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Abstract
Stereo correspondence is a well-established research topic and has spawned categories of algorithms combining several pro-
cessing steps and strategies. One core part to stereo correspondence is to determine matching cost between the two images, 
or patches from the two images. Over the years several different cost metrics have been proposed, one being the Census 
Transform (CT). The CT is well proven for its robust matching, especially along object boundaries, with respect to outliers 
and radiometric differences. The CT also comes at a low computational cost and is suitable for hardware implementation. 
Two key developments to the CT are non-centric and sparse comparison schemas, to increase matching performance and/or 
save computational resources. Recent CT algorithms share both traits but are handcrafted, bounded with respect to symmetry, 
edge lengths and defined for a specific window size. To overcome this, a Genetic Algorithm (GA) was applied to the CT, 
proposing the Genetic Algorithm Census Transform (GACT), to automatically derive comparison schemas from example 
data. In this paper, FPGA-based hardware acceleration of GACT, has enabled evaluation of census windows of different 
size and shape, by significantly reducing processing time associated with training. The experiments show that lateral GACT 
windows produce better matching accuracy and require less resources when compared to square windows.

Keywords  Census transform · Stereo correspondence · Matching cost metric · Genetic algorithm · Real time · FPGA · 
SoC · VHDL

1  Introduction

With an ever-growing interest in intelligent and autonomous 
systems follows demands on perception, i.e. how to gather 
and extract meaningful information, from different sensor 
modalities, within a specified time frame. For us humans, 
vision is the most central sense, and for autonomous agents, 
acting in the real world, image sensors are key, as they are 

low cost and versatile. Through computer vision, applica-
tion-relevant information can be extracted from images, 
such as color, features, objects, size, and depth/distance. 
To extract 3D information from images is either dependent 
on a priori information or requires multiple images, from 
different viewpoints. This can be completed by moving a 
single camera, but in an unknown and constantly chang-
ing environment, a stereo camera, with two horizontally 
displaced and synchronized cameras, are much preferable 
as, image displacement is known (static) and there is no 
interference between ego-motion and object motion. This 
is referred to binocular, or two-frame, stereo. However, to 
find depth information the correspondence problem must be 
solved, that is to establish correspondence between pixels, 
or regions, from one image to the other. Assuming rectified 
stereo images, displacement between corresponding pixels, 
or disparity, will be limited to the horizontal axis. The larger 
the disparity, the closer the object. Knowing the disparity, d, 
and the stereo camera parameters, depth, z, is given by the 
following equation:
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where f is the focal length and B is the length of the baseline, 
i.e., horizontal displacement between the cameras. Hence, 
solving the correspondence problems, also known as stereo 
matching, is the core of stereo vision. The complexity of the 
problem and the numerous applications in different areas, 
such as autonomous driving, robotics, industrial automation, 
augmented reality, 3D mapping, entertainment, etc., have 
firmly established the stereo vision field of research.

Four steps, identified in the taxonomy of (two-frame) 
stereo algorithms [39], are frequently adopted: (1) match-
ing cost computation; (2) cost aggregation; (3) disparity 
computation; and (4) disparity refinement. Furthermore, 
methods are classified as local or global (or hybrid SGM). 
Global algorithms aim to minimize a total cost function 
over the full image while, for local methods, disparity, for 
a given pixel, is decided from a surrounding (and hence 
local) neighborhood. In general, global methods can pro-
duce higher matching accuracy at a higher level of comput-
ing complexity and are hence suitable for applications such 
as creation of 3D-maps or 3D-models of static scenes and 
objects. Applications that require high frame rates and/or 
low latency adopt local algorithms.

There are many approaches to matching cost calculation, 
i.e. determining how similar pixels are between frames, and 
the closer the correspondence the lower the cost. For local 
algorithms the cost computation and cost aggregation are 
closely related where, instead of relying on costs for sin-
gle pixels, cost support is considered over image patches, 
reducing the level of ambiguity, analogous to the aperture 
problem. Cost are divided into parametric; Absolute Differ-
ence (AD), Sum of AD (SAD), Zero mean SAD (ZSAD), 
Normalized Cross-Correlation (NCC), Zero mean NCC 
(ZNCC), etc., non-parametric; the Census Transform (CT) 
and rank transform [45] and, Mutual Information [16]. Or a 
combination, such as AD-Census [29] or truncated absolute 
difference of colors and gradients [18].

With the introduction of larger datasets, methods adopt-
ing deep learning, such as Convolutional Neural Networks 
(CNNs), as a cost metric [46, 47] and later end-to-end 
networks [5, 28], now dominate the research field and top 
the KITTI1 [30] and Middlebury2 [38] rankings [41, 48]. 
Although providing high matching accuracy, CNNs come 
with the drawback of high complexity, and massive process-
ing cost, even for inference, let alone training, and depend on 
power-hungry GPUs to achieve near real-time performance 
[22, 25, 28]. In the context of real-time stereo-vision for 

(1)z =
fB

d

resource limited systems, even though the state-of-the-art 
matching performance of CNN based solutions are promis-
ing, they do not provide a viable option, as of yet. Following 
these restrictions, it still makes sense to improve upon pre-
deep learning algorithms.

The CT is based on relative intensities between a center 
pixel and surrounding pixels. Within the local neighbor-
hood a pixel is represented by 1 if it is of lower intensity, 
otherwise 0. The bits are concatenated in some canonical 
ordering, forming a bit-string, referred to as the census 
value for the center pixel. Similarity is given by the Ham-
ming distance. Contrary to statistical cost metrics, where 
it is assumed local pixels belong to the same distribution, 
the CT tolerates factionalism, providing good matching per-
formance along object boundaries and robustness towards 
outliers. The CT is invariant under changes in gain and bias 
[45]. The CT is low-cost and suitable for hardware imple-
mentation [3, 4, 6, 7, 10, 19, 29, 31, 34–36, 42], often in 
combination with Semi-Global Matching (SGM) [15].

Over the years the CT has been researched leading to 
two key developments: (1) sparse CTs, where only selected 
neighborhood pixels are used for comparison, requires fewer 
comparisons, which can be distributed over larger areas, and 
results in shorter bit-strings, saving resources for the subse-
quent matching [4, 6, 19, 31] and (2) non-centric comparison 
schemas, where arbitrary neighborhood pixels are connected 
for comparison by edges, according to predefined patterns, 
depending less (or not at all) on the center pixel, resulting in 
better matching accuracy and robustness towards noise [10, 
23, 40]. However, the handcrafted CT methods are bound 
with respect to symmetry, edge length or neighborhood.

In the previous work [2], it was established that optimiz-
ing the census comparison schema using a Genetic Algo-
rithm (GA), referred to as GACT, lead to higher matching 
accuracy and/or lower resource requirements than estab-
lished CT methods. It was also concluded that outcome was 
highly dependent on training data (KITTI vs Middlebury) 
and that the CT should benefit from a larger neighborhood 
(KITTI).

In this paper, thanks to a new hardware-in-the-loop imple-
mentation, the GA training process is accelerated by a factor 
of 30, enabling evaluation of GACT windows of different 
size and shape. The experiments show that: (a) the GACT 
window size has a big effect on matching performance; (b) 
as GACT is defined for a number of edges (sparse) a change 
of the window size does not come at a great cost (assum-
ing a trained mask), as the subsequent stereo-matching 
only depend on the produced bit-string; (c) lateral windows 
make for improved matching and save resources; and (d) that 
GACT is suitable for FPGA implementation.

The remainder of this paper is arranged as follows. First 
related works with respect to the CT are presented followed 
by an introduction to GA. Then the experimental setup is 

1  http://www.cvlib​s.net/datas​ets/kitti​/.
2  http://visio​n.middl​ebury​.edu/stere​o/eval3​/.

http://www.cvlibs.net/datasets/kitti/
http://vision.middlebury.edu/stereo/eval3/


541Journal of Real-Time Image Processing (2021) 18:539–559	

1 3

described in terms of parameters, dataset and implementa-
tion. The experimental results are presented and discussed 
before the paper is concluded by some final remarks.

