
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2021) 18:539–559
https://doi.org/10.1007/s11554-020-00993-w

ORIGINAL RESEARCH PAPER

The genetic algorithm census transform: evaluation of census
windows of different size and level of sparseness through hardware
in‑the‑loop training

Carl Ahlberg1  · Miguel León1 · Fredrik Ekstrand1 · Mikael Ekström1

Received: 25 December 2019 / Accepted: 18 June 2020 / Published online: 6 July 2020
© The Author(s) 2020

Abstract
Stereo correspondence is a well-established research topic and has spawned categories of algorithms combining several pro-
cessing steps and strategies. One core part to stereo correspondence is to determine matching cost between the two images,
or patches from the two images. Over the years several different cost metrics have been proposed, one being the Census
Transform (CT). The CT is well proven for its robust matching, especially along object boundaries, with respect to outliers
and radiometric differences. The CT also comes at a low computational cost and is suitable for hardware implementation.
Two key developments to the CT are non-centric and sparse comparison schemas, to increase matching performance and/or
save computational resources. Recent CT algorithms share both traits but are handcrafted, bounded with respect to symmetry,
edge lengths and defined for a specific window size. To overcome this, a Genetic Algorithm (GA) was applied to the CT,
proposing the Genetic Algorithm Census Transform (GACT), to automatically derive comparison schemas from example
data. In this paper, FPGA-based hardware acceleration of GACT, has enabled evaluation of census windows of different
size and shape, by significantly reducing processing time associated with training. The experiments show that lateral GACT
windows produce better matching accuracy and require less resources when compared to square windows.

Keywords  Census transform · Stereo correspondence · Matching cost metric · Genetic algorithm · Real time · FPGA ·
SoC · VHDL

1  Introduction

With an ever-growing interest in intelligent and autonomous
systems follows demands on perception, i.e. how to gather
and extract meaningful information, from different sensor
modalities, within a specified time frame. For us humans,
vision is the most central sense, and for autonomous agents,
acting in the real world, image sensors are key, as they are

low cost and versatile. Through computer vision, applica-
tion-relevant information can be extracted from images,
such as color, features, objects, size, and depth/distance.
To extract 3D information from images is either dependent
on a priori information or requires multiple images, from
different viewpoints. This can be completed by moving a
single camera, but in an unknown and constantly chang-
ing environment, a stereo camera, with two horizontally
displaced and synchronized cameras, are much preferable
as, image displacement is known (static) and there is no
interference between ego-motion and object motion. This
is referred to binocular, or two-frame, stereo. However, to
find depth information the correspondence problem must be
solved, that is to establish correspondence between pixels,
or regions, from one image to the other. Assuming rectified
stereo images, displacement between corresponding pixels,
or disparity, will be limited to the horizontal axis. The larger
the disparity, the closer the object. Knowing the disparity, d,
and the stereo camera parameters, depth, z, is given by the
following equation:

 *	 Carl Ahlberg
	 carl.ahlberg@mdh.se

	 Miguel León
	 miguel.leonortiz@mdh.se

	 Fredrik Ekstrand
	 fredrik.ekstrand@mdh.se

	 Mikael Ekström
	 mikael.ekstrom@mdh.se

1	 School of Innovation, Design and Engineering, Mälardalen
University, Box 883, 721 23 Västerås, Sweden

http://orcid.org/0000-0003-4907-9816
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-020-00993-w&domain=pdf

540	 Journal of Real-Time Image Processing (2021) 18:539–559

1 3

where f is the focal length and B is the length of the baseline,
i.e., horizontal displacement between the cameras. Hence,
solving the correspondence problems, also known as stereo
matching, is the core of stereo vision. The complexity of the
problem and the numerous applications in different areas,
such as autonomous driving, robotics, industrial automation,
augmented reality, 3D mapping, entertainment, etc., have
firmly established the stereo vision field of research.

Four steps, identified in the taxonomy of (two-frame)
stereo algorithms [39], are frequently adopted: (1) match-
ing cost computation; (2) cost aggregation; (3) disparity
computation; and (4) disparity refinement. Furthermore,
methods are classified as local or global (or hybrid SGM).
Global algorithms aim to minimize a total cost function
over the full image while, for local methods, disparity, for
a given pixel, is decided from a surrounding (and hence
local) neighborhood. In general, global methods can pro-
duce higher matching accuracy at a higher level of comput-
ing complexity and are hence suitable for applications such
as creation of 3D-maps or 3D-models of static scenes and
objects. Applications that require high frame rates and/or
low latency adopt local algorithms.

There are many approaches to matching cost calculation,
i.e. determining how similar pixels are between frames, and
the closer the correspondence the lower the cost. For local
algorithms the cost computation and cost aggregation are
closely related where, instead of relying on costs for sin-
gle pixels, cost support is considered over image patches,
reducing the level of ambiguity, analogous to the aperture
problem. Cost are divided into parametric; Absolute Differ-
ence (AD), Sum of AD (SAD), Zero mean SAD (ZSAD),
Normalized Cross-Correlation (NCC), Zero mean NCC
(ZNCC), etc., non-parametric; the Census Transform (CT)
and rank transform [45] and, Mutual Information [16]. Or a
combination, such as AD-Census [29] or truncated absolute
difference of colors and gradients [18].

With the introduction of larger datasets, methods adopt-
ing deep learning, such as Convolutional Neural Networks
(CNNs), as a cost metric [46, 47] and later end-to-end
networks [5, 28], now dominate the research field and top
the KITTI1 [30] and Middlebury2 [38] rankings [41, 48].
Although providing high matching accuracy, CNNs come
with the drawback of high complexity, and massive process-
ing cost, even for inference, let alone training, and depend on
power-hungry GPUs to achieve near real-time performance
[22, 25, 28]. In the context of real-time stereo-vision for

(1)z =
fB

d

resource limited systems, even though the state-of-the-art
matching performance of CNN based solutions are promis-
ing, they do not provide a viable option, as of yet. Following
these restrictions, it still makes sense to improve upon pre-
deep learning algorithms.

The CT is based on relative intensities between a center
pixel and surrounding pixels. Within the local neighbor-
hood a pixel is represented by 1 if it is of lower intensity,
otherwise 0. The bits are concatenated in some canonical
ordering, forming a bit-string, referred to as the census
value for the center pixel. Similarity is given by the Ham-
ming distance. Contrary to statistical cost metrics, where
it is assumed local pixels belong to the same distribution,
the CT tolerates factionalism, providing good matching per-
formance along object boundaries and robustness towards
outliers. The CT is invariant under changes in gain and bias
[45]. The CT is low-cost and suitable for hardware imple-
mentation [3, 4, 6, 7, 10, 19, 29, 31, 34–36, 42], often in
combination with Semi-Global Matching (SGM) [15].

Over the years the CT has been researched leading to
two key developments: (1) sparse CTs, where only selected
neighborhood pixels are used for comparison, requires fewer
comparisons, which can be distributed over larger areas, and
results in shorter bit-strings, saving resources for the subse-
quent matching [4, 6, 19, 31] and (2) non-centric comparison
schemas, where arbitrary neighborhood pixels are connected
for comparison by edges, according to predefined patterns,
depending less (or not at all) on the center pixel, resulting in
better matching accuracy and robustness towards noise [10,
23, 40]. However, the handcrafted CT methods are bound
with respect to symmetry, edge length or neighborhood.

In the previous work [2], it was established that optimiz-
ing the census comparison schema using a Genetic Algo-
rithm (GA), referred to as GACT, lead to higher matching
accuracy and/or lower resource requirements than estab-
lished CT methods. It was also concluded that outcome was
highly dependent on training data (KITTI vs Middlebury)
and that the CT should benefit from a larger neighborhood
(KITTI).

In this paper, thanks to a new hardware-in-the-loop imple-
mentation, the GA training process is accelerated by a factor
of 30, enabling evaluation of GACT windows of different
size and shape. The experiments show that: (a) the GACT
window size has a big effect on matching performance; (b)
as GACT is defined for a number of edges (sparse) a change
of the window size does not come at a great cost (assum-
ing a trained mask), as the subsequent stereo-matching
only depend on the produced bit-string; (c) lateral windows
make for improved matching and save resources; and (d) that
GACT is suitable for FPGA implementation.

The remainder of this paper is arranged as follows. First
related works with respect to the CT are presented followed
by an introduction to GA. Then the experimental setup is

1  http://www.cvlib​s.net/datas​ets/kitti​/.
2  http://visio​n.middl​ebury​.edu/stere​o/eval3​/.

http://www.cvlibs.net/datasets/kitti/
http://vision.middlebury.edu/stereo/eval3/

541Journal of Real-Time Image Processing (2021) 18:539–559	

1 3

described in terms of parameters, dataset and implementa-
tion. The experimental results are presented and discussed
before the paper is concluded by some final remarks.

2 � Related work

The Census Transform (CT) [45] is a non-parametric local
transform, meaning that a pixel value is replaced by a value
based on intensity ordering within a local neighborhood. In
this case a bit string where a bit is set to 1 if the correspond-
ing neighborhood pixel is of lower intensity, otherwise 0.
Two census strings are compared using the Hamming dis-
tance. The comparison schema of CT is shown in Fig. 1a.
CT can be formalized by the following equations:

where p, p′ represent pixel intensities.

where ⊗ represents the concatenation operation and N(p)
defines the neighborhood around a pixel p.

The similarity of two pixels is given by the Hamming
distance between the bit-strings:

(2)𝜉(p, p�) =

{
0 p ≤ p�

1 p > p�

(3)C(p) =
⨂

p�∈N(p)

�(p, p�)

which is also referred to as the matching cost.
The CT relies heavily on the neighborhood center pixel,

which makes it sensitive to noise. The modified CT [11] is
instead based around the neighborhood mean intensity, p̄ ,
leading to an update of Eq. 3 to

The authors conclude that this increases robustness, with
respect to noise, and the ability to capture the image struc-
ture, which is important for classification and matching.
However, at the cost of a higher computational complexity.
This method will be referred to as MeanCT.

