 Aggregation using atomics

For NL-means, only the results of the denoised version of
the reference patch are aggregated (contrarily to BM3D and
VBM3D where all similar patches are denoised and aggre-
gated). Thus, the number of patches covering a given pixel
aggregated together is known in advance. In this case, it is
not required to keep count of the number of covering patches
for each pixel and their weights. Each result can be added
with atomics on a single buffer, which will then be normal-
ized correctly for each pixel. Atomics are necessary because
several threads from different warps can write at the same
positions. However, the normalization code is required to
handle explicitly all patch sizes and step. Thus our code does
not implement this optimization, and simply uses an accumu-
lation buffer for the sum of the weighted denoised patches,
and a second accumulation buffer for the sum of the weights.
Then a simple shader divides the former by the later.

NL-means weights being floats, the averaging results are
floats. Depending on the data dynamic and the required pre-
cision, int or long atomics can be used to aggregate data



10 Axel Davy and Thibaud Ehret

thresholded up a given precision (for example 1.000123
gets written as the integer 10001). Float atomics can also
be used, but unfortunately to date most hardware do not sup-
port float atomics and hardware which do don’t support them
in OpenCL. Emulating float atomics can be done with int
atomics, but with a significantly higher cost. Indeed, a float
add needs to be implemented as several int atomic operations:
’reading the data’, ’writing the data plus our result if the data
is still set to the one we read previously’ (this operation re-
turns the value of the data before the operation). This needs
to be repeated if the return value of this last operation is not
what we expected (it means other threads updated the value
after you accessed it). This atomic float add emulation is

Algorithm 5: Emulated atomic float add
Input: Write address p and content to add a

1 current← p[0] // Reads initial value
2 repeat
3 expected_current← current
4 next← expected_current + a // Compute float add
5 current← atomic_cmpxchg(p, expected_current, next)

// Try to update
6 until as_uint(current) = as_uint(expected_current) // Repeat if

value changed before updating

presented on Algorithm 5.

4.3.5 Aggregation without atomics

As said in Section 4.3.4, for fixed p and step, only one ac-
cumulation buffer is enough for the aggregation since the
patch aggregation weights are known in advance. If step is
large enough, for example p = 8 and step = 4, it can be
advantageous to not even use an accumulation buffer and
thus avoid atomics completely. Instead of having a single
buffer containing the aggregated value, we write the different
values to aggregate per pixel to several different buffers (four
buffers in the example above). These buffers can then be read,
summed and normalized all a once to get the final output.

4.4 BM3D and VBM3D’s filtering and aggregation

4.4.1 Design choices

Both BM3D’s first and second pass as well as VBM3D’s first
pass use 8×8 patches. While VBM3D uses 7×7 patches for
its second pass. We believe implementing VBM3D’s second
pass using 8 × 8 patches does not change the algorithm
performance (see Section 2.3). For this reason, we will focus
on using 8 × 8 patches only. The number of considered
patches per location is always a power of two, 1, 2, 4 or 8
(VBM3D and BM3D), 16 or 32 (BM3D).

Algorithm 6: Proposed BM3D filtering kernel (for the
first pass, when the maximum number of neighbors is
8, the 2D transform is the DCT and the 1D transform
is the Hadamard transform)

Input: Input image u, the output accumulator’s numerator num
and denominator den, the positions of the nearest
neighbors positions, the reference patch position to
process for this kernel call

1 Retrieve the patch stack from positions // Each of the 64
threads starts with a table T of 8 elements containing one row
of the stack

2 Apply the 1D DCT on T
3 Apply Algorithm 9 on T
4 Apply the 1D DCT on T
5 Apply Algorithm 10 on T
6 Apply Hadamard on T
7 Apply BM3D’s hard thresholding on T
8 Apply Hadamard on T // Hadamard is its own inverse
9 Apply the inverse of Algorithm 10 on T

10 Apply the 1D DCT on T // The normalized DCT is its own
inverse

11 Apply Algorithm 9 on T // Algorithm 9 is its own inverse
12 Apply the 1D DCT on T
13 Accumulate the results on num and den with BM3D’s

weighting scheme

One way of solving the filtering is first to read the nearest
neighbors for each position, form the associated 3D stack of
patches, and write it to memory. The filtering can then be
implemented as successive passes on the buffer containing
all the stacks. However, the bandwidth needed to write and
process the 3D stacks would lead to a suboptimal algorithm.
Instead we propose to use the high number of registers avail-
able on a GPU to save bandwidth. All considered hardware
have workgroups of 64 threads and at least 128 registers
available per thread. Thus it is possible to store the 8×8×32
elements of a 3D stack of patches in the registers of the
threads of a given workgroup.

Our proposal is to assign a workgroup of 64 threads for
each position to process. The 3D filtering can be implemented
as three separate 1D filtering operations (one for each dimen-
sion), followed by a shrinking operation (thresholding or
Wiener) and finally the three separate inverse 1D filtering
operations. At all times, one thread only has direct access to
a subset of the 3D stack, such as a few rows. To perform the
3D filtering, each thread performs a 1D filtering operation,
and then exchanges its data with the other threads so to have
a new dimension of the data (for example columns instead of
rows). We call that operation transposition. A transposition,
for example, moves from a state where each thread contains
one (or a few) patch column(s) to a state where each thread
contains one (or a few) patch row(s). Implementing efficient
1D filtering or shrinking operations is not hard, thus in the
following we focus on the transposition operations. The over-
all pseudo-code of BM3D’s filtering kernel is presented in
Algorithm 6 for the specific case of the first pass with a max-



GPU acceleration of NL-means, BM3D and VBM3D 11

Patch search Filtering 

Step 1 Step 2
AggregationPatch search Filtering Aggregation

Input

Numerator

Denominator

Patch positions
Results

Fig. 5 Memory layout of BM3D and VBM3D. Buffers in green are
read-only and buffers in blue are read-write. Note that there is no
intermediate buffer for the processing of the patch stack.

imum number of 8 neighbors. For 16 or 32 neighbors, each
thread reads not one, but two or four rows, respectively, and
the operations are repeated for each. The memory layout of
the proposed design choices is presented in Figure 5.

