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Abstract
Writing programs for heterogeneous platforms optimized for high performance is hard since this requires the code to be tuned 
at a low level with architecture-specific optimizations that are most times based on fundamentally differing programming 
paradigms and languages. OpenVX promises to solve this issue for computer vision applications with a royalty-free industry 
standard that is based on a graph-execution model. Yet, the OpenVX ’ algorithm space is constrained to a small set of vision 
functions. This hinders accelerating computations that are not included in the standard. In this paper, we analyze OpenVX 
vision functions to find an orthogonal set of computational abstractions. Based on these abstractions, we couple an existing 
domain-specific language (DSL) back end to the OpenVX environment and provide language constructs to the programmer 
for the definition of user-defined nodes. In this way, we enable optimizations that are not possible to detect with OpenVX 
graph implementations using the standard computer vision functions. These optimizations can double the throughput on an 
Nvidia GTX GPU and decrease the resource usage of a Xilinx Zynq FPGA by 50% for our benchmarks. Finally, we show 
that our proposed compiler framework, called HipaccVX, can achieve better results than the state-of-the-art approaches 
Nvidia VisionWorks and Halide-HLS.

Keywords  OpenVX · Domain-specific language · Image processing · GPU · FPGA

1  Introduction

The emergence of cheap, low-power cameras and embed-
ded platforms has boosted the use of smart systems with 
Computer Vision (CV) capabilities in a broad spectrum of 
markets, ranging from consumer electronics, such as mobile, 
to real-time automotive applications and industrial automa-
tion, e.g., semiconductors, pharmaceuticals, packaging. 
The global machine vision market size was valued at $16.0 

billion already in 2018, and yet is expected to reach a value 
of $24.8 billion by 2023 [2]. A CV application might be 
implemented on a great variety of hardware architectures 
ranging from Graphics Processing Units (GPUs) to Field 
Programmable Gate Arrays (FPGAs) depending on the 
domain and the associated constraints (e.g., performance, 
power, energy, and cost). Yet, for sophisticated real-life 
applications, the best trade-off is often achieved by hetero-
geneous systems incorporating different computing compo-
nents that are specialized for particular tasks.

Optimizing CV programs to achieve high performance on 
such heterogeneous systems usually goes along with sacrific-
ing readability, portability, and modularity. The programs 
need to be tuned at a low level with architecture-specific 
optimizations that are typically based on drastically differ-
ent programming paradigms and languages (e.g., parallel 
programming of multicore processors using C++ com-
bined with OpenMP; vector data types, libraries, or intrin-
sics to utilize the SIMD1 units of CPU; CUDA or OpenCL 
for programming GPU accelerators; hardware description 
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languages such as Verilog or VHDL for targeting FPGAs). 
Partitioning a program across different computing units, 
and accordingly, synchronizing the execution is difficult. To 
achieve these ambitious goals, high development effort and 
architecture expert knowledge are required.

In 2014, the Khronos Group released OpenVX as a 
C-based API to facilitate cross-platform portability not only 
of the code but also of the performance for CV applica-
tions [27]. This is momentous since OpenVX is the first 
(royalty free) standard for a graph-based specification of 
CV algorithms. Yet, the OpenVX ’ algorithm space is con-
strained to a relatively small set of vision functions. Users 
are allowed to instantiate additional code in the form of cus-
tom nodes, but these cannot be analyzed at the system-level 
by the graph-based optimizations applied from an OpenVX 
back end. Additionally, this requires users to optimize their 
implementations, who supposedly should not consider the 
optimizations of the performance. Standard programming 
languages such as OpenCL do not offer performance port-
ability across different computing platforms [4, 22]. There-
fore, the user code, even optimized for one specific device, 
might not provide the expected high performance when 
compiled for another target device. These deficiencies are 
listed in Table 1.

A solution to the problems mentioned above is offered 
by the community working on Domain-Specific Languages 
(DSLs) for image processing. Recent works show that 
excellent results can be achieved when high-level image 
processing abstractions are specialized to a target device 
via modern metaprogramming, compiler, or code genera-
tion approaches [8, 10, 16]. These DSLs are able to gener-
ate code from a set of algorithmic abstractions that lead to 
high-performance execution for diverse types of computing 
platforms. However, existing DSLs lack formal verification; 
hence, they do not ensure the safe execution of a user appli-
cation whereas OpenVX is an industrial standard.