For the Sparse CT [4, 19], a subset of pixels within the
neighborhood are selected for CT. The sparse factor, S = n2 ,
defines the sampling rate over the CT window, e.g. for sparse
factor 16, 1 in 16 ( 4 × 4 ) pixels is selected for evaluation.
The authors show that Sparse CT improves on the CT, given
the same number of sample points, i.e., a larger receptive
field is beneficial compared to higher resolution. However,
an increased sparse factor does infer larger neighborhoods
and consequently higher buffering costs, not to be underes-
timated for resource limited systems, for which the method
was originally intended. Within this context, a stronger argu-
ment for the sparse CT is that, until a sparse factor of 16,
it shows a marginal drop in accuracy compared to the CT,
of the same neighborhood size. Figure 1b shows sparse CT
with sparse factor of 2, hereafter referred to as Sparse8, as
there are 8 sample points. This is extended to a full checker-
board pattern, by adding 4 diagonal sample points, referred
to as Sparse12. Note that Sparse8 and Sparse12, are not
consistent with the original definition of sparse CT, but are
adapted to fit within a 5 × 5 neighborhood.

Mini-census (MCT) [6] is also a sparse CT targeting
resource limited systems. MCT is defined by just 6 sam-
ple points, in a 5 × 5 window, Fig. 1c, to reduce calculation
cost and memory resources. A similar example is the Retina
CT (RCT) [31], Fig. 1d, with an 8-point circular pattern,
inspired by the human retina.

An evolution of the MeanCT, hereafter referred to as
Quarternion CT (QCT) [26], makes use of both the center
pixel and the neighborhood mean intensity, thereby extend-
ing Eq. 2 to

resulting in a quaternion, and consequently bit-strings of
twice the length. This shows an accuracy improvement (for

(4)d(p1, p2) = Hamming
(
C(p1),C(p2)

)

(5)C(p) =
⨂

p�∈N(p)

𝜉(p̄, p�)

(6)𝜉(p, p�) =

⎧⎪⎨⎪⎩

00 p� ≤ min(p, p̄)

01 p� < p

10 p < p�

11 p� ≥ max(p, p̄)

(a) (b)

(c) (d)

Fig. 1   a Shows the original CT, for a 5 × 5 neighborhood, and b–d
show different sparsity schemas, discarding greyed out pixels, to save
computational resources

542	 Journal of Real-Time Image Processing (2021) 18:539–559

1 3

stereo matching) in the Middlebury evaluation, but accord-
ing to the authors the benefit should be greater for real world
images.

The Generalized Census Transform (GCT) [10] is a fam-
ily of defined masks, in a 5 × 5 neighborhood, with different
levels of sparsity. The comparison schema is defined by a set
of coordinate pairs, {(c1, c�1), (c2, c

�
2
),… , (ci, c

�
i
),… , (cn, c

�
n
)} ,

where n ∈ {1, 2, 4, 8, 12, 16} . A coordinate pair, (ci, c�i) , is
connected through what is referred to as an edge. The key
difference to previous work is that neither ci nor c′

i
 refer to

the center pixel. Figure 2 shows the 8 and 16 edge GCT. To
define GCT, Eq. 3 is updated as follows:

One advantage of GCT is that a 5 × 5 GCT is comparable
to a 7 × 7 sparse CT and hence the number of line buffers
can be reduced.

Presented at the same time as GCT, the Center-
Symmetric CT (CSCT) [40] similarly compares pairs
of pixels within the census window, albeit center-
symmetric. Following the earlier notation, this can be

(7)
C(p) =

⨂

1 ≤ i ≤ n

p + ci, p + c�
i
∈ N(p)

�(p + ci, p + c�
i
)

expressed as {(c1,−c1), (c2,−c2),… , (cn,−cn)} , where
n = (NW ∗ NH − 1)∕2 . The 5 × 5 CSCT is shown in Fig. 3a.
Contrary to GCT the definition of CSCT extends to dif-
ferent window sizes, but not to different levels of sparsity.
However, it will always produce bit-strings of half the size
as compared to the original CT, while considering all (but
the center) pixels, although at the cost of slight increase in
error rate. A second contribution is the introduction of edge
weights along the central rows and columns, as shown in
Fig. 3b. This will be considered as adding edges but can,
according to the authors, be implemented using lookup
tables. With weights along the central rows (hwCSCT) or
both central rows and columns (wCSCT) boosted results
passed CT, while saving resources.

The Star Census Transform (SCT) [23] extends GCT
by defining masks of symmetrical sequences of connected
edges, of equal length, forming star-shaped scan-patterns
around the center. Let (c�

1
, c�

2
, ..., c�

n
) = (c2, ..., cn, c1) and

Eq. 7 holds true for SCT. The authors states that by evaluat-
ing masks with different numbers of sample points and edge
lengths, candidates are found that improve on CT, MCT and
GCT, particularly on CT and MCT with respect to noise,
whether Gaussian or impulse. Figure 4 shows the best SCT
for 8, 16 and 24 edges.

The Adaptive Census Transform (ACT) [34] applies the
principle of ADaptive Support Weights (ADSW) [21] in a
census context. For ADSW pixels within the aggregation
window are weighted, based on center pixel similarity and
proximity. For ACT the binary number is replaced by a
weight, an integer defined by a hardware-friendly approxi-
mation function, exploiting intensity similarity (the proxim-
ity term is omitted as its contribution is limited for small
aggregation windows). The census matching cost is then
defined by SAD instead of the Hamming distance. This
makes ACT expensive to implement, due to the weight func-
tion and the added complexity of SAD compared to Ham-
ming. To describe ACT Eq. 2 is updated as follows:

and w defined as:

(8)𝜉(p, p�) =

{
−w p ≤ p�

w p > p�

(a) (b)

Fig. 2   GCT schemas for 8 and 16 edges

(a) (b)

Fig. 3   Center-symmetric schema of CSCT and the optional weights
along the central rows and columns

(a) (b) (c)

Fig. 4   Selected SCT sequences with 8, 16 and 24 edges

543Journal of Real-Time Image Processing (2021) 18:539–559	

1 3

where �c represents the absolute intensity difference
between p and p′ , and parameters set as: �c = 16 , and po to
p7 are 64, 48, 32, 32, 16, 16, 16, 16. The weight function was
also adopted for cost aggregation (ADSW). The implemen-
tation was later extended [7] incorporating Support Local
Binary Pattern (SLBP) [33] and sparse ACT windows. With
SLBP a census vector is calculated with respect to each pixel
in the census window, not only the center pixel, resulting in
as many census strings as pixels, i.e., 9 vectors for a 3 × 3
window. To allow for larger census windows and to com-
pensate for the additional complexity of SLBP, a sparse
approach was adopted [7], where only pixels along the hori-
zontal, vertical and diagonal lines intersecting the center
pixel were included. Later a simplified implementation [35],
eliminating the SLBP component, for embedded heterogene-
ous system based on Xilinx Zynq SoC, was presented.

Adaptive window patterns for the CT [24] are based on
the idea that uniform image regions require less complex
census patterns than non-uniform. Hence, for a CPU imple-
mentation, the computational complexity can be reduced
by applying different census transforms. A guidance mask,
based on Canny edges, and the region intensity statistics
(mean and variance) dictates the choice of an 8, 12 or 20
pixel pre-defined census mask in a 9 × 9 neighborhood.
Similarly, a method based on adaptive census window size/
shape has been proposed [20], where Sobel gradient images
are used to select between square ( 3 × 3 ), portrait ( 11 × 3 )
or landscape ( 3 × 11 ) shaped census windows. Considering
all pixels the method performs slightly worse than the corre-
sponding fixed window size, 11 × 11 , but better along depth
discontinuities. Another contribution [36] lets the Sobel
image dictate as to whether adopt a 5 × 5, 7 × 7 or 9 × 9 CT
in an FPGA implementation. Here, to increase accuracy, as
for FPGAs all CT-alternatives have to be processed in paral-
lel, thus invalidating the resource reduction argument.

Alternatively, to the Hamming distance, the Tanimoto
[37] and the Dixon–Koehler [8] distances, achieve higher
matching accuracy at the cost of increased complexity. Tani-
moto distance focuses on the ones of the matching bit-strings
(1-intersection/union). The Dixon–Koehler is the product
between the normalized Hamming and Tanimoto distances.
In a comparison study for FPGA implementation [42], a
number of different CT window sizes, 5 × 5 to 23 × 23 , and
Hamming, Tanimoto and Dixon–Koehler similarities were
evaluated, with respect to matching accuracy and resource

(9)w =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

pn ⌊𝛥c∕𝛾c⌋ = n, 0 ≤ n ≤ 7

8 8 ≤ ⌊𝛥c∕𝛾c⌋ < 12

4 12 ≤ ⌊𝛥c∕𝛾c⌋ < 16

2 16 ≤ ⌊𝛥c∕𝛾c⌋ < 20

1 20 ≤ ⌊𝛥c∕𝛾c⌋ < 24

0 ⌊𝛥c∕𝛾c⌋ ≥ 24

requirements. It was concluded that a 13 × 13 Dixon–Koe-
hler CT produced a better matching result than a 23 × 23
Hamming, at similar cost in terms of resources. However,
the real benefit of Dixon–Koehler is that it can reach a higher
level of accuracy, but resources scale badly with window
size.

Finally, composite costs, where part of the cost consti-
tutes of CT, are also adopted. These methods are out of
scope here, as the focus is on stand-alone CT. AD-Census
[29], combines a weighted sum over CT and color-based
SAD, where the AD component provides good matching
support for textured or slanted areas, while CT preserves
edge information. The neighborhood for CT was set to 9 × 7 ,
the largest possible of odd rows and columns, to produce
strings that fit within 64-bit registers. The stand-alone con-
tribution of this larger footprint CT, referred to as CT-7x9
because of the row-column notation, is interesting for com-
parison, especially since AD-Census has since been revised
with GCT [23]. Another example of a composite cost is
combining MeanCT over the images, MeanCT over gradi-
ent images and SAD [3].

3 � Genetic algorithm

The Genetic Algorithm (GA) [17] is a population-based
optimization method, proposed in the 60’s, extended and
popularized in 1989 [12], that belongs to the family of
Evolutionary Algorithms [44]. In 1989 extended and made
popular, in the context of optimization [12]. GA is based
on the evolution of the species, in which the new solutions
are created from previous ones and only the stronger solu-
tions survive. GA has been successfully applied in different
research areas, as stereo matching [13], real time systems
[27] or neuroengineering [32].