4.4.2 Efficient transpose operations

We describe here the case of eight patches (of width p = 8)
and will then extend to the other number of patches.

Initially, each of the 64 threads contains a column of one
of the patches. Thus each thread contains eight elements and
can apply one of the 1D transforms.

swapping columns and rows The first step is to swap the data
so that each thread gets one row of one of the patches instead
of a column. To proceed with the swap, each thread writes
the eight pixel values it has in local shared memory, which is
a fast memory reserved for the 64 threads. Then each thread
can read from the local shared memory its target eight pixel
values. Doing that efficiently is not as simple as it sounds.
Extra care must be taken when reading and writing data so
to achieve good performance.

Let us first formalize the transpose operation. It starts
with values stored in a table T of size [8][8][8] representing
the 3D patch stack. T is stored in the threads, each thread
containing the section [zi][.][yi] (corresponding to the column
yi of patch zi) where i is the thread index (from 0 to 63), and
zi, yi thread coordinates, with yi = i mod 8 and zi = i/8

. The goal is to have the data reorganized as in a second
table T ′′ such as T ′′[zi][yi][.] = T [zi][.][yi] . In practice the
memory of T is reused for T ′′.

The most “naive” way of performing the swap is to simply
write T in local shared memory in an arbitrary order, and
then read the indices in the right order. Examples of such
"naive" algorithms are described in Algorithms 7 and 8. Both
algorithms are equivalent.

We shall analyze more in depth Algorithm 8. In this
naive version, the data is written into an intermediate 3D
table T ′ of size 512 in local shared memory. The table T ′ is
organized as a buffer of size [8][8][8] . Each thread (zi, xi)

writes its data so as T ′[yi][zi][.] = T [zi][.][yi] . It just remains
to read T ′ in the right order to obtain T ′′, T ′′[zi][yi][.] =
T ′[.][zi][yi] . Elements are written and read one by one in
each thread (loop on k in Algorithm 8), thus resulting into

Algorithm 7: Swapping columns and rows (Naive -
variant 1)

Input: zi, yi thread indices, T thread-specific table of length 8,
T ′ table in local shared memory

1 for k from 0 to 7 do
2 T ′[64k+ 8zi + yi]← T [k]
3 end
4 barrier() // Wait for all threads to finish writing
5 for k from 0 to 7 do
6 T [k]← T ′[64yi + 8zi + k]
7 end

Algorithm 8: Swapping columns and rows (Naive -
variant 2)

Input: zi, yi thread indices, T thread-specific table of length 8,
T ′ table in local shared memory

1 for k from 0 to 7 do
2 T ′[64yi + 8zi + k]← T [k]
3 end
4 barrier() // Wait for all threads to finish writing
5 for k from 0 to 7 do
6 T [k]← T ′[64k+ 8zi + yi]
7 end

eight write instructions and eight read instructions for each
thread (ignoring the instruction merging mentioned later).
While at read time, the threads load 64 consecutive elements
and thus guaranteeing no bank conflicts, at writing time the
proposed pattern triggers bank conflicts Indeed threads 0,
4, 8, etc, write in their first call at cases 0, 32, 64, which
map to the same memory bank (all current hardware have
either 16 or 32 banks). The same problem happens with the
other similar groups of threads. The bank conflicts cause
the accesses to the same banks to be serialized, thus being
executed as several separate calls. The write performance will
thus be suboptimal. The solution to improve performance
is to ’shift’ the locations of the data written by the threads.
The corrected algorithm is identical except T ′ has padding.
It is of size [8][64 + x] , but is interpreted as a table of size
[8][8][8] as before, but with an offset of x times the index of
the first dimension.

This performance trick is well documented and is de-
scribed for example in [49], which suggests x = 1 in the
case of a matrix transpose. However, it does not give the best
performance on all hardware: Indeed optimal performance
is achieved by maximizing the use of banks per calls. How-
ever, some hardware can write or read several consecutive
elements per thread in one call. The tested INTEL hardware,
which can have a warp size of eight, can support reading
or writing four elements per thread in one call. Reading or
writing only one element results in suboptimal performance
as the banks are underutilized. The tested AMD hardware,
which has a warp size of 64, executes local shared memory
commands in four parts, first the first 16 threads, etc, until



12 Axel Davy and Thibaud Ehret

the last 16 threads, and ideally each of these subcalls should
use all the banks (they have 32). Like for the INTEL GPU,
the tested AMD GPU can write or read several consecutive
elements per thread in one call (two per call). The tested
NVIDIA hardware has warps of 32 threads, has 32 banks,
and does not process them in two subcalls. Note that we
assume that a bank covers elements of four bytes, which is
the size of a float (The NVIDIA hardware can configure it to
eight bytes).

Based on this variety of behaviors, it is difficult to design
read or write patterns that are optimal on all hardware as
it depends on the warp size, the number of banks and how
they are accessed. However, assuming the number of banks
is a divisor of 64 - our workgroup size -, we noticed that
having each thread write (or read) the maximum number of
consecutive elements it can write (or read) in one instruction
is always an optimal pattern. The same can be noticed when
having threads write (or read) from consecutive addresses
modulo 64 (thus to consecutive banks). We will use these
access patterns in our algorithms for best performance and
compatibility (we expect these patterns will still be optimal
for future generations).