2 � Related work

The Census Transform (CT) [45] is a non-parametric local 
transform, meaning that a pixel value is replaced by a value 
based on intensity ordering within a local neighborhood. In 
this case a bit string where a bit is set to 1 if the correspond-
ing neighborhood pixel is of lower intensity, otherwise 0. 
Two census strings are compared using the Hamming dis-
tance. The comparison schema of CT is shown in Fig. 1a. 
CT can be formalized by the following equations:

where p, p′ represent pixel intensities.

where ⊗ represents the concatenation operation and N(p) 
defines the neighborhood around a pixel p.

The similarity of two pixels is given by the Hamming 
distance between the bit-strings:

(2)𝜉(p, p�) =

{
0 p ≤ p�

1 p > p�

(3)C(p) =
⨂

p�∈N(p)

�(p, p�)

which is also referred to as the matching cost.
The CT relies heavily on the neighborhood center pixel, 

which makes it sensitive to noise. The modified CT [11] is 
instead based around the neighborhood mean intensity, p̄ , 
leading to an update of Eq. 3 to

The authors conclude that this increases robustness, with 
respect to noise, and the ability to capture the image struc-
ture, which is important for classification and matching. 
However, at the cost of a higher computational complexity. 
This method will be referred to as MeanCT.

For the Sparse CT [4, 19], a subset of pixels within the 
neighborhood are selected for CT. The sparse factor, S = n2 , 
defines the sampling rate over the CT window, e.g. for sparse 
factor 16, 1 in 16 ( 4 × 4 ) pixels is selected for evaluation. 
The authors show that Sparse CT improves on the CT, given 
the same number of sample points, i.e., a larger receptive 
field is beneficial compared to higher resolution. However, 
an increased sparse factor does infer larger neighborhoods 
and consequently higher buffering costs, not to be underes-
timated for resource limited systems, for which the method 
was originally intended. Within this context, a stronger argu-
ment for the sparse CT is that, until a sparse factor of 16, 
it shows a marginal drop in accuracy compared to the CT, 
of the same neighborhood size. Figure 1b shows sparse CT 
with sparse factor of 2, hereafter referred to as Sparse8, as 
there are 8 sample points. This is extended to a full checker-
board pattern, by adding 4 diagonal sample points, referred 
to as Sparse12. Note that Sparse8 and Sparse12, are not 
consistent with the original definition of sparse CT, but are 
adapted to fit within a 5 × 5 neighborhood.

Mini-census (MCT) [6] is also a sparse CT targeting 
resource limited systems. MCT is defined by just 6 sam-
ple points, in a 5 × 5 window, Fig. 1c, to reduce calculation 
cost and memory resources. A similar example is the Retina 
CT (RCT) [31], Fig. 1d, with an 8-point circular pattern, 
inspired by the human retina.

An evolution of the MeanCT, hereafter referred to as 
Quarternion CT (QCT) [26], makes use of both the center 
pixel and the neighborhood mean intensity, thereby extend-
ing Eq. 2 to

resulting in a quaternion, and consequently bit-strings of 
twice the length. This shows an accuracy improvement (for 

(4)d(p1, p2) = Hamming
(
C(p1),C(p2)

)

(5)C(p) =
⨂

p�∈N(p)

𝜉(p̄, p�)

(6)𝜉(p, p�) =

⎧⎪⎨⎪⎩

00 p� ≤ min(p, p̄)

01 p� < p

10 p < p�

11 p� ≥ max(p, p̄)

(a) (b)

(c) (d)

Fig. 1   a Shows the original CT, for a 5 × 5 neighborhood, and b–d 
show different sparsity schemas, discarding greyed out pixels, to save 
computational resources
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stereo matching) in the Middlebury evaluation, but accord-
ing to the authors the benefit should be greater for real world 
images.

The Generalized Census Transform (GCT) [10] is a fam-
ily of defined masks, in a 5 × 5 neighborhood, with different 
levels of sparsity. The comparison schema is defined by a set 
of coordinate pairs, {(c1, c�1), (c2, c

�
2
),… , (ci, c

�
i
),… , (cn, c

�
n
)} , 

where n ∈ {1, 2, 4, 8, 12, 16} . A coordinate pair, (ci, c�i) , is 
connected through what is referred to as an edge. The key 
difference to previous work is that neither ci nor c′

i
 refer to 

the center pixel. Figure 2 shows the 8 and 16 edge GCT. To 
define GCT, Eq. 3 is updated as follows:

One advantage of GCT is that a 5 × 5 GCT is comparable 
to a 7 × 7 sparse CT and hence the number of line buffers 
can be reduced.

Presented at the same time as GCT, the Center-
Symmetric CT (CSCT) [40] similarly compares pairs 
of pixels within the census window, albeit center-
symmetric. Following the earlier notation, this can be 

(7)
C(p) =

⨂

1 ≤ i ≤ n

p + ci, p + c�
i
∈ N(p)

�(p + ci, p + c�
i
)

expressed as {(c1,−c1), (c2,−c2),… , (cn,−cn)} , where 
n = (NW ∗ NH − 1)∕2 . The 5 × 5 CSCT is shown in Fig. 3a. 
Contrary to GCT the definition of CSCT extends to dif-
ferent window sizes, but not to different levels of sparsity. 
However, it will always produce bit-strings of half the size 
as compared to the original CT, while considering all (but 
the center) pixels, although at the cost of slight increase in 
error rate. A second contribution is the introduction of edge 
weights along the central rows and columns, as shown in 
Fig. 3b. This will be considered as adding edges but can, 
according to the authors, be implemented using lookup 
tables. With weights along the central rows (hwCSCT) or 
both central rows and columns (wCSCT) boosted results 
passed CT, while saving resources.

The Star Census Transform (SCT) [23] extends GCT 
by defining masks of symmetrical sequences of connected 
edges, of equal length, forming star-shaped scan-patterns 
around the center. Let (c�

1
, c�

2
, ..., c�

n
) = (c2, ..., cn, c1) and 

Eq. 7 holds true for SCT. The authors states that by evaluat-
ing masks with different numbers of sample points and edge 
lengths, candidates are found that improve on CT, MCT and 
GCT, particularly on CT and MCT with respect to noise, 
whether Gaussian or impulse. Figure 4 shows the best SCT 
for 8, 16 and 24 edges.

The Adaptive Census Transform (ACT) [34] applies the 
principle of ADaptive Support Weights (ADSW) [21] in a 
census context. For ADSW pixels within the aggregation 
window are weighted, based on center pixel similarity and 
proximity. For ACT the binary number is replaced by a 
weight, an integer defined by a hardware-friendly approxi-
mation function, exploiting intensity similarity (the proxim-
ity term is omitted as its contribution is limited for small 
aggregation windows). The census matching cost is then 
defined by SAD instead of the Hamming distance. This 
makes ACT expensive to implement, due to the weight func-
tion and the added complexity of SAD compared to Ham-
ming. To describe ACT Eq. 2 is updated as follows:

and w defined as:

(8)𝜉(p, p�) =

{
−w p ≤ p�

w p > p�

(a) (b)

Fig. 2   GCT schemas for 8 and 16 edges

(a) (b)

Fig. 3   Center-symmetric schema of CSCT and the optional weights 
along the central rows and columns

(a) (b) (c)

Fig. 4   Selected SCT sequences with 8, 16 and 24 edges



543Journal of Real-Time Image Processing (2021) 18:539–559	

1 3

where �c represents the absolute intensity difference 
between p and p′ , and parameters set as: �c = 16 , and po to 
p7 are 64, 48, 32, 32, 16, 16, 16, 16. The weight function was 
also adopted for cost aggregation (ADSW). The implemen-
tation was later extended [7] incorporating Support Local 
Binary Pattern (SLBP) [33] and sparse ACT windows. With 
SLBP a census vector is calculated with respect to each pixel 
in the census window, not only the center pixel, resulting in 
as many census strings as pixels, i.e., 9 vectors for a 3 × 3 
window. To allow for larger census windows and to com-
pensate for the additional complexity of SLBP, a sparse 
approach was adopted [7], where only pixels along the hori-
zontal, vertical and diagonal lines intersecting the center 
pixel were included. Later a simplified implementation [35], 
eliminating the SLBP component, for embedded heterogene-
ous system based on Xilinx Zynq SoC, was presented.