GA will have a population, X, in which each individual of
the population will be a solution to the problem. The repre-
sentation of an individual will depend on the specifications
of the problem. For the specific problem of GACT, each
individual is represented by a CT mask, consisting of tuples
of window coordinates, defining edges for pixel comparison.
An individual i of population X can be described as

where xe is the starting point of the eth edge, x′
e
 is the end

point of the same edge and n is the number of edges. Addi-
tionally, each point is formed with 2 coordinates (r, c),
where r ∈ {1,… ,R} and c ∈ {1,… ,C} , for a census win-
dow of size R × C.

The first step in GA is to initialize the population, which
is formed by ps (population size) individuals, generated at
random. Then follows the evolutionary process, generation

(10)Xi = {(x1, x
�
1
), (x2, x

�
2
),… , (xe, x

�
e
),… , (xn, x

�
n
)}

544	 Journal of Real-Time Image Processing (2021) 18:539–559

1 3

by generation, where each iteration, or generation, is com-
posed by four consecutive steps: parent selection, crosso-
ver, mutation and replacement. An example of one genera-
tion of GA, in a problem with 8 edges, is shown in Fig. 5.
After one generation is terminated, a new one will start
until the maximum number of generations is reached.

Selection. The first step within one generation is to
select parents to create the offspring. In this paper, two
parents, P1 and P2 , are randomly selected, from the entire
population, to create one offspring (O). This is repeated
for a defined number of offspring each generation. Hence,
a high diversity within the population can be maintained,
minimizing the chance to suffer local optima stagnation.

Crossover. After selecting the two parents, the new off-
spring, O, is created. Many different options to perform
crossover can be found in the literature [9, 14]. In this
paper, a Uniform crossover method has been selected. In
this method, the information of O is randomly selected
from the two parents with equal probability, as described
below:

where e is the eth edge of either the offspring (O), the first
parent ( P1 ) or the second parent ( P2 ). Additionally, rand is
a random number ∈ [0, 1).

Mutation. Once the offspring is created, this is perturbed,
to explore neighbor solutions. In order to apply this pertur-
bation, a random position within an edge, either the start
or the end point, is selected. Then, it will be replaced by a
random position within the CT constraints.

Replacement. After mutation, the performance, also
called fitness, of O is calculated (f(O)) and compared with
the fitness of the worst parent ( f (Pworst) ). If, f(O) is better
than f (Pworst) , then Pworst will be replaced by O. On the con-
trary, if f(O) is worse, then O is discarded. The description
of the fitness calculations is described in Sect. 4.1.

(11)(oe, o
�
e
) =

{
(p1e , p

�
1e
) if rand < 0.5

(p2e , p
�
2e
) otherwise

4 � Experimental setup

The experiment is setup as a two-phase process, separat-
ing training and an evaluation between two processing plat-
forms, as shown in Fig. 6. During training GA is applied
to find new GACT comparison schemas (or masks). This
involves, for each candidate individual, transforming the
input images, in accordance to the mask, and perform stereo
matching, followed by an evaluation of the resulting dis-
parity map, with respect to the ground truth. The training
phase is implemented on a Xilinx ZCU104, a processing
platform combining a CPU and an FPGA, where the most
arduous part of the process, the stereo matching, is hardware
accelerated, significantly reducing time for training. Dur-
ing the evaluation phase the GA derived mask is evaluated,
on a larger dataset, using a MATLAB implementation, for
consistency with previous work [2]. First, the parameters for
the experiment will be presented followed by a description
of the implementation for ZCU104.

4.1 � Parameters, data

The GACT experiments are defined by the number of edges
and window sizes:

•	 Number of edges: 8, 16 and 24.
•	 Square windows: 3 × 3 , 5 × 5 , 9 × 9 , 15 × 15 , 21 × 21.
•	 Lateral windows, following rows × columns-notation,

where columns = 2 ∗ rows − 1 : 3 × 5 , 5 × 9 , 7 × 13 ,
9 × 17 , 11 × 21 , 15 × 29.

In addition, lateral windows 3 × 7 , 3 × 9 , 3 × 29 and 5 × 29
are used to compare GACT to established CT methods.

For GA the following parameters are used:

•	 population size = 30
•	 offspring size = 8
•	 max evaluation = 6000

Fig. 5   Genetic algorithm for CT
flowchart

545Journal of Real-Time Image Processing (2021) 18:539–559	

1 3

•	 mutation rate = 20%

GA is repeated 10 times for each CT setting and the median
candidates evaluated. The hyper parameters are carried over
from preceding experiments [2]. For the current experiment,
the search space has expanded, possibly warranting a larger
number of evaluations. However, a consistent result, when
repeating the experiment, suggests a satisfactory balance
between exploration and exploitation with sufficient num-
ber of evaluation.

Through stereo matching disparity maps for GACT masks
are obtained. Here, the Hamming distance between census
bit-strings for 9 × 9 aggregation windows gives the match-
ing cost for a disparity hypothesis. The disparity range is
set to [0, 255] for training (FPGA) and [0, 230] for evalu-
ation (MATLAB). From the disparity hypotheses the best
candidate is selected according to a winner takes all (WTA)
strategy. No left-right consistency check (LRC), no sub-
pixel interpolation, propagation, refinement filters, etc., are
applied.

Disparity maps, whether during the training or evaluation
phase, are evaluated using KITTI3 stereo evaluation. The
KITTI 2015 benchmark [30] consists of training and evalu-
ation datasets, with an associated ranking list. The KITTI
dataset targets autonomous driving and the scenes repre-
sent real-world natural images with noise, reflections, chal-
lenging contrast, etc. Fig. 7 shows an example with ground
truth. For the training set the stereo pairs are completed
by the ground truth images, enabling supervised learning.
As KITTI evaluation is to be performed once, and associ-
ated with a single publication, until a more complete stereo

framework around GACT is finalized, the experiments are
carried out on the training set. This dataset is split into local
training and evaluation subsets. To limit training time, and
as GACT works well with a relatively small amount of train-
ing data, 5 training scenes were selected at random (seq. no.
39, 101, 3, 166, 40), leaving 195 for evaluation. The end-
point error is defined as < 3px or < 5% . During training, only
non-occluded (NOC) pixels are considered. For evaluation
occluded (OCC) results are also presented.

4.2 � Implementation/Processing platform

To be able to extend the experiments, performed in previous
work [2], for multiple window sizes and different shapes, the
time required for training had to be considerably reduced,
even though parallel for-loops, utilizing 8 cores, one per

Fig. 6   Flowchart of the two-phase experimental setup

Fig. 7   KITTI 2015 sample3  http://www.cvlib​s.net/datas​ets/kitti​/.

http://www.cvlibs.net/datasets/kitti/

546	 Journal of Real-Time Image Processing (2021) 18:539–559

1 3

offspring, were adopted. As the intended future processing
platform for GACT is FPGAs, more specifically GIMME2
[1], this platform can also serve as an accelerator during
training. However, the non-deterministic data pattern of
GACT individuals, proposed by GA, in correlation with
large windows and disparity range, deemed GIMME2 short
on resources. Instead the more powerful Xilinx ZCU104 was
used for the experiments. Both share the Zynq SoC platform
and the source/IP cores can be reused between them.

The most computationally expensive, and hence time
consuming, part during training is the stereo matching, fol-
lowed by the census transform. These are implemented on
the FPGA in a pipelined design, benefiting from the parallel
processing capabilities of the FPGA. GA itself is low-cost.
The GA-indices are randomly selected inferring a non-
deterministic data-access pattern, which is not suitable for
FPGA implementation. Evaluation involves division which
is costly on the FPGA. Since neither GA nor evaluation is
part of the stereo algorithm, there is no motivation for it to
be implemented on GIMME2.

In accordance with the Xilinx Vivado design flow, the
implementation will be described starting from the FPGA
side, also referred to as the Programmable Logic (PL), fol-
lowed by the CPU side, or Processing System (PS). This

is contrary to the processing flow of training, which is
controlled by the PS application. Returning to Fig. 6, the
reminder of the section will focus on the left box, the train-
ing phase, and first the FPGA part, the gray block.

4.2.1 � FPGA/PL

At a high abstraction level the FPGA-side of the design can
be divided into three components; block design, GACT and
stereo matching, as shown in Fig. 8. Block design is part
of the Zynq design flow and specifies system properties
and the PL/PS interface, here setup for exchange of images
(left, right and disparity) and GACT masks (as dictated by
GA). Two GACT components (left/right) converts intensity
images to images of census bit-strings, according to the
GACT coordinates. Stereo matching calculates the dispar-
ity, using the Hamming distance. GACT and stereo matching
are the core components, both relying on a forth component,
the sliding window. A sliding window approach is necessary
as on the FPGA, there are only enough resources to process
a small part of the image, at a time. Following this approach
an image representation is changed to a data stream, where
a new pixel is presented every clock cycle. Below follows a
more detailed description of the components.

Fig. 8   Experimental setup FPGA

547Journal of Real-Time Image Processing (2021) 18:539–559	

1 3

Block Design	 The block design comprises of three IP
cores: processing system, VDMA and census register.
In the processing system the I/O, clocks, memory and
PS-PL interface settings for the Zynq system are config-
ured. The ZCU104 evaluation board can be selected as
target device with a preset processing-system configu-
ration with respect to the hardware. More interesting
are design dependent configurations, such as the PS-PL
interface, here with two high performance slaves, for
image data transferal, and one master, for IP register
control.

	  The VDMA IPs from Xilinx provide high perfor-
mance memory mapped channels to enable data stream-
ing between the FPGA fabric and the system memory.
In this design the read and write channels are separated
into two separate VDMA components. The read channel,
VDMA1, handles a 24-bit stream (non-optimal), divided
into 8-bits of left and right pixel intensities, respectively,
and 8-bits of (natural) ground truth (not currently used).
The write channel, VDMA0, is setup as an 8-bit stream
to encode 256 levels of disparity. The control/status of
the VDMA cores is performed by writing/reading regis-
ter values. The register space is accessed (from the PS)
over the AXI4-lite master interface.

	  The census register IP is an AXI4 peripheral, with
the straight forward objective to setup a shared memory
area between the PS-PL for GACT control. The cen-
sus register memory area holds 25 32-bit register, one
control register and 24 edge register. An edge is repre-
sented by two points, start and end point, each having
two coordinates. For this application directionality is
of minor/marginal importance and is hence neglected.
Each coordinate is encoded by 8-bits to fit an edge into
a 32-bit register. Census registers are mapped as signals
to the GACT component.