Algorithm 9: Swapping columns and rows
Input: zi, yi thread indices, T table of 8 registers for the thread,

T ′ table in local shared memory
1 for k from 0 to 7 do
2 T ′[(64 + x)yi + 8zi + k]← T [k]
3 end
4 barrier() // Wait for all threads to finish writing
5 for k from 0 to 7 do
6 T [k]← T ′[(64 + x)k+ 8zi + yi]
7 end

This leads us to Algorithm 9. The best x corresponds to
the maximum number of consecutive elements the hardware
can read or write per thread per access. Thus, for the tested
hardware, x = 4 should be best for INTEL, x = 2 for AMD,
and x = 1 for NVIDIA. We verified experimentally that
indeed these parameters proved to be the best performing
for each hardware. We also checked the generated assembly
code to confirm that the compiler combines the writes of
consecutive data into write packets of x elements. We expect
the best value of x to change for future hardware generations
and should be set accordingly. When memory organization
and the memory command packing abilities are not known for
a specific hardware, the best x can be determined empirically.

The proposed writing order covers all the banks per
groups of threads in a warp and uses all the banks. It is
therefore the best possible pattern. For example, on the IN-
TEL hardware with x = 4, the first write of thread 0 writes
to banks 0, 1, 2, 3, thread 1 writes to banks 4, 5, 6, 7, etc.
This corresponds indeed to the optimal pattern we suggested.

Swapping rows and channels Thanks to the transpose pre-
sented previously, the first two 1D transforms can be applied
on both the rows and the columns. The last 1D transform
must be applied on the third dimension of the 3D patch stack.
This means that each thread must contain the third dimension
of the 3D stack for a given patch pixel. The only constraint
for this transposition is for the position (0, 0) of each trans-
formed patch. The rest of the elements does not require any
specific ordering as long as the inverse transposition puts
back the data in the correct thread. In our case we will re-
quire that the position (0, 0) of each transformed patch is put
in the thread 0. Furthermore we will assume x is either 1, 2,
4 or 8.

To reformulate the problem, we start with data as a table
T of size [8][8][8] stored in the threads. Each thread starts
with the section [zi][yi][.] where i is the thread index, and
zi, yi thread coordinates. We want the data to be stored as
[.][µi][νi] , with µi, νi thread coordinates. We will use local
shared memory as intermediate table T ′ of size [8][8/x +

64][8][x] , and assign

T ′[zi][j/x+ zi ∗ 8][yi][j mod x] = T [zi][yi][j].

This writing pattern verifies the conditions set in the previous
paragraph. It avoids bank conflicts and enables full use of
the ability of the hardware to write x elements in one call. At
reading time, we assign T [j][zi][yi] = T ′[j][ai+j ∗8][bi][ci]
, where ai ∗ 8 ∗ x + bi ∗ x + ci = zi ∗ 8 + yi . As among
threads, yi increases first, then zi , the pattern also prevents
bank conflicts (it verifies again the conditions set previously).
Contrary to when writing T ′, the read commands cannot be
combined to read more than one value per call.

One problem with this proposed algorithm is the size of
T ′ which can be huge: It is of length 512(1 + x). However
T ′ can be fit in a much smaller table of size [8][8/x][8][x] ,
that is of length 512, while maintaining an optimal access
pattern. To do so, modulus will be used in the writing and
read address computations.

Algorithm 10: Swapping rows and channels
Input: zi, yi thread indices, T table of 8 registers for the thread,

T ′ table in local shared memory
1 for h from 0 to (8/x - 1) do
2 for j from 0 to x-1 // The x memory operations are merged
3 do
4 T ′[64zi + (8zix+ 8hx+ yix+ j) mod 64]←

T [hx+ j]

5 end
6 end
7 barrier() // Wait for all threads to finish writing
8 for k from 0 to 7 do
9 T [k]← T ′[64k+ (8kx+ 8zi + yi) mod 64]

10 end



GPU acceleration of NL-means, BM3D and VBM3D 13

Algorithm 10 presents the entire algorithm (with T ′ a 1D
table of length 512). It is easier to visualize on Algorithm 10
that the algorithm is correct and that it indeed gives the
pattern we described in the previous paragraph: Since (8zi +

yi) indexes threads from 0 to 63, the loops of Algorithm 10
access indeed consecutive addresses modulo 64 for a fixed h
and a fixed k. Thus optimal performance is guaranteed.

Generalizing to 1, 2, 4, 16 or 32 patches The swapping oper-
ations presented previously assumed we have to process eight
patches. In order to generalize to more patches, we simply
need to store several columns of data initially per thread, and
call the transposition functions presented previously several
times. When having fewer patches, some operations could
be avoided. However, we simply called the function for eight
patches while setting the missing patches to 0 and therefore
just ignoring them in the 1D transforms.

4.4.3 On the use of atomics for the aggregation

Due to the non-uniform weighting, the weighted pixel values
being aggregated have a wide range and, contrarily to NL-
means, many elements are aggregated per pixel for BM3D
and VBM3D. We found that even with 8-bit RGB images,
32 bits integers could be insufficient to store the weighted
sum in some corner cases. Long atomics (64-bits integers)
are recommended. When not supported, the emulation of
float atomics discussed in the Section 4.3.4 should be used.
Integer atomics could be used if reducing the range of the
weights used for the aggregation, though the PSNR could be
affected.

4.5 Conclusion

In this section, we have explained in detail different opti-
mized implementations (as well as their naive versions) of the
pieces of code required for NL-means, BM3D and VBM3D.
In our implementation, which we compare to other imple-
mentations in Section 5, we have selected the best optimized
codes among the ones described, depending on the param-
eters. For the patch search of NL-means and BM3D, we
use the fast variant described in Section 4.1.4 when possible
(p = 8, step = 4), else use the variant of Section 4.1.5, ex-
cept for step = 1, in which case the variant of Section 4.1.3
is fastest. The naive variant is only used for border handling
when needed. For NL-means, we use the optimized aver-
aging, rather than the naive one. We do aggregation using
atomics for all methods. Last, VBM3D’s patch search uses
Section 4.2.4 for INTEL GPUs, else the algorithm of Sec-
tion 4.2.3.