Adaptive window patterns for the CT [24] are based on 
the idea that uniform image regions require less complex 
census patterns than non-uniform. Hence, for a CPU imple-
mentation, the computational complexity can be reduced 
by applying different census transforms. A guidance mask, 
based on Canny edges, and the region intensity statistics 
(mean and variance) dictates the choice of an 8, 12 or 20 
pixel pre-defined census mask in a 9 × 9 neighborhood. 
Similarly, a method based on adaptive census window size/
shape has been proposed [20], where Sobel gradient images 
are used to select between square ( 3 × 3 ), portrait ( 11 × 3 ) 
or landscape ( 3 × 11 ) shaped census windows. Considering 
all pixels the method performs slightly worse than the corre-
sponding fixed window size, 11 × 11 , but better along depth 
discontinuities. Another contribution [36] lets the Sobel 
image dictate as to whether adopt a 5 × 5, 7 × 7 or 9 × 9 CT 
in an FPGA implementation. Here, to increase accuracy, as 
for FPGAs all CT-alternatives have to be processed in paral-
lel, thus invalidating the resource reduction argument.

Alternatively, to the Hamming distance, the Tanimoto 
[37] and the Dixon–Koehler [8] distances, achieve higher 
matching accuracy at the cost of increased complexity. Tani-
moto distance focuses on the ones of the matching bit-strings 
(1-intersection/union). The Dixon–Koehler is the product 
between the normalized Hamming and Tanimoto distances. 
In a comparison study for FPGA implementation [42], a 
number of different CT window sizes, 5 × 5 to 23 × 23 , and 
Hamming, Tanimoto and Dixon–Koehler similarities were 
evaluated, with respect to matching accuracy and resource 

(9)w =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

pn ⌊𝛥c∕𝛾c⌋ = n, 0 ≤ n ≤ 7

8 8 ≤ ⌊𝛥c∕𝛾c⌋ < 12

4 12 ≤ ⌊𝛥c∕𝛾c⌋ < 16

2 16 ≤ ⌊𝛥c∕𝛾c⌋ < 20

1 20 ≤ ⌊𝛥c∕𝛾c⌋ < 24

0 ⌊𝛥c∕𝛾c⌋ ≥ 24

requirements. It was concluded that a 13 × 13 Dixon–Koe-
hler CT produced a better matching result than a 23 × 23 
Hamming, at similar cost in terms of resources. However, 
the real benefit of Dixon–Koehler is that it can reach a higher 
level of accuracy, but resources scale badly with window 
size.

Finally, composite costs, where part of the cost consti-
tutes of CT, are also adopted. These methods are out of 
scope here, as the focus is on stand-alone CT. AD-Census 
[29], combines a weighted sum over CT and color-based 
SAD, where the AD component provides good matching 
support for textured or slanted areas, while CT preserves 
edge information. The neighborhood for CT was set to 9 × 7 , 
the largest possible of odd rows and columns, to produce 
strings that fit within 64-bit registers. The stand-alone con-
tribution of this larger footprint CT, referred to as CT-7x9 
because of the row-column notation, is interesting for com-
parison, especially since AD-Census has since been revised 
with GCT [23]. Another example of a composite cost is 
combining MeanCT over the images, MeanCT over gradi-
ent images and SAD [3].

3 � Genetic algorithm

The Genetic Algorithm (GA) [17] is a population-based 
optimization method, proposed in the 60’s, extended and 
popularized in 1989 [12], that belongs to the family of 
Evolutionary Algorithms [44]. In 1989 extended and made 
popular, in the context of optimization [12]. GA is based 
on the evolution of the species, in which the new solutions 
are created from previous ones and only the stronger solu-
tions survive. GA has been successfully applied in different 
research areas, as stereo matching [13], real time systems 
[27] or neuroengineering [32].

GA will have a population, X, in which each individual of 
the population will be a solution to the problem. The repre-
sentation of an individual will depend on the specifications 
of the problem. For the specific problem of GACT, each 
individual is represented by a CT mask, consisting of tuples 
of window coordinates, defining edges for pixel comparison. 
An individual i of population X can be described as

where xe is the starting point of the eth edge, x′
e
 is the end 

point of the same edge and n is the number of edges. Addi-
tionally, each point is formed with 2 coordinates (r, c), 
where r ∈ {1,… ,R} and c ∈ {1,… ,C} , for a census win-
dow of size R × C.

The first step in GA is to initialize the population, which 
is formed by ps (population size) individuals, generated at 
random. Then follows the evolutionary process, generation 

(10)Xi = {(x1, x
�
1
), (x2, x

�
2
),… , (xe, x

�
e
),… , (xn, x

�
n
)}
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by generation, where each iteration, or generation, is com-
posed by four consecutive steps: parent selection, crosso-
ver, mutation and replacement. An example of one genera-
tion of GA, in a problem with 8 edges, is shown in Fig. 5. 
After one generation is terminated, a new one will start 
until the maximum number of generations is reached.

Selection. The first step within one generation is to 
select parents to create the offspring. In this paper, two 
parents, P1 and P2 , are randomly selected, from the entire 
population, to create one offspring (O). This is repeated 
for a defined number of offspring each generation. Hence, 
a high diversity within the population can be maintained, 
minimizing the chance to suffer local optima stagnation.

Crossover. After selecting the two parents, the new off-
spring, O, is created. Many different options to perform 
crossover can be found in the literature [9, 14]. In this 
paper, a Uniform crossover method has been selected. In 
this method, the information of O is randomly selected 
from the two parents with equal probability, as described 
below:

where e is the eth edge of either the offspring (O), the first 
parent ( P1 ) or the second parent ( P2 ). Additionally, rand is 
a random number ∈ [0, 1).

Mutation. Once the offspring is created, this is perturbed, 
to explore neighbor solutions. In order to apply this pertur-
bation, a random position within an edge, either the start 
or the end point, is selected. Then, it will be replaced by a 
random position within the CT constraints.

Replacement. After mutation, the performance, also 
called fitness, of O is calculated (f(O)) and compared with 
the fitness of the worst parent ( f (Pworst) ). If, f(O) is better 
than f (Pworst) , then Pworst will be replaced by O. On the con-
trary, if f(O) is worse, then O is discarded. The description 
of the fitness calculations is described in Sect. 4.1.

(11)(oe, o
�
e
) =

{
(p1e , p

�
1e
) if rand < 0.5

(p2e , p
�
2e
) otherwise

4 � Experimental setup

The experiment is setup as a two-phase process, separat-
ing training and an evaluation between two processing plat-
forms, as shown in Fig. 6. During training GA is applied 
to find new GACT comparison schemas (or masks). This 
involves, for each candidate individual, transforming the 
input images, in accordance to the mask, and perform stereo 
matching, followed by an evaluation of the resulting dis-
parity map, with respect to the ground truth. The training 
phase is implemented on a Xilinx ZCU104, a processing 
platform combining a CPU and an FPGA, where the most 
arduous part of the process, the stereo matching, is hardware 
accelerated, significantly reducing time for training. Dur-
ing the evaluation phase the GA derived mask is evaluated, 
on a larger dataset, using a MATLAB implementation, for 
consistency with previous work [2]. First, the parameters for 
the experiment will be presented followed by a description 
of the implementation for ZCU104.