Sliding Window	 The function of the sliding window is to
buffer data, to provide a small image patch, from an
image data stream. Both the GACT and stereo match
blocks are window based and incorporates this compo-
nent. The sliding window has generic parameters to be
able to cope with different window sizes, data widths,
and image sizes. For this experiment different window
sizes and data widths are used by the GACT and stereo
matching components.

	  The sliding window requires win_height − 1 row buff-
ers. As there is a large amount of data to be stored, the
buffers are placed in the FPGA block RAM, which is on
chip, but memory ’circuits’ and not logic resources. The
buffers are controlled by two indices, addr_i for horizon-
tal position and linei for vertical. For every valid input
data, the row buffers are read for the current address,
addr_i . The resulting data column is synchronized with
the input and put in a shift register, with the width of the

window. The input data is written to addr_i to the oldest
row buffer, line_i , and the address index is incremented.
When reaching an end-of-line or start-of-frame signal,
the address index is reset, and the row index cycled.
Hence, every row buffer address is written to once but
read win_height times until the window overlaps. The
sliding window block is shown to the upper left, embed-
ded the GACT block, in Fig. 8.

GACT​	 Two parallel GACT-components are instantiated, to
handle the left and right images, respectively. Provided
the sliding window component and the GACT coordi-
nates the implementation is straight forward, as can be
seen in Fig. 8. Each position in the census bit string is
set by comparing two window coordinates, connected
by an edge. The current implementation supports 24
edges. Any lower amount of edges can be used as edges
point to the same coordinate by default and is hence self-
cancelling. Similarly, the same circuit can be used for
larger and smaller windows by restricting the coordinate
indices. This is however controlled by the GA on the PS
side. Input data width is 8-bits, and output is 24-bits.

Block Match	 The stereo correspondence is calculated
using block matching. For each pixel in the reference
image, extract a small image patch around the pixel, and
compare for similarity against patches from the target
image, over a range of horizontal offsets, the disparity
range. The image patches are referred to as aggrega-
tion windows, here implemented by two 9 × 9 sliding
window components, one for each 24-bit census stream.
The output of the right window is put into a shift regis-
ter, with the width of the disparity range, in this design
256 disparity hypothesis are evaluated. Similarly, for
census transformed images is defined by the Hamming
distance and is realized by a separate component. 256
parallel Hamming components calculates the similarity
for the current position in the reference image and an
offset (delay) of 0 to 255 pixels in the target image. As
the Hamming distance is calculated over the aggregation
window a two clock-cycle approach is adopted, starting
with the column sums (vertical), followed by horizontal
aggregation. From 256 hypothesis the best match is to
be found, along with its offset. This is implemented as a
tree-like tournament, of different branching factor, over
3 clock cycles. The winner, the patch with the smallest
distance, has a disparity of the corresponding offset, an
8-bit value, which is mapped to the block design and
VDMA0.

To carry out the experiments, two different FPGA imple-
mentations of the same design were derived, one for square
census windows and one for lateral. The implemented cir-
cuits handle worst case scenarios, i.e. maximal window size,
21 × 21 and 29 × 15 , respectively, with 24 census edges.

548	 Journal of Real-Time Image Processing (2021) 18:539–559

1 3

Experiments for smaller windows and fewer edges could be
run using the same implementations. (However, with shifted
output). The design is fully pipelined, clocked at 50 MHz
and handles 256 levels of disparity.

4.2.2 � CPU/PS

From the hardware design, a configuration file is created
containing the information for generating low-level sys-
tem startup files and the device tree, describing the hard-
ware (with addresses) for the operating system, in this case
Petalinux, a Xilinx specific Linux distribution for the Zynq
systems. One specific configuration was to, in the device
tree, reserve part of the PS RAM memory for image frame
buffers, i.e., set an upper RAM limit for Linux, so that the
operating system would not interfere with the frame buffers.
Greatly simplified, the address space can be divided into
three parts: the normal RAM memory, the reserved RAM-
area for frame buffers, and the hardware address space.
Thanks to Linux GA is a straight forward application, on
the CPU side, which can be hierarchically divided into three
parts: initialization, GA and evaluation, as shown in Fig. 9.

To minimize processing and data transfer KITTI training
samples were combined into one file per sample, containing
both left and right intensity images, together with an integer
ground truth value (for future use). This completes a 24-bit
3 channel image.

	Initialization	 The application begins with an initiali-
zation phase. First, the training images are loaded.
As these are to be forwarded to the FPGA, and not
to be processed by the PS, they are loaded to static
addresses in the frame buffer memory area, out-
side of the memory range of the operating system.
Next the ground truth images (of float precision)
are loaded into allocated heap memory (RAM), as

these are only to be accessed by the PS application.
The ground truth needs to be shifted, as the output
from the FPGA is not padded, and depends on census
(varying) and aggregation (fixed) window sizes. The
smaller the census window (compared to the sup-
ported size) the greater the shift required to align the
images. KITTI images are of slightly different size,
adding another requirement on the application (on
both PS and PL sides).

		  With the image data loaded the next part of the ini-
tialization phase is to setup the census register driver
and the parameters for GA and evaluation. The cen-
sus register driver provides an interface for manipu-
lating census registers, in the hardware address space,
from the PS application. Later, candidate GACT
masks will be shared with the PL through these reg-
isters. The driver requires the hardware address and
the census size and clear the associated memory area
at initialization. GA parameters are setup; popula-
tion size, number of offspring, number of evaluations
and mutation rate, as mentioned earlier, along with
more experiment specific parameters such as census
window size and the number of edges. Finally, the
evaluation parameters are setup. These are the thresh-
olds associated with KITTI evaluation, pointers to the
input images and the output (disparity) image (frame
buffer addresses), pointers to the ground truth images
(heap), addresses to the VDMA IP cores (hardware
address space) and information about image size.
There is a distinction between the GA and the evalu-
ation when it comes to data. GA derives candidate
masks and requires the fitness, independent of how
the evaluation is performed and on what data. The
evaluation, on the other hand, is independent of GA
data.

Fig. 9   Experimental setup CPU

549Journal of Real-Time Image Processing (2021) 18:539–559	

1 3

	GA	 The implementation of GA is straight forward follow-
ing the algorithm described in Sect. 3 and shown in
Fig. 9. The algorithm is neither particularly space or
time consuming (and hence not implementation criti-
cal).

		  An individual in this application is defined by a
GACT comparison schema of a specified number of
edges. This set of edges can be compared to a genome
and each edge a gene. As described, an edge can be fit-
ted into a 32-bit register, and an equivalent 4-byte edge
datatype is defined. A GACT mask is simply defined
as an array of edges, and a population as an array of
individual masks.

		  First the population is randomly generated in accord-
ance with the GA parameters. Over generations off-
spring is generated from the population through selec-
tion (two random individuals from the population are
selected as parents), crossover (combination of edges
from the parents) and mutation (change a random
edge). Finally, stronger offspring replaces the weaker
of its parents and the population is set for the next
generation.

		  Evaluation needs to be performed, first for the ini-
tial population, and continuously throughout for every
offspring. Before running evaluation, the current indi-
vidual needs to be presented to the FPGA over the cen-
sus_register.

	EVAL	The EVAL part handles the image data, i.e., stereo
image(s), disparity map and ground truth. The trans-
feral of image data between the PS and the PL is done
using VDMA IP cores, implemented on the FPGA
side. First VDMA0, for receiving the disparity map,
is setup. This includes specifying image size, data
width, frame buffer address and resetting and start-
ing the core. For VDMA0 the width of the stream is
8-bit to support the disparity range. The frame buffer
address for the disparity map is always the same.
Next the VDMA1 core is setup similarly, but this
time the 24-bit image stream of the stereo images is
sent to the FPGA. During the initialization the train-
ing images were loaded from files directly into dif-
ferent frame buffers. Hence, it suffices to change the
frame buffer address instead of reloading images.

		  The FPGA performs the census transform, accord-
ing to the mask, and stereo matching before the
resulting disparity map can be read from the VDMA0
frame buffer. The frame buffer is mapped into user
space and the disparity image is compared pixel by
pixel to the ground truth (also loaded during the ini-
tialization) returning the error rate, for non-occluded
pixels, given the evaluation parameters. The frame
buffer is then released.

		  This process has to be repeated for each training
image. The fitness of the individual is the average
error rate, over the set of training images.

5 � Experimental result

In this section, the experimental results are presented.
Firstly, the results from training are presented. Conserva-
tive GACT candidates have been evaluated to investigate
how parameters affect the matching result, followed by and
analysis of derived GACT patterns. This is performed for
square followed by lateral census windows. Then results
regarding the implementation are presented and discussed.
Finally, GACT masks have been compared to established
CT methods.

5.1 � Training

In previous work it was established that for the KITTI data-
set the correlation between training and evaluation result was
strong, i.e. a training candidate with low training error rate
will, with a high probability, have a low evaluation error rate
[2]. It was also concluded that GACT did not converge to a
single solution, but to many similarly good solutions sharing
common traits, representing the information from the train-
ing data. To investigate the discrepancy between different
solutions, training was repeated 10 times for each parameter
set. The training results, for square windows of different size
and number of edges, are shown in Table 1. Comparing the
max and min for the different entries, the divergence is small,
compared to the total error. For the worst case, 3 × 3 window
and 8 edges, the difference is 0.36% (21.75–21.39%). The
GA produces solutions of acceptable consistent values, and
hence a single training run could suffice. The training results
for rectangular census windows are shown in Table 2. The
conclusions for square windows hold true for rectangular
windows, however the training error rates are lower.

5.2 � Evaluation—square GACT​

Even though training result are acceptably accordant, the
median training candidates were selected for evaluation, to
achieve the highest level of consistency, at a potential loss
of highest accuracy possible. However, this is to reflect the
result if running GA once.

First square GACT windows will be considered. The
evaluation results for GACT of 8, 16 and 24 edges of dif-
ferent window sizes are presented in Fig. 10 and Table 3,
where the error rates are plotted against the number of pixels
in the census window. From the evaluation results it can be
concluded that larger census windows reduce the error, at a
exponentially decaying rate. The final step almost doubles

550	 Journal of Real-Time Image Processing (2021) 18:539–559

1 3

the census window at a quite small accuracy improvement.
It has previously been established that larger CT windows
broaden object boundaries [3, 19], just as aggregation win-
dows, where large induce foreground fattening [19], how-
ever, to a lower extent regarding CT [3], and that large CTs
are unfeasible [42] or even detrimental [3, 19]. Applying
GACT to too large census windows, edge location is opti-
mized to minimize the error rate, omitting edges in unfea-
sible areas. It can hence be argued that the effect on GACT,
in terms of accuracy, will not be detrimental if increasing
the window size. Instead a steady state can be expected,
where optimal accuracy is achieved, and extending window

size beyond this point is a waste of resources. Another point
regarding census window size is that the negative effect of
too large census windows is suppressed by noisy data [19].
Here, experiments are based on KITTI, which comprises of
natural, noisy images. Hence, in combination with GACT
optimisation, too large windows should not be an issue.