Table 3 Compared configurations: The first accelerator is a 16-core
CPU, while the other accelerators are GPUs with different levels of
performance. The bandwidth and number of operations per seconds
were obtained with Clpeak, which estimates the actual peak figures
which can be obtained with OpenCL.

Acc. Description Bandwidth Float ops
0 Intel Xeon W-2145 CPU (18.1.0.0920) 63 GB/s 1.8 T/s
1 INTEL i7-6600U GPU (NEO 18.21.10858) 23 GB/s 380 G/s
2 AMD Radeon RX 480 (2766.4) 209 GB/s 5.7 T/s
3 NVIDIA TITAN V (390.129) 611 GB/s 13.7 T/s

Table 4 Comparison of NL-means’ denoising performance (average
PSNR) on several datasets with the compared implementations (noise
standard deviation of level 20).

Method BSD68 Kodak IPOL
[13] 28.81 29.93 31.89

OpenCV 28.27 29.33 31.53
OpenCV GPU 28.24 29.31 31.55

Ours P5,S1 28.92 30.13 32.60
Ours 28.51 29.76 32.12

5 Benchmarks

In this section we will compare the performance, both in
terms of running time and PSNR, of our implementations
with several reference implementations. To remove the ef-
fects of differences in color handling, all the experiments
in this paper are grayscale. The denoising performance will
be compared on several datasets: BSD68 a set of 68 images
from the Berkeley segmentation dataset [48], Kodak a set of
24 images from the Kodak dataset [30] and IPOL a set of 16
images from [15]1. In addition, we compare the denoising
performance and running time for two images: Lena and
CMLA (from [10]). The former is a 512× 512 image, while
the latter is 4608×3456. Table 3 shows the different OpenCL
devices, called accelerators (acc.) later on, considered. We
consider a high-end multicore CPU (0), an integrated GPU
(1), and middle-range consumer grade GPU (2) and a high-
end GPU (3).

NL-means In this section, we compare our GPU implemen-
tation to the reference CPU code of [13] and to OpenCV (ver-
sion 4.1.0 [9]) with both a CPU and a GPU implementation.
We compare the denoising performance with additive white
Gaussian noise of standard deviation σ = 20. For this noise
level, [13] recommends 5 × 5 patches and h = 0.4σ = 8.
However, likely due to differences in the implementation
choices, h = 8 did not give good results for OpenCV. By
maximizing the PSNR on a serie of images of the Waterloo
dataset [43], we found the best parameter for OpenCV to be

1 Available on http://mcolom.info/download/no_
noise_images/no_noise_images.zip

http://mcolom.info/download/no_noise_images/no_noise_images.zip
http://mcolom.info/download/no_noise_images/no_noise_images.zip


14 Axel Davy and Thibaud Ehret

Table 5 Comparison of NL-means’ denoising performance (PSNR) and
execution time with the compared implementations. CPU methods were
run on a single core of an Intel(R) Xeon(R) W-2145 CPU @ 3.70GHz.
GPU methods were run on accelerator 3. The running times and the
95% confidence intervals were estimated from 100 runs. Running time
for GPU methods corresponds to the sum of time spent running GPU
kernels, obtained with nvprof or OpenCL profiling information. Running
time for CPU methods corresponds to execution time after the image is
loaded and before the result is saved.

Method Lena (PSNR-Time) CMLA (PSNR-Time)
[13] 31.59 - 8.5 ±0.2 s 31.75 - 522 ±5 s

OpenCV 31.20 - 279 ±2 ms 31.12 - 16.0 ±0.3 s
OpenCV GPU 31.18 - 6 ±1 ms Out of memory

Ours P5,S1 32.05 - 4.27 ±0.02 ms 32.32 - 219.2 ±0.5 ms
Ours 31.86 - 0.699 ±0.007 ms 31.99 - 20.7 ±0.1 ms

Table 6 Comparison of the time taken on the compared accelerators for
the main passes (NL-means with our default parameters) on the CMLA.
The running times and the 95% confidence intervals were estimated
from 100 runs.

Accelerator search filtering Total
0 1672 ±6 ms 282 ±4 ms 1950 ±7 ms
2 40 ±1 ms 24.0 ±0.3 ms 64.5 ±0.5 ms
3 15.91 ±0.08 ms 4.44 ±0.02 ms 20.7 ±0.1 ms

h = 20 for this noise level with 5× 5 patches. Due to the dif-
ferences in our implementation (number of neighbors, patch
size, flat patch trick, aggregation), a different parameter hwas
needed as well. We used h = σ. We compare our implemen-
tation for two patch sizes. By default, our implementation
uses 8× 8 patches with a subgrid step of four. Thus a pixel
is covered by four patches. We also show results for patches
of size 5× 5 and a subgrid step of one, which corresponds to
the parameters of the reference implementation.

We illustrate the denoising performance of the imple-
mentations on standard datasets in Table 4. As can be seen,
OpenCV performs about the same with the CPU and GPU
backends, but underperforms compared to the reference im-
plementation. Our code with the default parameters (Ours)
was slightly outperformed by the reference implementation
on BSD68 and Kodak, but performed better on the IPOL
dataset. When analyzing the results, one can see that our
method has better denoising performance on images with
flat regions thanks to the flat patch trick. Due to the use of
larger patches than recommended for this noise level, the
performance is slightly lower elsewhere. When using our
code with 5 × 5 patches and a subgrid step of 1 (Ours P5,
S1), our method outperforms the reference implementation
on all datasets tested. The gains over [13] can be explained
by the use of a bilinear scheme for the combination of the
results of overlapping patches, instead of using a constant
weight, and by the flat patch trick.