4.1 � Parameters, data

The GACT experiments are defined by the number of edges 
and window sizes:

•	 Number of edges: 8, 16 and 24.
•	 Square windows: 3 × 3 , 5 × 5 , 9 × 9 , 15 × 15 , 21 × 21.
•	 Lateral windows, following rows × columns-notation, 

where columns = 2 ∗ rows − 1 : 3 × 5 , 5 × 9 , 7 × 13 , 
9 × 17 , 11 × 21 , 15 × 29.

In addition, lateral windows 3 × 7 , 3 × 9 , 3 × 29 and 5 × 29 
are used to compare GACT to established CT methods.

For GA the following parameters are used:

•	 population size = 30
•	 offspring size = 8
•	 max evaluation = 6000

Fig. 5   Genetic algorithm for CT 
flowchart
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•	 mutation rate = 20%

GA is repeated 10 times for each CT setting and the median 
candidates evaluated. The hyper parameters are carried over 
from preceding experiments [2]. For the current experiment, 
the search space has expanded, possibly warranting a larger 
number of evaluations. However, a consistent result, when 
repeating the experiment, suggests a satisfactory balance 
between exploration and exploitation with sufficient num-
ber of evaluation.

Through stereo matching disparity maps for GACT masks 
are obtained. Here, the Hamming distance between census 
bit-strings for 9 × 9 aggregation windows gives the match-
ing cost for a disparity hypothesis. The disparity range is 
set to [0, 255] for training (FPGA) and [0, 230] for evalu-
ation (MATLAB). From the disparity hypotheses the best 
candidate is selected according to a winner takes all (WTA) 
strategy. No left-right consistency check (LRC), no sub-
pixel interpolation, propagation, refinement filters, etc., are 
applied.

Disparity maps, whether during the training or evaluation 
phase, are evaluated using KITTI3 stereo evaluation. The 
KITTI 2015 benchmark [30] consists of training and evalu-
ation datasets, with an associated ranking list. The KITTI 
dataset targets autonomous driving and the scenes repre-
sent real-world natural images with noise, reflections, chal-
lenging contrast, etc. Fig. 7 shows an example with ground 
truth. For the training set the stereo pairs are completed 
by the ground truth images, enabling supervised learning. 
As KITTI evaluation is to be performed once, and associ-
ated with a single publication, until a more complete stereo 

framework around GACT is finalized, the experiments are 
carried out on the training set. This dataset is split into local 
training and evaluation subsets. To limit training time, and 
as GACT works well with a relatively small amount of train-
ing data, 5 training scenes were selected at random (seq. no. 
39, 101, 3, 166, 40), leaving 195 for evaluation. The end-
point error is defined as < 3px or < 5% . During training, only 
non-occluded (NOC) pixels are considered. For evaluation 
occluded (OCC) results are also presented.

4.2 � Implementation/Processing platform

To be able to extend the experiments, performed in previous 
work [2], for multiple window sizes and different shapes, the 
time required for training had to be considerably reduced, 
even though parallel for-loops, utilizing 8 cores, one per 

Fig. 6   Flowchart of the two-phase experimental setup

Fig. 7   KITTI 2015 sample3  http://www.cvlib​s.net/datas​ets/kitti​/.

http://www.cvlibs.net/datasets/kitti/
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offspring, were adopted. As the intended future processing 
platform for GACT is FPGAs, more specifically GIMME2 
[1], this platform can also serve as an accelerator during 
training. However, the non-deterministic data pattern of 
GACT individuals, proposed by GA, in correlation with 
large windows and disparity range, deemed GIMME2 short 
on resources. Instead the more powerful Xilinx ZCU104 was 
used for the experiments. Both share the Zynq SoC platform 
and the source/IP cores can be reused between them.

The most computationally expensive, and hence time 
consuming, part during training is the stereo matching, fol-
lowed by the census transform. These are implemented on 
the FPGA in a pipelined design, benefiting from the parallel 
processing capabilities of the FPGA. GA itself is low-cost. 
The GA-indices are randomly selected inferring a non-
deterministic data-access pattern, which is not suitable for 
FPGA implementation. Evaluation involves division which 
is costly on the FPGA. Since neither GA nor evaluation is 
part of the stereo algorithm, there is no motivation for it to 
be implemented on GIMME2.

In accordance with the Xilinx Vivado design flow, the 
implementation will be described starting from the FPGA 
side, also referred to as the Programmable Logic (PL), fol-
lowed by the CPU side, or Processing System (PS). This 

is contrary to the processing flow of training, which is 
controlled by the PS application. Returning to Fig. 6, the 
reminder of the section will focus on the left box, the train-
ing phase, and first the FPGA part, the gray block.

4.2.1 � FPGA/PL

At a high abstraction level the FPGA-side of the design can 
be divided into three components; block design, GACT and 
stereo matching, as shown in Fig. 8. Block design is part 
of the Zynq design flow and specifies system properties 
and the PL/PS interface, here setup for exchange of images 
(left, right and disparity) and GACT masks (as dictated by 
GA). Two GACT components (left/right) converts intensity 
images to images of census bit-strings, according to the 
GACT coordinates. Stereo matching calculates the dispar-
ity, using the Hamming distance. GACT and stereo matching 
are the core components, both relying on a forth component, 
the sliding window. A sliding window approach is necessary 
as on the FPGA, there are only enough resources to process 
a small part of the image, at a time. Following this approach 
an image representation is changed to a data stream, where 
a new pixel is presented every clock cycle. Below follows a 
more detailed description of the components. 

Fig. 8   Experimental setup FPGA
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Block Design	 The block design comprises of three IP 
cores: processing system, VDMA and census register. 
In the processing system the I/O, clocks, memory and 
PS-PL interface settings for the Zynq system are config-
ured. The ZCU104 evaluation board can be selected as 
target device with a preset processing-system configu-
ration with respect to the hardware. More interesting 
are design dependent configurations, such as the PS-PL 
interface, here with two high performance slaves, for 
image data transferal, and one master, for IP register 
control.

	   The VDMA IPs from Xilinx provide high perfor-
mance memory mapped channels to enable data stream-
ing between the FPGA fabric and the system memory. 
In this design the read and write channels are separated 
into two separate VDMA components. The read channel, 
VDMA1, handles a 24-bit stream (non-optimal), divided 
into 8-bits of left and right pixel intensities, respectively, 
and 8-bits of (natural) ground truth (not currently used). 
The write channel, VDMA0, is setup as an 8-bit stream 
to encode 256 levels of disparity. The control/status of 
the VDMA cores is performed by writing/reading regis-
ter values. The register space is accessed (from the PS) 
over the AXI4-lite master interface.

	   The census register IP is an AXI4 peripheral, with 
the straight forward objective to setup a shared memory 
area between the PS-PL for GACT control. The cen-
sus register memory area holds 25 32-bit register, one 
control register and 24 edge register. An edge is repre-
sented by two points, start and end point, each having 
two coordinates. For this application directionality is 
of minor/marginal importance and is hence neglected. 
Each coordinate is encoded by 8-bits to fit an edge into 
a 32-bit register. Census registers are mapped as signals 
to the GACT component.

Sliding Window	 The function of the sliding window is to 
buffer data, to provide a small image patch, from an 
image data stream. Both the GACT and stereo match 
blocks are window based and incorporates this compo-
nent. The sliding window has generic parameters to be 
able to cope with different window sizes, data widths, 
and image sizes. For this experiment different window 
sizes and data widths are used by the GACT and stereo 
matching components.

	   The sliding window requires win_height − 1 row buff-
ers. As there is a large amount of data to be stored, the 
buffers are placed in the FPGA block RAM, which is on 
chip, but memory ’circuits’ and not logic resources. The 
buffers are controlled by two indices, addr_i for horizon-
tal position and linei for vertical. For every valid input 
data, the row buffers are read for the current address, 
addr_i . The resulting data column is synchronized with 
the input and put in a shift register, with the width of the 

window. The input data is written to addr_i to the oldest 
row buffer, line_i , and the address index is incremented. 
When reaching an end-of-line or start-of-frame signal, 
the address index is reset, and the row index cycled. 
Hence, every row buffer address is written to once but 
read win_height times until the window overlaps. The 
sliding window block is shown to the upper left, embed-
ded the GACT block, in Fig. 8.