Increasing the number of edges increases matching accu-
racy, as seen in Fig. 10 and Table 3. The improvement is
larger when going from 8 to 16 edges than from 16 to 24
edges, and is relatively consistent across window sizes.
Regarding the number of edges as compared to window size,
only for relatively small windows, an increase in window

Table 1   Square windows–
training error rates–% bad
pixels, NOC, end-point error
< 3px or < 5%

Window Pixels Edges Min Mean Median Max

3 × 3 9 8 21.39 21.48 21.50 21.75
3 × 3 9 16 20.88 20.93 20.94 20.98
3 × 3 9 24 20.76 20.82 20.82 20.87
5 × 5 25 8 14.83 15.07 15.09 15.19
5 × 5 25 16 14.01 14.06 14.04 14.17
5 × 5 25 24 13.66 13.79 13.81 13.89
9 × 9 81 8 10.64 10.79 10.80 10.89
9 × 9 81 16 9.37 9.46 9.46 9.59
9 × 9 81 24 9.03 9.13 9.16 9.22
15 × 15 225 8 8.57 8.77 8.75 9.02
15 × 15 225 16 7.24 7.37 7.36 7.52
15 × 15 225 24 6.79 6.87 6.86 6.97
21 × 21 441 8 7.57 7.82 7.83 8.01
21 × 21 441 16 6.28 6.47 6.45 6.71
21 × 21 441 24 5.87 6.00 5.99 6.09

Table 2   Lateral windows–
training error rates–% bad
pixels, NOC, end-point error
< 3px or < 5%

Window Pixels Edges Min Mean Median Max

3 × 5 15 8 16.70 16.88 16.89 17.03
3 × 5 15 16 16.09 16.17 16.17 16.24
3 × 5 15 24 15.98 16.02 16.00 16.10
5 × 9 45 8 11.37 11.54 11.53 11.74
5 × 9 45 16 10.34 10.45 10.45 10.57
5 × 9 45 24 10.10 10.22 10.20 10.35
7 × 13 91 8 9.32 9.44 9.40 9.66
7 × 13 91 16 8.09 8.24 8.25 8.37
7 × 13 91 24 7.89 7.95 7.95 8.05
9 × 17 153 8 8.34 8.45 8.45 8.63
9 × 17 153 16 7.10 7.19 7.17 7.31
9 × 17 153 24 6.69 6.80 6.81 6.89
11 × 21 231 8 7.76 7.88 7.86 8.18
11 × 21 231 16 6.38 6.55 6.53 6.77
11 × 21 231 24 6.00 6.10 6.10 6.20
15 × 29 435 8 6.98 7.17 7.18 7.37
15 × 29 435 16 5.67 5.78 5.79 5.88
15 × 29 435 24 5.32 5.39 5.39 5.48

551Journal of Real-Time Image Processing (2021) 18:539–559	

1 3

size can compensate for a larger number of edges. However,
increasing edges comes at a much higher cost as it affects the
later stereo matching, see Sect. 5.6. It can also be expected
that there is a break-point, where introducing more edges
will not lead to any accuracy improvement.

5.3 � Distribution—square GACT​

To conclude the results on square census windows a total of
30 training runs of the largest example ( 21 × 21 , 24 edges)
were performed. The activated coordinates for all masks
were put in a histogram to show the GACT distribution for
the training data. The histogram is shown in Fig. 11. Note
that this shows that a coordinate within the census window is
activated, but not to which other coordinate it is connected.
It can be observed that GACT activates data, forming a hori-
zontal ridge along the middle row, within the window. On
the other hand, the top and bottom regions are more or less
flat (non-activated), and hence a waste of resources. These

(a)

(b)

Fig. 10   Square GACT error rates for different GACT windows sizes
and number of edges

Table 3   Square windows–evaluation error rates–% bad pixels, end-
point error < 3px or < 5%

Window Pixels Edges NOC OCC

3 × 3 9 8 21.89 23.20
3 × 3 9 16 21.20 22.52
3 × 3 9 24 21.18 22.50
5 × 5 25 8 16.40 17.80
5 × 5 25 16 15.59 17.01
5 × 5 25 24 15.37 16.80
9 × 9 81 8 12.97 14.43
9 × 9 81 16 11.85 13.32
9 × 9 81 24 11.55 13.03
15 × 15 225 8 11.26 12.74
15 × 15 225 16 10.31 11.79
15 × 15 225 24 9.75 11.24
21 × 21 441 8 10.46 11.90
21 × 21 441 16 9.38 10.82
21 × 21 441 24 9.01 10.48

(a)

(b)

Fig. 11   Square windows: histograms of coordinate activation and
edge length, 30 runs, 21 × 21 neighborhood, 24 edges

552	 Journal of Real-Time Image Processing (2021) 18:539–559

1 3

should instead be dedicated extending the window later-
ally, to better cover the activation distribution. Before going
to the results of lateral windows a note on edge lengths.
Similarly to the activation histogram, a histogram was cre-
ated over the length of all edges. This histogram is shown
in Fig. 11. As can be seen, the most common edge length is
3, and there are few edges longer than 10. Assuming a large
enough window, edge lengths does not really increase with
larger windows. Edges do not span the entire window, but
they do however populate the entire width of the window.

5.4 � Evaluation—lateral GACT​

For the second part of GACT evaluation, lateral census win-
dows were considered, to better correlate with the distri-
bution of selected coordinates found for square windows.
The number of rows and columns were set as a fixed ratio
of columns = 2 ∗ rows − 1 . Similar to square windows, the
training was repeated 10 times for each window size and
parameter set and the median candidates were evaluated.
The results are shown in Fig. 12 and Table 4.

The conclusion from the experiment is that, for a census
window of a certain number of pixels, the GACT of a lateral
shape performs better than a square. This is best visualized
by Fig. 12 where the results for square windows have been
included for reference. The lateral series (red) are below the
corresponding square series (blue).

5.5 � Distribution—lateral GACT​

Similar to square GACT, lateral GACT was trained 30 times
for the largest training parameters, i.e., 15 × 29 window with
24 edges, to investigate the distribution of coordinate acti-
vation and edge lengths. The results are shown in Fig. 13.
Looking at the edge length distribution, Fig. 13b, it is
resemblant of square GACT, with 3 being the most common
length. Once again, edges spanning the entire window are
deemed unfavorable. The coordinate selectivity histogram,
Fig. 13a, on the other hand, shows a more interesting result.
First, it should be noted that the distribution declines verti-
cally from the center row. This indicates that not much infor-
mation is lost by vertically limiting the window. Secondly,
the horizontal stretch shows that coordinates are not acti-
vated along a ridge, but there are rather two separate parts:
(1) a central distribution and (2) the most lateral regions of
the window. Knowing this, a similar pattern can be distin-
guished from the square coordinate distribution, Fig. 11a.

To further investigate the nature of the coordinate
distribution, experiments were run for different window
sizes. The resulting distributions are shown in Fig. 14a–d.
For the 15 × 29 window a normal probability distribution
was estimated from the central part of the data, Fig. 14i.
This was subtracted from the other histograms and the

remaining distributions are shown in Fig. 14e–h. It can be
observed that the examples share the same central distri-
bution with the supporting lateral regions following the
expansion of the window. From the example, approxi-
mately half of the edges adhere to each of these parts,
respectively. A hypothesis is that the central distribution
represent matching on similarity while the peripheral
edges help to eliminate uncertainty.

To conclude the evaluation results for lateral GACT,
similarly as to square GACT, lower error rates will be
achieved by increasing the window size and/or the number
of edges. The better the result the higher the cost for an
improvement. It can be noted that there is little differ-
ence between 16 and 24 edges until the two final window
sizes. It can also be noted that lateral GACT16 is better
than square GACT24. This is of great importance when
considering implementation trade-offs for resource limited
systems.

(a)

(b)

Fig. 12   Lateral GACT error rates for different GACT windows sizes
and number of edges. Blue represents square windows

553Journal of Real-Time Image Processing (2021) 18:539–559	

1 3

5.6 � Implementation

Utilization for the two FPGA implementations, i.e., for
square and lateral GACT widnows, are shown in Tables 5
and 6. GACT windows are set as large as possible, 21 × 21
and 15 × 29 , for the Xilinx ZCU104 target board, consider-
ing a data width of 24 edges, a 9 × 9 aggregation window,
and 256 levels of disparity. As can be seen from the utili-
zation tables, the LUTs are the limiting resource. Clearly,
a stereo matching considering a large number of disparity
hypotheses will require a considerable amount of resources.
Not as apparent, is the cost associated with the GACT, for
the specific GA implementation. The GA works under the
presumption that any census window coordinate can be
selected, as an edge point, at any time. Implementation of
this is straight forward for a CPU, where elements from an
array-like structure, representing the image patch, can be
accessed at constant time (very high level). However, on
the circuit level of an FPGA, array indexing is a different
proposition, as each index requires a signal tap, a physical
connection for each bit of the data. An edge is defined by a
start and an end point. The design supports up to 24 edges.
Hence, there are 48 elements to be accessed each clock
cycle. Adding to the problem is that the operation must be
performed for both input images. It is unavoidable that the
circuitry required for routing/multiplexing rapidly grows out
of proportion as census window sizes increase.

However, when implementing a circuit for a trained, and
hence deterministic, GACT mask the resource utilization

can be considerably reduced, as routing can be limited to
specific indices. The resource utilization for an arbitrarily
defined GACT mask is represented by the first column of
Table 7. This can be compared to the training setup, Table 6.