In Table 5, we compare both the denoising performance
(PSNR) and the execution time on Lena and CMLA. One

can observe that OpenCV’s CPU implementation is more
than 30 times faster than the reference code, although at
the cost of a lower PSNR. Our GPU code runs significantly
faster with the default parameters than with 5 × 5 patches
and a subgrid step of 1, but the denoising quality is slightly
lower. Both compared versions of our code ran faster than
OpenCV’s GPU implementation on Lena, while obtaining
better denoising results. OpenCV could not denoise CMLA
on the GPU as it required intermediate buffers that would not
fit in the 12GB GPU memory. One can see that the execution
time of our implementation does not scale linearly with the
image resolution. The difference in running time per pixel
between both images can be explained by the effects of cache
(Lena fits completely in the GPU cache) and better use of the
parallelization capabilities of a GPU in the case of CMLA
which is bigger. The running time of our implementation on
three different accelerator is analyzed in Table 6. Most of
the running time is spent on the patch search, rather than
the NL-means weighting (filtering). The aggregation of the
results (normalization of an aggregation buffer) is small and
therefore not displayed. It is nonetheless included in the total
running time. Accelerator 1 could not compute the result
on CMLA as the execution time was more than the timeout
threshold of this GPU. We can notice our code executing
on CPU (accelerator 0) is competitive with the compared
CPU implementations (the equivalent single core time is 31s,
compared to OpenCV’s 16s and [13]’s 522s), even though
our code was not optimized for CPU specifically. This is
likely due to an efficient use of the CPU extended instruction
set (SSE, AVX, etc) for the code generated by OpenCL.

BM3D There are many different implementations of BM3D
available. We compare our code to two GPU implementa-
tions, [35,36] and [53], and two CPU implementations, [40]
and OpenCV’s. [40] is a reference CPU re-implementation
of the original paper and OpenCV is the implementation that
can be found in OpenCV. We only consider open-source im-
plementations reproducing the original method described in
[19].

In Table 7, we show the default parameters of these meth-
ods as well as which parameters can be modified. No other
methods use the default parameter proposed in the original
BM3D publication. Only our method can be configured to
have exactly these parameters. It has to be noted, though, that
the Hadamard and Haar transforms have been shown to give
equivalent results in [19], thus arguably, [40]’s parameters
are almost identical to the original, except for the default
search region size.

Due to the different sets of 3D filters supported by each
implementation, they are not exactly comparable. Thus, we
only compare using the same parameters, [40], [35] and our
implementation. The patch search region is set to 39 × 39,
the 2D transforms are both set to DCT, and the 1D transforms



GPU acceleration of NL-means, BM3D and VBM3D 15

Table 7 Default parameters for σ = 20 for all BM3D methods compared. Parameters in gray can be modified easily by changing a value in the
code, or passing an argument when calling the method.

Method patch size search region size 2D transform 1D transform patch step
Number of nearest

neighbors
Maximum distance

for a nearest neighbor
Original [19] 8× 8 / 8× 8 39× 39 / 39× 39 Bior/DCT Haar/Haar 3/3 16/32 2500/400
[40] 8× 8 / 8× 8 33× 33 / 33× 33 Bior/DCT Hadamard/Hadamard 3/3 16/32 2500/400
OpenCV 4× 4 / 4× 4 16× 16 / 16× 16 Haar/Haar Haar/Haar 1/1 8/8 2500/400
[35] 8× 8 / 8× 8 23× 23 / 23× 23 DCT/DCT Hadamard/Hadamard 3/3 16/32 3000/400
[53] 8× 8 / 8× 8 32× 32 / 32× 32 DCT/DCT DCT/DCT 4/4 8/8 3000/400
Ours 8× 8 / 8× 8 21× 21 / 21× 21 Bior/DCT Hadamard/Hadamard 4/4 8/8 2500/400

Table 8 Comparison of denoising performance (average PSNR) of
BM3D on several datasets of the compared implementations (noise
standard deviation of level 20). *: The default parameters were replaced
by the fixed parameters used to compare the three implementations.

Method BSD68 Kodak IPOL
[40]* 29.32 30.68 33.06
[35]* 29.26 30.65 33.05
Ours* 29.27 30.66 33.06
[40] 29.50 30.83 33.23

OpenCV 29.04 30.24 31.82
[35] 29.26 30.61 32.94
[53] 27.34 29.60 31.94
Ours 29.34 30.65 32.91

Table 9 Comparison of denoising performance (PSNR) and execution
time between for the compared BM3D implementations. CPU meth-
ods were run on a single core of a Intel(R) Xeon(R) W-2145 CPU
@ 3.70GHz. GPU methods were run on accelerator 3. The running
times and the 95% confidence intervals were estimated from 100 runs.
Running time for GPU methods corresponds to the sum of time spent
running GPU kernels, obtained with nvprof or OpenCL profiling infor-
mation. Running time for CPU methods corresponds to execution time
after the image is loaded and before the result is saved. *: The default
parameters were replaced by the fixed parameters used to compare the
three implementations.

Method Lena (PSNR-Time) CMLA (PSNR-Time)
[40]* 32.98 - 7.68 ±0.06 s 33.39 - 491 ±5 s
[35]* 32.97 - 22.24 ±0.07 ms 33.40 - 986.5 ±0.8 ms
Ours* 32.98 - 16.15 ±0.05 ms 33.40 - 513 ±4 ms
[40] 33.04 - 6.84 ±0.08 s 33.38 - 425 ±3 s

OpenCV 31.87 - 3.36 ±0.07 s 31.71 - 204.6 ±0.5 s
[35] 32.94 - 17.97 ±0.04 ms 33.07 - 760.7 ±0.7 ms
[53] 32.11 - 52 ±4 ms 32.67 - 5.06 ±0.01 s
Ours 32.71 - 2.59 ±0.02 ms 32.89 - 91.9 ±0.5 ms

Table 10 Comparison of the time taken (in ms) on the compared ac-
celerators for the main passes (BM3D with our default parameters)
on CMLA. The running times and the 95% confidence intervals were
estimated from 100 runs. *: Using long atomics instead of float atomics

Acc. search filtering search filtering Total
0 446 ±5 2106 ±9 5230 ±10 2150 ±10 9930 ±30
1 1090 ±10 962 ±4 1081 ±5 713 ±4 3860 ±10
2 17.6 ±0.2 87.2 ±0.2 30.2 ±0.2 105.0 ±0.2 241.9 ±0.2
2* 17.6 ±0.3 35.3 ±0.4 20.2 ±0.3 38.3 ±0.3 124.6 ±0.5
3 6.47 ±0.04 33.34 ±0.07 11.75 ±0.05 39.61 ±0.07 91.8 ±0.2

to Hadamard. The patch step is 3, and the maximum number
of nearest neighbors is 16 for the first pass, and 32 for the
second pass.