GACT​	 Two parallel GACT-components are instantiated, to 
handle the left and right images, respectively. Provided 
the sliding window component and the GACT coordi-
nates the implementation is straight forward, as can be 
seen in Fig. 8. Each position in the census bit string is 
set by comparing two window coordinates, connected 
by an edge. The current implementation supports 24 
edges. Any lower amount of edges can be used as edges 
point to the same coordinate by default and is hence self-
cancelling. Similarly, the same circuit can be used for 
larger and smaller windows by restricting the coordinate 
indices. This is however controlled by the GA on the PS 
side. Input data width is 8-bits, and output is 24-bits.

Block Match	 The stereo correspondence is calculated 
using block matching. For each pixel in the reference 
image, extract a small image patch around the pixel, and 
compare for similarity against patches from the target 
image, over a range of horizontal offsets, the disparity 
range. The image patches are referred to as aggrega-
tion windows, here implemented by two 9 × 9 sliding 
window components, one for each 24-bit census stream. 
The output of the right window is put into a shift regis-
ter, with the width of the disparity range, in this design 
256 disparity hypothesis are evaluated. Similarly, for 
census transformed images is defined by the Hamming 
distance and is realized by a separate component. 256 
parallel Hamming components calculates the similarity 
for the current position in the reference image and an 
offset (delay) of 0 to 255 pixels in the target image. As 
the Hamming distance is calculated over the aggregation 
window a two clock-cycle approach is adopted, starting 
with the column sums (vertical), followed by horizontal 
aggregation. From 256 hypothesis the best match is to 
be found, along with its offset. This is implemented as a 
tree-like tournament, of different branching factor, over 
3 clock cycles. The winner, the patch with the smallest 
distance, has a disparity of the corresponding offset, an 
8-bit value, which is mapped to the block design and 
VDMA0.

To carry out the experiments, two different FPGA imple-
mentations of the same design were derived, one for square 
census windows and one for lateral. The implemented cir-
cuits handle worst case scenarios, i.e. maximal window size, 
21 × 21 and 29 × 15 , respectively, with 24 census edges. 
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Experiments for smaller windows and fewer edges could be 
run using the same implementations. (However, with shifted 
output). The design is fully pipelined, clocked at 50 MHz 
and handles 256 levels of disparity.

4.2.2 � CPU/PS

From the hardware design, a configuration file is created 
containing the information for generating low-level sys-
tem startup files and the device tree, describing the hard-
ware (with addresses) for the operating system, in this case 
Petalinux, a Xilinx specific Linux distribution for the Zynq 
systems. One specific configuration was to, in the device 
tree, reserve part of the PS RAM memory for image frame 
buffers, i.e., set an upper RAM limit for Linux, so that the 
operating system would not interfere with the frame buffers. 
Greatly simplified, the address space can be divided into 
three parts: the normal RAM memory, the reserved RAM-
area for frame buffers, and the hardware address space. 
Thanks to Linux GA is a straight forward application, on 
the CPU side, which can be hierarchically divided into three 
parts: initialization, GA and evaluation, as shown in Fig. 9.

To minimize processing and data transfer KITTI training 
samples were combined into one file per sample, containing 
both left and right intensity images, together with an integer 
ground truth value (for future use). This completes a 24-bit 
3 channel image. 

	Initialization	 The application begins with an initiali-
zation phase. First, the training images are loaded. 
As these are to be forwarded to the FPGA, and not 
to be processed by the PS, they are loaded to static 
addresses in the frame buffer memory area, out-
side of the memory range of the operating system. 
Next the ground truth images (of float precision) 
are loaded into allocated heap memory (RAM), as 

these are only to be accessed by the PS application. 
The ground truth needs to be shifted, as the output 
from the FPGA is not padded, and depends on census 
(varying) and aggregation (fixed) window sizes. The 
smaller the census window (compared to the sup-
ported size) the greater the shift required to align the 
images. KITTI images are of slightly different size, 
adding another requirement on the application (on 
both PS and PL sides).

		    With the image data loaded the next part of the ini-
tialization phase is to setup the census register driver 
and the parameters for GA and evaluation. The cen-
sus register driver provides an interface for manipu-
lating census registers, in the hardware address space, 
from the PS application. Later, candidate GACT 
masks will be shared with the PL through these reg-
isters. The driver requires the hardware address and 
the census size and clear the associated memory area 
at initialization. GA parameters are setup; popula-
tion size, number of offspring, number of evaluations 
and mutation rate, as mentioned earlier, along with 
more experiment specific parameters such as census 
window size and the number of edges. Finally, the 
evaluation parameters are setup. These are the thresh-
olds associated with KITTI evaluation, pointers to the 
input images and the output (disparity) image (frame 
buffer addresses), pointers to the ground truth images 
(heap), addresses to the VDMA IP cores (hardware 
address space) and information about image size. 
There is a distinction between the GA and the evalu-
ation when it comes to data. GA derives candidate 
masks and requires the fitness, independent of how 
the evaluation is performed and on what data. The 
evaluation, on the other hand, is independent of GA 
data.

Fig. 9   Experimental setup CPU
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	GA	 The implementation of GA is straight forward follow-
ing the algorithm described in Sect. 3 and shown in 
Fig. 9. The algorithm is neither particularly space or 
time consuming (and hence not implementation criti-
cal).

		    An individual in this application is defined by a 
GACT comparison schema of a specified number of 
edges. This set of edges can be compared to a genome 
and each edge a gene. As described, an edge can be fit-
ted into a 32-bit register, and an equivalent 4-byte edge 
datatype is defined. A GACT mask is simply defined 
as an array of edges, and a population as an array of 
individual masks.

		    First the population is randomly generated in accord-
ance with the GA parameters. Over generations off-
spring is generated from the population through selec-
tion (two random individuals from the population are 
selected as parents), crossover (combination of edges 
from the parents) and mutation (change a random 
edge). Finally, stronger offspring replaces the weaker 
of its parents and the population is set for the next 
generation.

		    Evaluation needs to be performed, first for the ini-
tial population, and continuously throughout for every 
offspring. Before running evaluation, the current indi-
vidual needs to be presented to the FPGA over the cen-
sus_register.

	EVAL	The EVAL part handles the image data, i.e., stereo 
image(s), disparity map and ground truth. The trans-
feral of image data between the PS and the PL is done 
using VDMA IP cores, implemented on the FPGA 
side. First VDMA0, for receiving the disparity map, 
is setup. This includes specifying image size, data 
width, frame buffer address and resetting and start-
ing the core. For VDMA0 the width of the stream is 
8-bit to support the disparity range. The frame buffer 
address for the disparity map is always the same. 
Next the VDMA1 core is setup similarly, but this 
time the 24-bit image stream of the stereo images is 
sent to the FPGA. During the initialization the train-
ing images were loaded from files directly into dif-
ferent frame buffers. Hence, it suffices to change the 
frame buffer address instead of reloading images.

		    The FPGA performs the census transform, accord-
ing to the mask, and stereo matching before the 
resulting disparity map can be read from the VDMA0 
frame buffer. The frame buffer is mapped into user 
space and the disparity image is compared pixel by 
pixel to the ground truth (also loaded during the ini-
tialization) returning the error rate, for non-occluded 
pixels, given the evaluation parameters. The frame 
buffer is then released.

		    This process has to be repeated for each training 
image. The fitness of the individual is the average 
error rate, over the set of training images.

5 � Experimental result

In this section, the experimental results are presented. 
Firstly, the results from training are presented. Conserva-
tive GACT candidates have been evaluated to investigate 
how parameters affect the matching result, followed by and 
analysis of derived GACT patterns. This is performed for 
square followed by lateral census windows. Then results 
regarding the implementation are presented and discussed. 
Finally, GACT masks have been compared to established 
CT methods.