Opposed to the original CT, for GACT, the window size
can be altered without affecting the output data width, as the
number of edges is defined. Hence, increasing the window
size is a valid option to achieve higher matching accuracy.
However, a larger window requires more buffering resources
in the GACT component. On the FPGA, where the image is
represented as a stream, instead of a two-dimensional grid,
the concept of neighboring pixels/pixel connectivity, is rede-
fined. For a stream, the distance to horizontal neighbors are
one pixel, just as in the ’normal’ case. Vertical neighbors,
on the other hand, are one full width of the image away,
and require buffering of a full row. This is handled by the
sliding window component using block ram. Elongating the
GACT window in the horizontal direction comes at a very
low additional cost, while extending the window vertically

Table 4   Rectangular windows–evaluation error rates–% bad pixels,
end-point error < 3px or < 5%

Window Pixels Edges NOC OCC

3 × 5 15 8 17.62 19.00
3 × 5 15 16 17.18 18.57
3 × 5 15 24 17.10 18.49
5 × 9 45 8 13.53 14.97
5 × 9 45 16 12.73 14.19
5 × 9 45 24 12.49 13.96
7 × 13 91 8 11.93 13.40
7 × 13 91 16 10.92 12.41
7 × 13 91 24 10.72 12.21
9 × 17 153 8 11.22 12.65
9 × 17 153 16 10.05 11.54
9 × 17 153 24 9.89 11.37
11 × 21 231 8 10.90 12.36
11 × 21 231 16 9.52 11.01
11 × 21 231 24 9.11 10.59
15 × 29 435 8 10.00 11.47
15 × 29 435 16 8.90 10.37
15 × 29 435 24 8.61 10.10

(a)

(b)

Fig. 13   Lateral windows: Histograms of coordinate activation and
edge length, 30 runs, 15 × 29 neighborhood, 24 edges

554	 Journal of Real-Time Image Processing (2021) 18:539–559

1 3

consumes block ram resources. This can be seen in Table 7
for the default, 5 × 29 , 29 × 5 and 5 × 5 setups, where 29 × 5
is the most expensive. 5 × 29 and 5 × 5 on the other hand
show similar utilization figures. Also, the evaluation results

for 5 × 29 and 29 × 5 are 8.90% vs 12.40% for non-occluded
pixels—a substantial difference. Similarly, window height
has a great impact on latency, as it requires readout of a
full row, while lateral change can be counted in terms of

(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

Fig. 14   First row: Coordinate activation histograms for different GACT widths. Second row: Histograms with central distribution subtracted.
Third row: Estimated central normal probability distribution

Table 5   FPGA utilization GACT 21 × 21

Resource Utilization Available Utilization %

LUT 212,634 230,400 92.29
LUTRAM 545 101,760 0.54
FF 97,500 460,800 21.15
BRAM 52.5 312 16.83
BUFG 7 544 1.29

Table 6   FPGA utilization GACT 15 × 29

Resource Utilization Available Utilization %

LUT 214,889 230,400 93.27
LUTRAM 545 101,760 0.54
FF 97,807 460,800 21.23
BRAM 46.5 312 14.90
BUFG 7 544 1.29

555Journal of Real-Time Image Processing (2021) 18:539–559	

1 3

individual clock cycles. It can be concluded that lateral win-
dows are resource efficient and perform better.

Limiting the number of edges for GACT will of course
save resources, not only in the GACT component itself,
where fewer pixels are accessed, but more importantly in
the subsequent stereo matching component, which no longer
has to support the full data width. This is apparent when
comparing the FPGA utilization for 8 to 24 edges, as can
be seen in Table 7. Finally, the supported disparity range
of the circuit is a major contributor to high implementation
cost. The disparity range is dictated by the application/prob-
lem and not a variable parameter as such. However, for the
KITTI training dataset 0.0022% of the pixels are of disparity
larger than 127. Assuming that the evaluation dataset has the
same disparity distribution, limiting the disparity range to
127 can be considered a fair trade off (to save resources for
more elaborate stereo matching). From the subset of images
randomly selected for GACT training there are no disparities
greater than 127 so for the current training setup there would
be no penalty associated with a disparity range reduction.
The FPGA utilization for 128 disparities is listed in Table 7.

The FPGA pipeline is clocked at 50 MHz. As 256 dispar-
ity hypotheses are evaluated in parallel this equates to 12,800
MDE/s. KITTI images are of 0.5 Mpixel, hence the frame
rate is 100 fps. At this rate a training cycle, for the current
set of parameters, would complete in 5 min. However, the
current SoC setup requires approximately 40 min (2325 s),
with a single core CPU load of 18.5%. Consequently the
bottleneck of the system is believed to adhere to memory
mapping of image data on a driver level. Regardless, the
hardware acceleration is considerate, compared to previous
work [2], where a high-level CPU implementation required
approximately 20 h to complete a training cycle, using an
Intel Xeon X5650 2.67 GHz, even though the 8 offsprings
were calculated in parallel through multi-core processing.
Hence, the SoC setup accelerates training by a factor of 30.

5.7 � Evaluation with respect to related work

GACT has been compared to related works of a 5 × 5 cen-
sus window size, except for CT 7 × 9 . Several of the related
works are sparse and should be compared to methods of

similar number of edges. To include the aspect of rectan-
gular windows, additional GACT masks were included
for 3 × 9 (27 pixels) and 3 × 7 neighborhoods (21 pixels).
GACT24 5 × 29 has also been appended as a reference, as it
has been established that the implementation cost is similar
to GACT24 5 × 5 . The results are shown in Table 8.

Table 7   FPGA utilization (%)
for different settings

1 default parameters: pre-defined GACT mask, 15 × 29 census window, 24 edges, 256 disparities

Resource default1 5 × 29 29 × 5 5 × 5 8 edges 128 disparites

LUT 44.30 44.10 44.45 44.23 20.58 23.65
LUTRAM 0.54 0.54 0.54 0.54 0.54 0.54
FF 19.78 19.68 19.74 19.69 11.01 10.94
BRAM 14.90 11.68 19.39 11.70 9.76 14.90
BUFG 0.92 0.92 0.92 0.92 0.92 0.92

Table 8   KITTI error rates–% bad pixels, end-point error < 3px or
< 5%

556	 Journal of Real-Time Image Processing (2021) 18:539–559

1 3

The results show that the 5 × 5 GACT performs better
than other CT methods of the same size and number of
edges. In fact, only CT 7 × 9 , which comes associated with
considerably higher resource costs, achieves a better score
than the sparsest GACT. GACT 5 × 5 is comparable with
previous results [2], which corroborates the convergence of
GACT from a small training set for homogeneous datasets.

In line with the experimental results, the accuracy is
improved by adopting rectangular census windows. Both
GACT 3 × 7 and 3 × 9 perform better than their quadratic
counterpart. GACT 3 × 7 is of a slightly smaller neighbor-
hood, while GACT 3 × 9 is slightly larger. It is evident that
GACT makes good use of the extra lateral columns, and for
this setup it requires the same amount of resources, which in
terms of row buffering, is half to GACT 5 × 5 . If resources
are the focus, and 5 × 5 is considered the default experiment,
GACT 5 × 29 comes with no, or low, additional cost, for the
current setup. However, the result supersedes the smaller
windows, by a margin.

To perform well it is apparent that a 5 × 5 census win-
dow is not enough. Looking at the related works, only MCT,
RCT, GCT and SCT are defined to size. CT is often adapted
in a 7 × 9 configuration, for bit-strings to fit within 64-bit
registers. However, bit-string length quickly increases with
window size, and hence also the processing cost for match-
ing. The sparse CT can produce bit-strings of a specific
length, for different window sizes, by adapting different
levels of sparseness. The main argument of sparse CT was
that given an equal number of comparisons, a larger sparse
CT performs better than a larger dense, which is preferable
if/when the processing resources are limited.

Center based CTs are sensitive to noise and methods
using different comparison schema, GCT, SCT and CSCT,
have been proven successful, and are the ones to improve
upon. Both GCT and SCT are defined within a 5 × 5 neigh-
borhood and of a certain number of edges. For SCT there are
also different variations depending on edge length. To per-
form a proper extension for windows of different sizes and
shape would require quite an effort as the methods are hand-
crafted. The simple solution would be extended into larger
windows by introducing empty rows and columns, analogous
to sparse CT. However, this raises concerns regarding edge
distribution and length. SCT could capture local lateral com-
parisons but is limited to one single edge length. GCT has
edges spanning the entire neighborhood and these edges are
not favorable according to GACT.

GACT on the other hand can produce bit-strings of a
specified length, independent of window size. It will also
find a good distribution between the edges, both regarding
positioning and length. However, this comes at the cost of
training. By adopting the proposed hardware accelerated
approach, training is quick and does not require much train-
ing data.

5.8 � Outlook

The experiments and evaluations have been performed using
a basic block-matching framework. This gives a base for
comparison between different CT methods, as cost metrics,
but is not a full and final stereo algorithm where concepts
such as matching confidence, left-right consistency, different
strategies for cost aggregation, refinement filters, sub-pixel
interpolation, etc., are considered. Both algorithm opti-
mization steps and adaptations for FPGA implementation
has effect on matching accuracy [43]. The first question, of
course, is how well GACT can perform in such an algorithm,
and secondly, if and how extending the algorithm affects
GACT training result. Is the edge distribution depending
more on image information or algorithm. These questions
are left for future works. However, as a small experiment,
SGM [15] was adopted, for some of the GACT mask from
the experiments, i.e. trained using basic block matching. The
results are shown in Table 9.

It is clear that SGM optimization improves the result. For
larger GACT windows, though, the improvement is small.
Two reasons for this are that 1) the lower the error rate, the
more challenging and costly to make improvements, (simi-
larly to larger window sizes and more edges), and more to
the point 2) larger windows results in a larger perceptive
field, including ’semi-local’ information otherwise provided
by SGM. However, the question whether GACT and SGM
share a symbiotic advantage, if employed during training,
remains.