We also compare the performance of all implementations
with their default parameters. Similarly as before, we show
the denoising performance on standard datasets in Table 8
and denoising performance and running time for two images
in Table 9. Details about the running time of our method
can be found in Table 10. As we can see, OpenCV and [53]
underperform compared to other methods. This is likely due
to their choice of 2D or 1D transforms.

The three compared methods set to the same fixed pa-
rameters had similar denoising performance, which validates
the equivalence of these implementations, besides the default
parameters. However our implementation was faster than the
other GPU implementation [35]. The main optimization com-
pared to [35] is the use of a single kernel to implement all
the filtering operations (see Section 4.4.1). When comparing
the performance of all the implementations with their default
parameters, [40] had the best denoised results, and our im-
plementation was the fastest. Our default parameters were
chosen to maximize denoising performance while looking
for aggressive speedups. As a result, it ran almost nine times
faster than the closest competitor. However as our parameters
can easily be changed, our code can also be used to reproduce
the results of the best performing [40]. This is done at a cost
similar to the one reported in Table 9 as the main difference
between the parameters suggested in [19] and the fixed one
used for the table is the use of Bior instead of DCT for the
first pass.

Table 10, which analyzes the running time of our method
on several accelerators, shows that, contrary to NL-means,
most of the running time is spent in the filtering of the patch
stacks, rather than in the search of neighbors. One limiting
factor of this filtering is the writing of the results on an
accumulation buffer with emulated float atomics. As said in
Section 4.4.3, hardware long atomics can be used if the range
of the input is known. We can see in Table 10 that accelerator
2 benefits significantly from hardware long atomics since the
total running time is almost divided by two. The hardware of
accelerator 3 is able to do hardware float atomics and long



16 Axel Davy and Thibaud Ehret

Table 11 Comparison of denoising performance (average PSNR) and
average running time per frame of VBM3D and NL-means on the Derf
dataset of the compared implementations (noise standard deviation of
level 20). Whether the method uses a single frame (SF) or a GPU is
indicated.

Method SF GPU PSNR Time/frame
NLM ours yes yes 31.54 0.83 ±0.06 ms

BM3D ours yes yes 32.93 4.7 ±0.3 ms
NLM video ours no yes 33.53 10.0 ±0.3 ms

VBM3D [26] no no 34.21 3.0 ±0.2 s
VBM3D ours no yes 34.31 3.4 ±0.2 ms

Table 12 Comparison of the average time per frame taken (in ms)
on the compared accelerators for the main passes for our VBM3D
implementation (with our default params) on the Derf dataset.

Acc. search filtering search filtering Total
0 22.5 ±0.7 31.5 ±0.6 48 ±1 72 ±1 174 ±4
1 28 ±1 20.5 ±0.8 65 ±2 50 ±2 164 ±8
2 1.7 ±0.1 1.13 ±0.04 3.3 ±0.2 2.6 ±0.3 9.0 ±0.5
3 0.54 ±0.07 0.55 ±0.05 0.90 ±0.02 1.1 ±0.1 3.4 ±0.2

atomics (available in CUDA), but these functionalities are
not available for the OpenCL driver at the time of writing.
Both implementations [35] and [53], written in CUDA, used
hardware float atomics. We notice that, like it was for NL-
means, our BM3D code running on accelerator 0 (CPU) is
competitive with the compared CPU implementations. It runs
at an equivalent single-core execution time of 159s, compared
to 205s for OpenCV and 425s for [40]. One has to be careful
though when comparing these results because the parameters
are different.

VBM3D and video NL-means In this section, we delve into
the performance of the video variations of the previous algo-
rithms.

While NL-means has been previously used for video
denoising, there is no standard video version. Thus, for this
comparison, we use our code extending the search to a 3D
window including the 4 past images and the 4 future images
of the current sequence (similarly to VBM3D). In addition,
we use 16× 16 patches. The use of bigger patches is justified
for video denoising as it results in better matches of the same
content in the previous frames, which improves the denoising
result and the temporal consistency.

We compared with VBM3D using the original parame-
ters of [20] as implemented by [26], and our implementation
(which has a different patch size for the second pass, as ex-
plained in 2.3). To highlight the improvements of the video
algorithms over the image versions, we show the denois-
ing performance of NL-means and BM3D with our default
parameters, used separately on each frame (no 3D search
window).

Table 11 shows the denoising performance and average
running time per frame on the Derf dataset of the compared
implementations. The Derf dataset corresponds to the Derf’s
Test Media collection2 as processed in [3]: The original
videos are RGB of size 1920 × 1080, and seven grayscale
sequences of 100 frames were extracted and down-sampled
by a factor two (the resolution is thus 960× 540).