5.1 � Training

In previous work it was established that for the KITTI data-
set the correlation between training and evaluation result was 
strong, i.e. a training candidate with low training error rate 
will, with a high probability, have a low evaluation error rate 
[2]. It was also concluded that GACT did not converge to a 
single solution, but to many similarly good solutions sharing 
common traits, representing the information from the train-
ing data. To investigate the discrepancy between different 
solutions, training was repeated 10 times for each parameter 
set. The training results, for square windows of different size 
and number of edges, are shown in Table 1. Comparing the 
max and min for the different entries, the divergence is small, 
compared to the total error. For the worst case, 3 × 3 window 
and 8 edges, the difference is 0.36% (21.75–21.39%). The 
GA produces solutions of acceptable consistent values, and 
hence a single training run could suffice. The training results 
for rectangular census windows are shown in Table 2. The 
conclusions for square windows hold true for rectangular 
windows, however the training error rates are lower.

5.2 � Evaluation—square GACT​

Even though training result are acceptably accordant, the 
median training candidates were selected for evaluation, to 
achieve the highest level of consistency, at a potential loss 
of highest accuracy possible. However, this is to reflect the 
result if running GA once.

First square GACT windows will be considered. The 
evaluation results for GACT of 8, 16 and 24 edges of dif-
ferent window sizes are presented in Fig. 10 and Table 3, 
where the error rates are plotted against the number of pixels 
in the census window. From the evaluation results it can be 
concluded that larger census windows reduce the error, at a 
exponentially decaying rate. The final step almost doubles 
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the census window at a quite small accuracy improvement. 
It has previously been established that larger CT windows 
broaden object boundaries [3, 19], just as aggregation win-
dows, where large induce foreground fattening [19], how-
ever, to a lower extent regarding CT [3], and that large CTs 
are unfeasible [42] or even detrimental [3, 19]. Applying 
GACT to too large census windows, edge location is opti-
mized to minimize the error rate, omitting edges in unfea-
sible areas. It can hence be argued that the effect on GACT, 
in terms of accuracy, will not be detrimental if increasing 
the window size. Instead a steady state can be expected, 
where optimal accuracy is achieved, and extending window 

size beyond this point is a waste of resources. Another point 
regarding census window size is that the negative effect of 
too large census windows is suppressed by noisy data [19]. 
Here, experiments are based on KITTI, which comprises of 
natural, noisy images. Hence, in combination with GACT 
optimisation, too large windows should not be an issue.

Increasing the number of edges increases matching accu-
racy, as seen in Fig. 10 and Table 3. The improvement is 
larger when going from 8 to 16 edges than from 16 to 24 
edges, and is relatively consistent across window sizes. 
Regarding the number of edges as compared to window size, 
only for relatively small windows, an increase in window 

Table 1   Square windows–
training error rates–% bad 
pixels, NOC, end-point error 
< 3px or < 5%

Window Pixels Edges Min Mean Median Max

3 × 3 9 8 21.39 21.48 21.50 21.75
3 × 3 9 16 20.88 20.93 20.94 20.98
3 × 3 9 24 20.76 20.82 20.82 20.87
5 × 5 25 8 14.83 15.07 15.09 15.19
5 × 5 25 16 14.01 14.06 14.04 14.17
5 × 5 25 24 13.66 13.79 13.81 13.89
9 × 9 81 8 10.64 10.79 10.80 10.89
9 × 9 81 16 9.37 9.46 9.46 9.59
9 × 9 81 24 9.03 9.13 9.16 9.22
15 × 15 225 8 8.57 8.77 8.75 9.02
15 × 15 225 16 7.24 7.37 7.36 7.52
15 × 15 225 24 6.79 6.87 6.86 6.97
21 × 21 441 8 7.57 7.82 7.83 8.01
21 × 21 441 16 6.28 6.47 6.45 6.71
21 × 21 441 24 5.87 6.00 5.99 6.09

Table 2   Lateral windows–
training error rates–% bad 
pixels, NOC, end-point error 
< 3px or < 5%

Window Pixels Edges Min Mean Median Max

3 × 5 15 8 16.70 16.88 16.89 17.03
3 × 5 15 16 16.09 16.17 16.17 16.24
3 × 5 15 24 15.98 16.02 16.00 16.10
5 × 9 45 8 11.37 11.54 11.53 11.74
5 × 9 45 16 10.34 10.45 10.45 10.57
5 × 9 45 24 10.10 10.22 10.20 10.35
7 × 13 91 8 9.32 9.44 9.40 9.66
7 × 13 91 16 8.09 8.24 8.25 8.37
7 × 13 91 24 7.89 7.95 7.95 8.05
9 × 17 153 8 8.34 8.45 8.45 8.63
9 × 17 153 16 7.10 7.19 7.17 7.31
9 × 17 153 24 6.69 6.80 6.81 6.89
11 × 21 231 8 7.76 7.88 7.86 8.18
11 × 21 231 16 6.38 6.55 6.53 6.77
11 × 21 231 24 6.00 6.10 6.10 6.20
15 × 29 435 8 6.98 7.17 7.18 7.37
15 × 29 435 16 5.67 5.78 5.79 5.88
15 × 29 435 24 5.32 5.39 5.39 5.48
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size can compensate for a larger number of edges. However, 
increasing edges comes at a much higher cost as it affects the 
later stereo matching, see Sect. 5.6. It can also be expected 
that there is a break-point, where introducing more edges 
will not lead to any accuracy improvement.

5.3 � Distribution—square GACT​

To conclude the results on square census windows a total of 
30 training runs of the largest example ( 21 × 21 , 24 edges) 
were performed. The activated coordinates for all masks 
were put in a histogram to show the GACT distribution for 
the training data. The histogram is shown in Fig. 11. Note 
that this shows that a coordinate within the census window is 
activated, but not to which other coordinate it is connected. 
It can be observed that GACT activates data, forming a hori-
zontal ridge along the middle row, within the window. On 
the other hand, the top and bottom regions are more or less 
flat (non-activated), and hence a waste of resources. These 

(a)

(b)

Fig. 10   Square GACT error rates for different GACT windows sizes 
and number of edges

Table 3   Square windows–evaluation error rates–% bad pixels, end-
point error < 3px or < 5%

Window Pixels Edges NOC OCC

3 × 3 9 8 21.89 23.20
3 × 3 9 16 21.20 22.52
3 × 3 9 24 21.18 22.50
5 × 5 25 8 16.40 17.80
5 × 5 25 16 15.59 17.01
5 × 5 25 24 15.37 16.80
9 × 9 81 8 12.97 14.43
9 × 9 81 16 11.85 13.32
9 × 9 81 24 11.55 13.03
15 × 15 225 8 11.26 12.74
15 × 15 225 16 10.31 11.79
15 × 15 225 24 9.75 11.24
21 × 21 441 8 10.46 11.90
21 × 21 441 16 9.38 10.82
21 × 21 441 24 9.01 10.48

(a)

(b)

Fig. 11   Square windows: histograms of coordinate activation and 
edge length, 30 runs, 21 × 21 neighborhood, 24 edges
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should instead be dedicated extending the window later-
ally, to better cover the activation distribution. Before going 
to the results of lateral windows a note on edge lengths. 
Similarly to the activation histogram, a histogram was cre-
ated over the length of all edges. This histogram is shown 
in Fig. 11. As can be seen, the most common edge length is 
3, and there are few edges longer than 10. Assuming a large 
enough window, edge lengths does not really increase with 
larger windows. Edges do not span the entire window, but 
they do however populate the entire width of the window.

5.4 � Evaluation—lateral GACT​

For the second part of GACT evaluation, lateral census win-
dows were considered, to better correlate with the distri-
bution of selected coordinates found for square windows. 
The number of rows and columns were set as a fixed ratio 
of columns = 2 ∗ rows − 1 . Similar to square windows, the 
training was repeated 10 times for each window size and 
parameter set and the median candidates were evaluated. 
The results are shown in Fig. 12 and Table 4.