6 � Conclusion

The CT is a well-established cost metric for stereo match-
ing suitable for implementation on resource limited systems.
Over the years several different CT methods have been pro-
posed, from which two key developments can be identified:
(1) sparse CTs save resources by not evaluating all pixels
within the census window, and a larger sparse CT performs
better than a smaller dense, making for a similar implemen-
tation cost come the actual matching and (2) non-centric
comparison schemas make CT produce a better result and
be less sensitive to noise. The GACT takes advantage of

Table 9   Block matching vs SGM

Block matching SGM

Method NOC OCC NOC OCC

CT 5 × 5 20.60 21.92 15.82 17.23
GACT24 5 × 5 15.37 16.80 12.73 14.20
GACT24 3 × 9 13.58 15.03 11.48 12.97
GACT24 5 × 29 9.09 10.54 8.77 10.22

557Journal of Real-Time Image Processing (2021) 18:539–559	

1 3

both these developments, but instead of using a handcrafted
comparison schema relies on GA to position the edges,
optimized for the image data. Previous work [2] shows that
GACT performs better than other CT methods with the same
number of edges. In this paper the training time for GACT
has been significantly reduced through hardware accelera-
tion, adopting FPGA-based GACT and stereo matching. This
has enabled evaluation of GACT for multiple parameter sets,
altering window size and shape, and the number of edges.
The experiments suggest that GACT has a preference for
selecting two different types of edges, central and lateral,
of limited length compared to the larger neighborhood max
length. Hence, GACT benefits from adopting lateral win-
dows, further improving the previously established GACT
result, while at the same time, from an implementation per-
spective, requiring less buffer resources.

Acknowledgements  Open access funding provided by Mälardalen
University. The research leading to the presented results has been
undertaken within the research profile DPAC (http://www.es.mdh.
se/dpac/)—Dependable Platform for Autonomous Systems and Con-
trol project, funded by the Swedish Knowledge Foundation, and the
ECSEL-JU project SWARMs (www.swarm​s.eu).

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

	 1.	 Ahlberg, C., Ekstrand, F., Ekstrom, M., Spampinato, G., Asplund,
L.: Gimme2 - an embedded system for stereo vision and process-
ing of megapixel images with fpga-acceleration. In: 2015 Inter-
national conference on ReConFigurable computing and FPGAs
(ReConFig), pp. 1–8 (2015). https​://doi.org/10.1109/ReCon​
Fig.2015.73933​18

	 2.	 Ahlberg, C., Ortiz, M.L., Ekstrand, F., Ekstrom, M.: Unbounded
sparse census transform using genetic algorithm. In: 2019
IEEE Winter Conference on Applications of Computer Vision
(WACV), pp. 1616–1625 (2019). https​://doi.org/10.1109/
WACV.2019.00177​

	 3.	 Ambrosch, K., Kubinger, W.: Accurate hardware-based stereo
vision. Comput. Vis. Image Und. 114(11), 1303–1316 (2010).
https​://doi.org/10.1016/j.cviu.2010.07.008

	 4.	 Ambrosch, K., Zinner, C., Leopold, H.: A miniature embed-
ded stereo vision system for automotive applications. In: 2010
IEEE 26-th Convention of Electrical and Electronics Engineers
in Israel, pp. 000786–000789 (2010). https​://doi.org/10.1109/
EEEI.2010.56621​05

	 5.	 Chang, J., Chen, Y.: Pyramid stereo matching network. In:
2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 5410–5418 (2018). https​://doi.org/10.1109/
CVPR.2018.00567​

	 6.	 Chang, N.Y., Tsai, T., Hsu, B., Chen, Y., Chang, T.: Algorithm
and architecture of disparity estimation with mini-census adaptive
support weight. IEEE Trans. Circ. Syst. Video Technol. 20(6),
792–805 (2010). https​://doi.org/10.1109/TCSVT​.2010.20458​14

	 7.	 Cocorullo, G., Corsonello, P., Frustaci, F., Perri, S.: An effcient
hardware-oriented stereo matching algorithm. Microprocess.
Microsyst. 46, 21–33 (2016). https​://doi.org/10.1016/j.micpr​
o.2016.09.010

	 8.	 Dixon, S.L., Koehler, R.T.: The hidden component of size in two-
dimensional fragment descriptors: Side effects on sampling in
bioactive libraries. J. Medi. Chem. 42(15), 2887–2900 (1999).
https​://doi.org/10.1021/jm980​708c

	 9.	 Eiben, A.E., Raué, P.E., Ruttkay, Z.: Genetic algorithms with
multi-parent recombination. In: International Conference on Par-
allel Problem Solving from Nature, pp. 78–87 (1994)

	10.	 Fife, W.S., Archibald, J.K.: Improved census transforms for
resource-optimized stereo vision. IEEE Trans. Circ. Syst. Video
Technol. 23(1), 60–73 (2013). https​://doi.org/10.1109/TCSVT​
.2012.22031​97

	11.	 Froba, B., Ernst, A.: Face detection with the modifed census trans-
form. In: Sixth IEEE International Conference on Automatic Face
and Gesture Recognition, 2004. Proceedings., pp. 91–96 (2004).
https​://doi.org/10.1109/AFGR.2004.13015​14

	12.	 Goldberg, D.: Genetic algorithm in search, optimization and
machine learning. Addison-Wesley, New York (1989)

	13.	 Gong, M., Yang, Y.H.: Multi-resolution stereo matching using
genetic algorithm. In: Proceedings IEEE Workshop on Stereo
and Multi-Baseline Vision (SMBV 2001), pp. 21–29 (2001).
https​://doi.org/10.1109/SMBV.2001.98875​9

	14.	 Herrera, F., Lozano, M., Perez, E., Sanchez, A., Villar, P.:
Multiple crossover per couple with selection of the two best
offspring: an experimental study with the blx-alpha crossover
operator for real-coded genetic algorithms. In: Advances in
Artifcial Intelligence-IBERAMIA, pp. 392–401 (2002)

	15.	 Hirschmuller, H.: Stereo processing by semiglobal matching
and mutual information. IEEE Trans. Pattern Anal. Mach.
Intell. 30(2), 328–341 (2008). https​://doi.org/10.1109/TPAMI​
.2007.1166

	16.	 Hirschmuller, H., Scharstein, D.: Evaluation of stereo matching
costs on images with radiometric differences. IEEE Trans. Pat-
tern Anal. Mach. Intell. 31(9), 1582–1599 (2009). https​://doi.
org/10.1109/TPAMI​.2008.221

	17.	 Holland, J.H.: Adaptation in Natural and Artifcial Systems. The
University of Michigan Press (1975)

	18.	 Hosni, A., Bleyer, M., Rhemann, C., Gelautz, M., Rother, C.:
Real-time local stereo matching using guided image filtering. In:
2011 IEEE International Conference on Multimedia and Expo,
pp. 1–6 (2011). https​://doi.org/10.1109/ICME.2011.60121​31

	19.	 Humenberger, M., Zinner, C., Weber, M., Kubinger, W., Vincze,
M.: A fast stereo matching algorithm suitable for embed-
ded real-time systems. Computer Vision and Image Under-
standing 114, 1180–1202 (2010). https​://doi.org/10.1016/j.
cviu.2010.03.012

	20.	 Ko, J., Ho, Y.: Stereo matching using census transform of adaptive
window sizes with gradient images. In: 2016 Asia-Pacific Signal
and Information Processing Association Annual Summit and Con-
ference (APSIPA), pp. 1–4 (2016). https​://doi.org/10.1109/APSIP​
A.2016.78208​27

	21.	 Yoon, Kuk-Jin: In So Kweon: Adaptive support-weight approach
for correspondence search. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence 28(4), 650–656 (2006). https​://doi.
org/10.1109/TPAMI​.2006.70

http://www.es.mdh.se/dpac/
http://www.es.mdh.se/dpac/
http://www.swarms.eu
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ReConFig.2015.7393318
https://doi.org/10.1109/ReConFig.2015.7393318
https://doi.org/10.1109/WACV.2019.00177
https://doi.org/10.1109/WACV.2019.00177
https://doi.org/10.1016/j.cviu.2010.07.008
https://doi.org/10.1109/EEEI.2010.5662105
https://doi.org/10.1109/EEEI.2010.5662105
https://doi.org/10.1109/CVPR.2018.00567
https://doi.org/10.1109/CVPR.2018.00567
https://doi.org/10.1109/TCSVT.2010.2045814
https://doi.org/10.1016/j.micpro.2016.09.010
https://doi.org/10.1016/j.micpro.2016.09.010
https://doi.org/10.1021/jm980708c
https://doi.org/10.1109/TCSVT.2012.2203197
https://doi.org/10.1109/TCSVT.2012.2203197
https://doi.org/10.1109/AFGR.2004.1301514
https://doi.org/10.1109/SMBV.2001.988759
https://doi.org/10.1109/TPAMI.2007.1166
https://doi.org/10.1109/TPAMI.2007.1166
https://doi.org/10.1109/TPAMI.2008.221
https://doi.org/10.1109/TPAMI.2008.221
https://doi.org/10.1109/ICME.2011.6012131
https://doi.org/10.1016/j.cviu.2010.03.012
https://doi.org/10.1016/j.cviu.2010.03.012
https://doi.org/10.1109/APSIPA.2016.7820827
https://doi.org/10.1109/APSIPA.2016.7820827
https://doi.org/10.1109/TPAMI.2006.70
https://doi.org/10.1109/TPAMI.2006.70

558	 Journal of Real-Time Image Processing (2021) 18:539–559

1 3

	22.	 Kuzmin, A., Mikushin, D., Lempitsky, V.: End-to-end learning
of cost-volume aggregation for real-time dense stereo. In: 2017
IEEE 27th International Workshop on Machine Learning for Sig-
nal Processing (MLSP), pp. 1–6 (2017). https​://doi.org/10.1109/
MLSP.2017.81681​83

	23.	 Lee, J., Jun, D., Eem, C., Hong, H.: Improved census transform
for noise robust stereo matching. Optical Engineering 55(6), 1–10
(2016). https​://doi.org/10.1117/1.OE.55.6.06310​7

	24.	 Loghman, M., Kim, J.: Sgm-based dense disparity estimation
using adaptive census transform. In: 2013 International Confer-
ence on Connected Vehicles and Expo (ICCVE), pp. 592–597
(2013). https​://doi.org/10.1109/ICCVE​.2013.67998​60

	25.	 Luo, W., Schwing, A.G., Urtasun, R.: Efficient deep learning for
stereo matching. In: 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 5695–5703 (2016). https​://
doi.org/10.1109/CVPR.2016.614

	26.	 Ma, L., Li, J., Ma, J., Zhang, H.: A modified census transform
based on the neighborhood information for stereo matching
algorithm. In: 2013 Seventh International Conference on Image
and Graphics, pp. 533–538 (2013). https​://doi.org/10.1109/
ICIG.2013.113