Video methods obtain a significantly superior PSNR (a
1.99 db gain for NL-means and 1.28db for BM3D). While
NL-means is slower in its video version than its image ver-
sion, due to the bigger patch search region, VBM3D is faster
than our BM3D with default parameters. This is due to the
competitive video patch search algorithm of VBM3D, and
due to the first pass of the algorithm using a patch step of 6
for VBM3D, while our BM3D uses 4. The fact that our GPU
implementation has a slightly better denoising performance
(of 0.10 db) compared to the reference CPU implementation
is due to the use of 8 × 8 patches in the second pass. This
phenomenon was already observed in Table 2, on the same
dataset (with a different noise generation). For VBM3D, Ta-
ble 12 shows that computation time is quite balanced between
all steps even though the search takes slightly more time than
the filtering. It’s also important to notice that the implemen-
tation achieves real-time denoising on these sequences for
both accelerators 2 and 3.

6 Conclusion

In this paper, we proposed a GPU implementation of NL-
means, BM3D and VBM3D. The technical challenges of this
endeavour and of the proposed solutions have been discussed.
The PSNR denoising performance was shown to match, and
sometimes even to surpass, the denoising performance of the
reference CPU implementations while being several orders
of magnitude faster. We also proposed compromises for the
default parameters to get an even larger speedup at a minor
cost for the denoising performance. This work paves the
way to new uses of these algorithms in time constrained
environments.

Acknowledgments

The authors gratefully thanks Jean-Michel Morel for his valu-
able feedbacks. Work partly financed by IDEX Paris-Saclay
IDI 2016, ANR-11-IDEX-0003-02, Office of Naval research
grant N00014-17-1-2552, DGA Astrid project «filmer la
Terre» no ANR-17-ASTR-0013-01, MENRT and Fondation
Mathématique Jacques Hadamard.

2 https://media.xiph.org/video/derf

https://media.xiph.org/video/derf


GPU acceleration of NL-means, BM3D and VBM3D 17

References

1. Ali, R.A., Hardie, R.C.: Recursive non-local means filter for video
denoising. EURASIP JIVP (1), 29 (2017)

2. AMD: AMD APP SDK OpenCLTM Optimization Guide (2015)
3. Arias, P., Facciolo, G., Morel, J.M.: A comparison of patch-based

models in video denoising. In: IEEE IVMSP, pp. 1–5 (2018)
4. Arias, P., Morel, J.M.: Video denoising via empirical bayesian

estimation of space-time patches. JMIV 60(1), 70–93 (2018)
5. Arias, P., Morel, J.M.: Kalman filtering of patches for frame-

recursive video denoising. In: IEEE CVPRW (2019)
6. Aubert, G., Aujol, J.F.: A variational approach to removing multi-

plicative noise. SIAM SIIMS 68(4), 925–946 (2008)
7. Aujol, J.F., Aubert, G., Blanc-Féraud, L., Chambolle, A.: Image

decomposition application to sar images. In: Springer Scale-Space,
pp. 297–312 (2003)

8. Boulanger, J., Kervrann, C., Bouthemy, P., Elbau, P., Sibarita, J.B.,
Salamero, J.: Patch-based nonlocal functional for denoising fluo-
rescence microscopy image sequences. IEEE TMI 29(2), 442–454
(2009)

9. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software
Tools (2000)

10. Briand, T., Davy, A.: Optimization of Image B-spline Interpolation
for GPU Architectures. IPOL 9, 183–204 (2019)

11. Brox, T., Kleinschmidt, O., Cremers, D.: Efficient nonlocal means
for denoising of textural patterns. IEEE TIP 17(7), 1083–1092
(2008)

12. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image
denoising. In: IEEE CVPR, vol. 2, pp. 60–65 (2005)

13. Buades, A., Coll, B., Morel, J.M.: Non-local means denoising.
IPOL 1, 208–212 (2011)

14. Buades, A., Lisani, J.L., Miladinović, M.: Patch-based video de-
noising with optical flow estimation. IEEE TIP 25(6), 2573–2586
(2016)

15. Colom, M.: Multiscale noise estimation and removal for digital
images. Ph.D. thesis, Universitat de les Illes Balears (2014)

16. Coupé, P., Hellier, P., Kervrann, C., Barillot, C.: Nonlocal means-
based speckle filtering for ultrasound images. IEEE TIP 18(10),
2221–2229 (2009)

17. Coupé, P., Yger, P., Barillot, C.: Fast non local means denoising
for 3d mr images. In: International Conference on Medical Im-
age Computing and Computer-Assisted Intervention, pp. 33–40.
Springer (2006)

18. Coupé, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C.:
An optimized blockwise nonlocal means denoising filter for 3-d
magnetic resonance images. IEEE TMI 27(4), 425–441 (2008)

19. Dabov, K., Foi, A., Egiazarian, K.: Image denoising by sparse 3-d
transform-domain collaborative filtering. IEEE TIP 16(8), 2080–
2095 (2007)

20. Dabov, K., Foi, A., Egiazarian, K.: Video denoising by sparse 3d
transform-domain collaborative filtering. In: 2007 15th European
Signal Processing Conference, pp. 145–149. IEEE (2007)

21. Davy, A., Ehret, T., Facciolo, G., Morel, J., Arias, P.: Non-local
video denoising by CNN. CoRR abs/1811.12758 (2018)

22. Davy, A., Ehret, T., Facciolo, G., Morel, J., Arias, P.: A non-local
cnn for video denoising. In: IEEE ICIP, pp. 2409–2413 (2019)

23. De Fontes, F.P.X., Barroso, G.A., Coupé, P., Hellier, P.: Real time
ultrasound image denoising. Journal of real-time image processing
6(1), 15–22 (2011)

24. Duval, V., Aujol, J.F., Gousseau, Y.: On the parameter choice for
the non-local means (2010)

25. Ehmann, J., Chu, L.C., Tsai, S.F., Liang, C.K.: Real-time video
denoising on mobile phones. In: IEEE ICIP, pp. 505–509 (2018)

26. Ehret, T., Arias, P.: Implementation of the vbm3d video denoising
method and some variants (2020)

27. Ehret, T., Arias, P., Morel, J.M.: Global patch search boosts video
denoising. In: VISAPP, vol. 5, pp. 124–134 (2017)