The conclusion from the experiment is that, for a census 
window of a certain number of pixels, the GACT of a lateral 
shape performs better than a square. This is best visualized 
by Fig. 12 where the results for square windows have been 
included for reference. The lateral series (red) are below the 
corresponding square series (blue).

5.5 � Distribution—lateral GACT​

Similar to square GACT, lateral GACT was trained 30 times 
for the largest training parameters, i.e., 15 × 29 window with 
24 edges, to investigate the distribution of coordinate acti-
vation and edge lengths. The results are shown in Fig. 13. 
Looking at the edge length distribution, Fig.  13b, it is 
resemblant of square GACT, with 3 being the most common 
length. Once again, edges spanning the entire window are 
deemed unfavorable. The coordinate selectivity histogram, 
Fig. 13a, on the other hand, shows a more interesting result. 
First, it should be noted that the distribution declines verti-
cally from the center row. This indicates that not much infor-
mation is lost by vertically limiting the window. Secondly, 
the horizontal stretch shows that coordinates are not acti-
vated along a ridge, but there are rather two separate parts: 
(1) a central distribution and (2) the most lateral regions of 
the window. Knowing this, a similar pattern can be distin-
guished from the square coordinate distribution, Fig. 11a.

To further investigate the nature of the coordinate 
distribution, experiments were run for different window 
sizes. The resulting distributions are shown in Fig. 14a–d. 
For the 15 × 29 window a normal probability distribution 
was estimated from the central part of the data, Fig. 14i. 
This was subtracted from the other histograms and the 

remaining distributions are shown in Fig. 14e–h. It can be 
observed that the examples share the same central distri-
bution with the supporting lateral regions following the 
expansion of the window. From the example, approxi-
mately half of the edges adhere to each of these parts, 
respectively. A hypothesis is that the central distribution 
represent matching on similarity while the peripheral 
edges help to eliminate uncertainty.

To conclude the evaluation results for lateral GACT, 
similarly as to square GACT, lower error rates will be 
achieved by increasing the window size and/or the number 
of edges. The better the result the higher the cost for an 
improvement. It can be noted that there is little differ-
ence between 16 and 24 edges until the two final window 
sizes. It can also be noted that lateral GACT16 is better 
than square GACT24. This is of great importance when 
considering implementation trade-offs for resource limited 
systems.

(a)

(b)

Fig. 12   Lateral GACT error rates for different GACT windows sizes 
and number of edges. Blue represents square windows
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5.6 � Implementation

Utilization for the two FPGA implementations, i.e., for 
square and lateral GACT widnows, are shown in Tables 5 
and 6. GACT windows are set as large as possible, 21 × 21 
and 15 × 29 , for the Xilinx ZCU104 target board, consider-
ing a data width of 24 edges, a 9 × 9 aggregation window, 
and 256 levels of disparity. As can be seen from the utili-
zation tables, the LUTs are the limiting resource. Clearly, 
a stereo matching considering a large number of disparity 
hypotheses will require a considerable amount of resources. 
Not as apparent, is the cost associated with the GACT, for 
the specific GA implementation. The GA works under the 
presumption that any census window coordinate can be 
selected, as an edge point, at any time. Implementation of 
this is straight forward for a CPU, where elements from an 
array-like structure, representing the image patch, can be 
accessed at constant time (very high level). However, on 
the circuit level of an FPGA, array indexing is a different 
proposition, as each index requires a signal tap, a physical 
connection for each bit of the data. An edge is defined by a 
start and an end point. The design supports up to 24 edges. 
Hence, there are 48 elements to be accessed each clock 
cycle. Adding to the problem is that the operation must be 
performed for both input images. It is unavoidable that the 
circuitry required for routing/multiplexing rapidly grows out 
of proportion as census window sizes increase.

However, when implementing a circuit for a trained, and 
hence deterministic, GACT mask the resource utilization 

can be considerably reduced, as routing can be limited to 
specific indices. The resource utilization for an arbitrarily 
defined GACT mask is represented by the first column of 
Table 7. This can be compared to the training setup, Table 6.

Opposed to the original CT, for GACT, the window size 
can be altered without affecting the output data width, as the 
number of edges is defined. Hence, increasing the window 
size is a valid option to achieve higher matching accuracy. 
However, a larger window requires more buffering resources 
in the GACT component. On the FPGA, where the image is 
represented as a stream, instead of a two-dimensional grid, 
the concept of neighboring pixels/pixel connectivity, is rede-
fined. For a stream, the distance to horizontal neighbors are 
one pixel, just as in the ’normal’ case. Vertical neighbors, 
on the other hand, are one full width of the image away, 
and require buffering of a full row. This is handled by the 
sliding window component using block ram. Elongating the 
GACT window in the horizontal direction comes at a very 
low additional cost, while extending the window vertically 

Table 4   Rectangular windows–evaluation error rates–% bad pixels, 
end-point error < 3px or < 5%

Window Pixels Edges NOC OCC

3 × 5 15 8 17.62 19.00
3 × 5 15 16 17.18 18.57
3 × 5 15 24 17.10 18.49
5 × 9 45 8 13.53 14.97
5 × 9 45 16 12.73 14.19
5 × 9 45 24 12.49 13.96
7 × 13 91 8 11.93 13.40
7 × 13 91 16 10.92 12.41
7 × 13 91 24 10.72 12.21
9 × 17 153 8 11.22 12.65
9 × 17 153 16 10.05 11.54
9 × 17 153 24 9.89 11.37
11 × 21 231 8 10.90 12.36
11 × 21 231 16 9.52 11.01
11 × 21 231 24 9.11 10.59
15 × 29 435 8 10.00 11.47
15 × 29 435 16 8.90 10.37
15 × 29 435 24 8.61 10.10

(a)

(b)

Fig. 13   Lateral windows: Histograms of coordinate activation and 
edge length, 30 runs, 15 × 29 neighborhood, 24 edges
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consumes block ram resources. This can be seen in Table 7 
for the default, 5 × 29 , 29 × 5 and 5 × 5 setups, where 29 × 5 
is the most expensive. 5 × 29 and 5 × 5 on the other hand 
show similar utilization figures. Also, the evaluation results 

for 5 × 29 and 29 × 5 are 8.90% vs 12.40% for non-occluded 
pixels—a substantial difference. Similarly, window height 
has a great impact on latency, as it requires readout of a 
full row, while lateral change can be counted in terms of 

(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

Fig. 14   First row: Coordinate activation histograms for different GACT widths. Second row: Histograms with central distribution subtracted. 
Third row: Estimated central normal probability distribution

Table 5   FPGA utilization GACT 21 × 21

Resource Utilization Available Utilization %

LUT 212,634 230,400 92.29
LUTRAM 545 101,760 0.54
FF 97,500 460,800 21.15
BRAM 52.5 312 16.83
BUFG 7 544 1.29

Table 6   FPGA utilization GACT 15 × 29

Resource Utilization Available Utilization %

LUT 214,889 230,400 93.27
LUTRAM 545 101,760 0.54
FF 97,807 460,800 21.23
BRAM 46.5 312 14.90
BUFG 7 544 1.29
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individual clock cycles. It can be concluded that lateral win-
dows are resource efficient and perform better.

Limiting the number of edges for GACT will of course 
save resources, not only in the GACT component itself, 
where fewer pixels are accessed, but more importantly in 
the subsequent stereo matching component, which no longer 
has to support the full data width. This is apparent when 
comparing the FPGA utilization for 8 to 24 edges, as can 
be seen in Table 7. Finally, the supported disparity range 
of the circuit is a major contributor to high implementation 
cost. The disparity range is dictated by the application/prob-
lem and not a variable parameter as such. However, for the 
KITTI training dataset 0.0022% of the pixels are of disparity 
larger than 127. Assuming that the evaluation dataset has the 
same disparity distribution, limiting the disparity range to 
127 can be considered a fair trade off (to save resources for 
more elaborate stereo matching). From the subset of images 
randomly selected for GACT training there are no disparities 
greater than 127 so for the current training setup there would 
be no penalty associated with a disparity range reduction. 
The FPGA utilization for 128 disparities is listed in Table 7.