	27.	 Madureira, A., Ramos, C., do Carmo Silva, S.: A coordination
mechanism for real world scheduling problems using genetic
algorithms. In: IEEE Congress on Evolutionary Computation,
pp. 175–180 (2002)

	28.	 Mayer, N., Ilg, E., Häusser, P., Fischer, P., Cremers, D., Doso-
vitskiy, A., Brox, T.: A large dataset to train convolutional net-
works for disparity, optical flow, and scene flow estimation. In:
2016 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 4040–4048 (2016). https​://doi.org/10.1109/
CVPR.2016.438

	29.	 Mei, X., Sun, X., Zhou, M., Jiao, S., Wang, H., Xiaopeng Zhang:
On building an accurate stereo matching system on graphics
hardware. In: 2011 IEEE International Conference on Computer
Vision Workshops (ICCV Workshops), pp. 467–474 (2011). https​
://doi.org/10.1109/ICCVW​.2011.61302​80

	30.	 Menze, M., Geiger, A.: Object scene flow for autonomous vehi-
cles. In: 2015 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 3061–3070 (2015). https​://doi.
org/10.1109/CVPR.2015.72989​25

	31.	 Michalik, S., Michalik, S., Naghmouchi, J., Berekovic, M.: Real-
time smart stereo camera based on fpga-soc. In: 2017 IEEE-RAS
17th International Conference on Humanoid Robotics (Human-
oids), pp. 311–317 (2017). https​://doi.org/10.1109/HUMAN​
OIDS.2017.82468​91

	32.	 Miguel, L., Ballesteros, J., Tidare, J., Xiong, N., Astrand, E.:
Feature Selection of EEG Oscillatory Activity Related to Motor
Imagery Using a Hierarchical Genetic Algorithm. In: IEEE Con-
gress on Evolutionary Computation, p. 8. Wellington, New Zea-
land (2019)

	33.	 Nguyen, V.D., Nguyen, D.D., Nguyen, T.T., Dinh, V.Q., Jeon,
J.W.: Support local pattern and its application to disparity
improvement and texture classification. IEEE Trans. Circ. Syst.
Video Technol. 24(2), 263–276 (2014). https​://doi.org/10.1109/
TCSVT​.2013.22548​98

	34.	 Perri, S., Corsonello, P., Cocorullo, G.: Adaptive census trans-
form: a novel hardware-oriented stereovision algorithm. Com-
put Vis Image Understand 117(1), 29–41 (2013). https​://doi.
org/10.1016/j.cviu.2012.10.003

	35.	 Perri, S., Frustaci, F., Spagnolo, F., Corsonello, P.: Design of
real-time fpga-based embedded system for stereo vision. In: 2018
IEEE International Symposium on Circuits and Systems (ISCAS),
pp. 1–5 (2018). https​://doi.org/10.1109/ISCAS​.2018.83518​86

	36.	 Qiao, S., Yang, J., Meng, L., Yan, S.: Hardware implementation
of census stereo matching algorithm. In: 2019 IEEE Interna-
tional Conference on Electron Devices and Solid-State Circuits

(EDSSC), pp. 1–3 (2019). https​://doi.org/10.1109/EDSSC​
.2019.87539​90

	37.	 Rogers, D.J., Tanimoto, T.T.: A computer program for classify-
ing plants. Science 132(3434), 1115–1118 (1960). https​://doi.
org/10.1126/scien​ce.132.3434.1115

	38.	 Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G.,
Nesic, N., Wang, X., Westling, P.: High-resolution stereo data-
sets with subpixel-accurate ground truth. In: Pattern Recogni-
tion - 36th German Conference, GCPR 2014, Münster, Germany,
September 2-5, 2014, Proceedings, pp. 31–42 (2014). https​://doi.
org/10.1007/978-3-319-11752​-2_3

	39.	 Scharstein, D., Szeliski, R., Zabih, R.: A taxonomy and evalua-
tion of dense two-frame stereo correspondence algorithms. In:
Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision
(SMBV 2001), pp. 131–140 (2001). https​://doi.org/10.1109/
SMBV.2001.98877​1

	40.	 Spangenberg, R., Langner, T., Rojas, R.: Weighted semi-global
matching and center-symmetric census transform for robust driver
assistance. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.)
Computer Analysis of Images and Patterns, pp. 34–41. Springer,
Berlin (2013)

	41.	 Taniai, T., Matsushita, Y., Sato, Y., Naemura, T.: Continuous 3d
label stereo matching using local expansion moves. IEEE Trans.
Pattern Anal. Mach. Intell. 40(11), 2725–2739 (2018). https​://doi.
org/10.1109/TPAMI​.2017.27660​72

	42.	 Tavera-Vaca, C.A., Almanza-Ojeda, D.L., Ibarra-Manzano, M.A.:
Analysis of the efficiency of the census transform algorithm
implemented on fpga. Microprocess. Microsyst. 39(7), 494–503
(2015). https​://doi.org/10.1016/j.micpr​o.2015.08.002

	43.	 Wang, W., Yan, J., Xu, N., Wang, Y., Hsu, F.: Real-time high-qual-
ity stereo vision system in fpga. IEEE Transactions on Circuits
and Systems for Video Technology 25(10), 1696–1708 (2015).
https​://doi.org/10.1109/TCSVT​.2015.23971​96

	44.	 Xiong, N., Molina, D., Leon, M., Herrera, F.: A walk into
metaheuristics for engineering optimization: principles, meth-
ods, and recent trends. Int. J. Comput. Intell. Syst. 8(4), 606–636
(2015)

	45.	 Zabih, R., Woodfill, J.: Non-parametric local transforms for com-
puting visual correspondence. In: Proceedings of the Third Euro-
pean Conference on Computer Vision (Vol. II), ECCV ’94, pp.
151–158. Springer-Verlag, Berlin, Heidelberg (1994)

	46.	 Zbontar, J., LeCun, Y.: Computing the stereo matching cost with a
convolutional neural network. In: 2015 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 1592–1599
(2015). https​://doi.org/10.1109/CVPR.2015.72987​67

	47.	 Žbontar, J., LeCun, Y.: Stereo matching by training a convolu-
tional neural network to compare image patches. J. Mach. Learn.
Res. 17(65), 1–32 (2016). URL http://jmlr.org/paper​s/v17/15-535.
html

	48.	 Zhang, F., Prisacariu, V., Yang, R., Torr, P.H.: Ga-net: Guided
aggregation net for end-to-end stereo matching. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 185–194 (2019)

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Carl Ahlberg  received his M.Sc. in Information Technologies from
Uppsala University, Sweden, in 2003. In 2009 he returned to academia
and joined Mälardalen University, Sweden, from where he received his
Ph.D. in 2020. His research interests include robotics, machine vision
and stereo vision.

https://doi.org/10.1109/MLSP.2017.8168183
https://doi.org/10.1109/MLSP.2017.8168183
https://doi.org/10.1117/1.OE.55.6.063107
https://doi.org/10.1109/ICCVE.2013.6799860
https://doi.org/10.1109/CVPR.2016.614
https://doi.org/10.1109/CVPR.2016.614
https://doi.org/10.1109/ICIG.2013.113
https://doi.org/10.1109/ICIG.2013.113
https://doi.org/10.1109/CVPR.2016.438
https://doi.org/10.1109/CVPR.2016.438
https://doi.org/10.1109/ICCVW.2011.6130280
https://doi.org/10.1109/ICCVW.2011.6130280
https://doi.org/10.1109/CVPR.2015.7298925
https://doi.org/10.1109/CVPR.2015.7298925
https://doi.org/10.1109/HUMANOIDS.2017.8246891
https://doi.org/10.1109/HUMANOIDS.2017.8246891
https://doi.org/10.1109/TCSVT.2013.2254898
https://doi.org/10.1109/TCSVT.2013.2254898
https://doi.org/10.1016/j.cviu.2012.10.003
https://doi.org/10.1016/j.cviu.2012.10.003
https://doi.org/10.1109/ISCAS.2018.8351886
https://doi.org/10.1109/EDSSC.2019.8753990
https://doi.org/10.1109/EDSSC.2019.8753990
https://doi.org/10.1126/science.132.3434.1115
https://doi.org/10.1126/science.132.3434.1115
https://doi.org/10.1007/978-3-319-11752-2_3
https://doi.org/10.1007/978-3-319-11752-2_3
https://doi.org/10.1109/SMBV.2001.988771
https://doi.org/10.1109/SMBV.2001.988771
https://doi.org/10.1109/TPAMI.2017.2766072
https://doi.org/10.1109/TPAMI.2017.2766072
https://doi.org/10.1016/j.micpro.2015.08.002
https://doi.org/10.1109/TCSVT.2015.2397196
https://doi.org/10.1109/CVPR.2015.7298767
http://jmlr.org/papers/v17/15-535.html
http://jmlr.org/papers/v17/15-535.html

559Journal of Real-Time Image Processing (2021) 18:539–559	

1 3

Miguel Leon  received the M.S. degree in Computer Science from Gra-
nada University, Spain in 2013, and the Ph.D. degree in the School of
Innovation, Design, and Engineering, Mälardalen University, Sweden
in 2019. His research interests include evolutionary algorithms, dif-
ferential evolution, and applications of evolutionary algorithms.

Fredrik Ekstrand  received his Tech.Lic. in Electronics from Mälard-
alen University, Västerås, Sweden, in 2013 where he currently heads
the division of Intelligent Future Technologies. His research interests
include machine vision, FPGAs and robotics.

Mikael Ekström  is a professor in robotics at Mälardalen University,
Västerås, Sweden, where he is the head of the robotics research group.
He received his M.Sc. and Ph.D. in physics from Uppsala University,
Sweden in 1993 and 1999 respectively. His research interests include
robotics, autonomous vehicles, sensors, and communication.

	The genetic algorithm census transform: evaluation of census windows of different size and level of sparseness through hardware in-the-loop training
	Abstract
	1 Introduction
	2 Related work
	3 Genetic algorithm
	4 Experimental setup
	4.1 Parameters, data
	4.2 ImplementationProcessing platform
	4.2.1 FPGAPL
	4.2.2 CPUPS

	5 Experimental result
	5.1 Training
	5.2 Evaluation—square GACT​
	5.3 Distribution—square GACT​
	5.4 Evaluation—lateral GACT​
	5.5 Distribution—lateral GACT​
	5.6 Implementation
	5.7 Evaluation with respect to related work
	5.8 Outlook

	6 Conclusion
	Acknowledgements
	References