28. Ehret, T., Davy, A., Morel, J.M., Facciolo, G., Arias, P.: Model-
blind video denoising via frame-to-frame training. In: IEEE CVPR,
pp. 11369–11378 (2019)

29. Ehret, T., Morel, J.M., Arias, P.: Non-local kalman: A recursive
video denoising algorithm. In: IEEE ICIP, pp. 3204–3208 (2018)

30. Franzen, R.: Kodak lossless true color image suite. source: http:
//r0k.us/graphics/kodak 4 (1999)

31. Frosio, I., Kautz, J.: Statistical nearest neighbors for image denois-
ing. IEEE TIP 28(2), 723–738 (2018)

32. Gilboa, G., Osher, S.: Nonlocal linear image regularization and
supervised segmentation. Multiscale Modeling & Simulation 6(2),
595–630 (2007)

33. Goossens, B., Luong, H., Aelterman, J., Pižurica, A., Philips, W.:
A gpu-accelerated real-time nlmeans algorithm for denoising color
video sequences. In: ACIVS, pp. 46–57. Springer (2010)

34. Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm
minimization with application to image denoising. In: IEEE CVPR,
pp. 2862–2869 (2014)

35. Honzátko, D., Kruliš, M.: Accelerating block-matching and 3d
filtering method for image denoising on gpus. Journal of Real-
Time Image Processing 16(6), 2273–2287 (2019)

36. Honzátko, D., Kruliš, M.: Cuda implementation of bm3d. https:
//github.com/DawyD/bm3d-gpu (2018)

37. Jin, Q., Grama, I., Kervrann, C., Liu, Q.: Nonlocal means and
optimal weights for noise removal. SIAM SIIMS 10(4), 1878–
1920 (2017)

38. Junkins, S.: The compute architecture of intel R© processor graphics
gen9 (2015)

39. Kervrann, C., Boulanger, J., Coupé, P.: Bayesian non-local means
filter, image redundancy and adaptive dictionaries for noise re-
moval. In: International Conference on Scale Space and Variational
Methods in Computer Vision, pp. 520–532. Springer (2007)

40. Lebrun, M.: An Analysis and Implementation of the BM3D Image
Denoising Method. IPOL 2, 175–213 (2012)

41. Lebrun, M., Buades, A., Morel, J.M.: A nonlocal bayesian image
denoising algorithm. SIAM SIIMS 6(3), 1665–1688 (2013)

42. Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T.,
Aittala, M., Aila, T.: Noise2noise: Learning image restoration with-
out clean data. In: International Conference on Machine Learning,
pp. 2971–2980 (2018)

43. Ma, K., Duanmu, Z., Wu, Q., Wang, Z., Yong, H., Li, H., Zhang, L.:
Waterloo Exploration Database: New challenges for image quality
assessment models. IEEE TIP 26(2), 1004–1016 (2017)

44. Maggioni, M., Boracchi, G., Foi, A., Egiazarian, K.: Video denois-
ing, deblocking, and enhancement through separable 4-D nonlocal
spatiotemporal transforms. IEEE TIP 21(9), 3952–3966 (2012)

45. Mahmoudi, M., Sapiro, G.: Fast image and video denoising via
nonlocal means of similar neighborhoods. IEEE SPL 12(12), 839–
842 (2005)

46. Makitalo, M., Foi, A.: Optimal inversion of the generalized
anscombe transformation for poisson-gaussian noise. IEEE TIP
22(1), 91–103 (2012)

47. Márques, A., Pardo, A.: Implementation of non local means filter
in gpus. In: Iberoamerican Congress on Pattern Recognition, pp.
407–414. Springer (2013)

48. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human
segmented natural images and its application to evaluating segmen-
tation algorithms and measuring ecological statistics. In: Proc. 8th
Int’l Conf. Computer Vision, vol. 2, pp. 416–423 (2001)

49. NVIDIA: NVIDIA OpenCL Best Practices Guide (2009)
50. Pfleger, S.G., Plentz, P.D.M., Rocha, R.C.O., Pereira, A.D., Castro,

M.: Real-time video denoising on multicores and gpus with kalman-
based and bilateral filters fusion. Journal of Real-Time Image
Processing 16(5), 1629–1642 (2017)

51. Sutour, C., Deledalle, C.A., Aujol, J.F.: Adaptive regularization of
the nl-means: Application to image and video denoising. IEEE TIP
23(8), 3506–3521 (2014)

http://r0k. us/graphics/kodak
http://r0k. us/graphics/kodak
https://github.com/DawyD/bm3d-gpu
https://github.com/DawyD/bm3d-gpu


18 Axel Davy and Thibaud Ehret

52. Wang, J., Guo, Y., Ying, Y., Liu, Y., Peng, Q.: Fast non-local
algorithm for image denoising. In: IEEE ICIP, pp. 1429–1432
(2006)

53. Wang, T., Sun, Y.: Gpu-accelerated denoising with bm3d. https:
//github.com/JeffOwOSun/gpu-bm3d (2017)

54. Wang, X., Xu, K., Wang, D.: Accelerating block-matching and 3d
filtering-based image denoising algorithm on fpgas. In: IEEE ICSP,
pp. 235–240. IEEE (2018)

55. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaus-
sian denoiser: Residual learning of deep cnn for image denoising.
IEEE TIP 26(7), 3142–3155 (2017)

56. Zhang, K., Zuo, W., Zhang, L.: Ffdnet: Toward a fast and flexible
solution for cnn-based image denoising. IEEE TIP 27(9), 4608–
4622 (2018)

https://github.com/JeffOwOSun/gpu-bm3d
https://github.com/JeffOwOSun/gpu-bm3d

	Introduction
	Architecture of the implemented Non-local denoising algorithms
	An introduction to GPU architecture
	Implementation details
	Benchmarks
	Conclusion