The FPGA pipeline is clocked at 50 MHz. As 256 dispar-
ity hypotheses are evaluated in parallel this equates to 12,800 
MDE/s. KITTI images are of  0.5 Mpixel, hence the frame 
rate is  100 fps. At this rate a training cycle, for the current 
set of parameters, would complete in 5 min. However, the 
current SoC setup requires approximately 40 min (2325 s), 
with a single core CPU load of 18.5%. Consequently the 
bottleneck of the system is believed to adhere to memory 
mapping of image data on a driver level. Regardless, the 
hardware acceleration is considerate, compared to previous 
work [2], where a high-level CPU implementation required 
approximately 20 h to complete a training cycle, using an 
Intel Xeon X5650 2.67 GHz, even though the 8 offsprings 
were calculated in parallel through multi-core processing. 
Hence, the SoC setup accelerates training by a factor of 30.

5.7 � Evaluation with respect to related work

GACT has been compared to related works of a 5 × 5 cen-
sus window size, except for CT 7 × 9 . Several of the related 
works are sparse and should be compared to methods of 

similar number of edges. To include the aspect of rectan-
gular windows, additional GACT masks were included 
for 3 × 9 (27 pixels) and 3 × 7 neighborhoods (21 pixels). 
GACT24 5 × 29 has also been appended as a reference, as it 
has been established that the implementation cost is similar 
to GACT24 5 × 5 . The results are shown in Table 8.

Table 7   FPGA utilization (%) 
for different settings

1 default parameters: pre-defined GACT mask, 15 × 29 census window, 24 edges, 256 disparities

Resource default1 5 × 29 29 × 5 5 × 5 8 edges 128 disparites

LUT 44.30 44.10 44.45 44.23 20.58 23.65
LUTRAM 0.54 0.54 0.54 0.54 0.54 0.54
FF 19.78 19.68 19.74 19.69 11.01 10.94
BRAM 14.90 11.68 19.39 11.70 9.76 14.90
BUFG 0.92 0.92 0.92 0.92 0.92 0.92

Table 8   KITTI error rates–% bad pixels, end-point error < 3px or 
< 5%
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The results show that the 5 × 5 GACT performs better 
than other CT methods of the same size and number of 
edges. In fact, only CT 7 × 9 , which comes associated with 
considerably higher resource costs, achieves a better score 
than the sparsest GACT. GACT 5 × 5 is comparable with 
previous results [2], which corroborates the convergence of 
GACT from a small training set for homogeneous datasets.

In line with the experimental results, the accuracy is 
improved by adopting rectangular census windows. Both 
GACT 3 × 7 and 3 × 9 perform better than their quadratic 
counterpart. GACT 3 × 7 is of a slightly smaller neighbor-
hood, while GACT 3 × 9 is slightly larger. It is evident that 
GACT makes good use of the extra lateral columns, and for 
this setup it requires the same amount of resources, which in 
terms of row buffering, is half to GACT 5 × 5 . If resources 
are the focus, and 5 × 5 is considered the default experiment, 
GACT 5 × 29 comes with no, or low, additional cost, for the 
current setup. However, the result supersedes the smaller 
windows, by a margin.

To perform well it is apparent that a 5 × 5 census win-
dow is not enough. Looking at the related works, only MCT, 
RCT, GCT and SCT are defined to size. CT is often adapted 
in a 7 × 9 configuration, for bit-strings to fit within 64-bit 
registers. However, bit-string length quickly increases with 
window size, and hence also the processing cost for match-
ing. The sparse CT can produce bit-strings of a specific 
length, for different window sizes, by adapting different 
levels of sparseness. The main argument of sparse CT was 
that given an equal number of comparisons, a larger sparse 
CT performs better than a larger dense, which is preferable 
if/when the processing resources are limited.

Center based CTs are sensitive to noise and methods 
using different comparison schema, GCT, SCT and CSCT, 
have been proven successful, and are the ones to improve 
upon. Both GCT and SCT are defined within a 5 × 5 neigh-
borhood and of a certain number of edges. For SCT there are 
also different variations depending on edge length. To per-
form a proper extension for windows of different sizes and 
shape would require quite an effort as the methods are hand-
crafted. The simple solution would be extended into larger 
windows by introducing empty rows and columns, analogous 
to sparse CT. However, this raises concerns regarding edge 
distribution and length. SCT could capture local lateral com-
parisons but is limited to one single edge length. GCT has 
edges spanning the entire neighborhood and these edges are 
not favorable according to GACT.

GACT on the other hand can produce bit-strings of a 
specified length, independent of window size. It will also 
find a good distribution between the edges, both regarding 
positioning and length. However, this comes at the cost of 
training. By adopting the proposed hardware accelerated 
approach, training is quick and does not require much train-
ing data.

5.8 � Outlook

The experiments and evaluations have been performed using 
a basic block-matching framework. This gives a base for 
comparison between different CT methods, as cost metrics, 
but is not a full and final stereo algorithm where concepts 
such as matching confidence, left-right consistency, different 
strategies for cost aggregation, refinement filters, sub-pixel 
interpolation, etc., are considered. Both algorithm opti-
mization steps and adaptations for FPGA implementation 
has effect on matching accuracy [43]. The first question, of 
course, is how well GACT can perform in such an algorithm, 
and secondly, if and how extending the algorithm affects 
GACT training result. Is the edge distribution depending 
more on image information or algorithm. These questions 
are left for future works. However, as a small experiment, 
SGM [15] was adopted, for some of the GACT mask from 
the experiments, i.e. trained using basic block matching. The 
results are shown in Table 9.

It is clear that SGM optimization improves the result. For 
larger GACT windows, though, the improvement is small. 
Two reasons for this are that 1) the lower the error rate, the 
more challenging and costly to make improvements, (simi-
larly to larger window sizes and more edges), and more to 
the point 2) larger windows results in a larger perceptive 
field, including ’semi-local’ information otherwise provided 
by SGM. However, the question whether GACT and SGM 
share a symbiotic advantage, if employed during training, 
remains.

6 � Conclusion

The CT is a well-established cost metric for stereo match-
ing suitable for implementation on resource limited systems. 
Over the years several different CT methods have been pro-
posed, from which two key developments can be identified: 
(1) sparse CTs save resources by not evaluating all pixels 
within the census window, and a larger sparse CT performs 
better than a smaller dense, making for a similar implemen-
tation cost come the actual matching and (2) non-centric 
comparison schemas make CT produce a better result and 
be less sensitive to noise. The GACT takes advantage of 

Table 9   Block matching vs SGM

Block matching SGM

Method NOC OCC NOC OCC

CT 5 × 5 20.60 21.92 15.82 17.23
GACT24 5 × 5 15.37 16.80 12.73 14.20
GACT24 3 × 9 13.58 15.03 11.48 12.97
GACT24 5 × 29 9.09 10.54 8.77 10.22
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both these developments, but instead of using a handcrafted 
comparison schema relies on GA to position the edges, 
optimized for the image data. Previous work [2] shows that 
GACT performs better than other CT methods with the same 
number of edges. In this paper the training time for GACT 
has been significantly reduced through hardware accelera-
tion, adopting FPGA-based GACT and stereo matching. This 
has enabled evaluation of GACT for multiple parameter sets, 
altering window size and shape, and the number of edges. 
The experiments suggest that GACT has a preference for 
selecting two different types of edges, central and lateral, 
of limited length compared to the larger neighborhood max 
length. Hence, GACT benefits from adopting lateral win-
dows, further improving the previously established GACT 
result, while at the same time, from an implementation per-
spective, requiring less buffer resources.
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