In this paper, we couple the advantages of DSL-based 
code generation with OpenVX (summarized in Table 1). We 
present a set of abstractions that are used as basic build-
ing blocks for expressing OpenVX ’ standard CV func-
tions. These building blocks are suitable for generating 
optimized, device-specific code from the same functional 
description, and are systematically utilized for graph-based 

optimizations. In this way, we achieve performance portabil-
ity not only for OpenVX ’ CV functions but also for user-
defined kernels2 that are expressed with these computational 
abstractions. The contributions of this paper are summarized 
as follows:

–	 We systematically categorize and specify OpenVX ’ CV 
functions by high-level abstractions that adhere to dis-
tinct memory access patterns (see Sect. 4).

–	 We propose a framework called HipaccVX, which is an 
OpenVX implementation that achieves high performance 
for a wide variety of target platforms, namely GPUs, 
CPUs, and FPGAs (see Sect. 5).

–	 HipaccVX3 supports the definition of custom nodes (i.e., 
user-defined kernels) based on the proposed abstractions 
(see Sect. 5.1).

–	 To the best of our knowledge, our approach is the first 
one that allows for graph-based optimizations that incor-
porate not only standard OpenVX CV nodes but also 
user-defined custom nodes (see Sect. 5.2), i.e., optimiza-
tions across standard and custom nodes.

2 � Related work

The OpenVX specification is not constrained to a certain 
memory model as OpenCL and OpenMP, therefore enables 
better performance portability than traditional libraries such 
as OpenCV [17]. It has been implemented by a few major 
vendors, including Nvidia, Intel, AMD, and Synopsys [28]. 
The authors of [5, 9, 25, 31, 32] focus on graph schedul-
ing and design space exploration for heterogeneous systems 
consisting of GPUs, CPUs, and custom instruction-set archi-
tectures. Unlike the prior work, [24] suggests static OpenVX 
compilation for low-power embedded systems instead of 
runtime-library implementations. Our work is similar to 
this since we statically analyze a given OpenVX application 
and combine the benefits of domain-specific code generation 
approaches [3, 8, 10, 14, 16, 19].

Table 1   Available features in 
OpenVX (VX), DSL compiler 
Hipacc (H), and our joint 
approach HipaccVX (HVX)

Features VX H HVX

Industrial standard (open, royalty free) ✓ ✗ ✓
Community-driven open-source implementations ✗ ✓ ✓
Well-known CV functions (e.g., optical flow) ✓ ✗ ✓
High-level abstractions that adhere to distinct memory access patterns (e.g., local) ✗ ✓ ✓
Custom node execution on accelerator devices (i.e., OpenCL) ✓ ✗ ✓
Acceleration of the custom nodes that are based on high-level abstractions ✗ ✓ ✓

2  A kernel in OpenVX is the abstract representation of a computer 
vision function [30].
3  https​://githu​b.com/akifo​ezkan​/Hipac​cVX

https://github.com/akifoezkan/HipaccVX
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Halide [16], Hipacc [8], and PolyMage [10] are image 
processing DSLs that provide language constructs and 
scheduling primitives to generate code that is optimized for 
the target device, i.e., CPUs, GPUs. Halide [16] decouples 
the algorithm description from scheduling primitives, i.e., 
vectorization, tiling, while Hipacc  [8] and PolyMage [10] 
implicitly apply these optimizations on a graph-based 
description similar to OpenVX. CAPH [20], RIPL [23], and 
Rigel [6] are image processing DSLs that generate optimized 
code for FPGAs. Hipacc-FPGA [19] supports HLS tools of 
both Xilinx and Intel, while Halide-HLS [14], PolyMage-
HLS [3], and RIPL only target Xilinx devices. CAPH relies 
upon the actor/dataflow model of computation to generate 
VHDL or SystemC code. Our approach could also be used 
to implement OpenVX by these image processing DSLs.

There is no publicly available OpenVX implementation 
for Xilinx FPGAs to the best of our knowledge. Intel Open-
Vino [7] provides a few example applications that are specific 
to Arria-10 FPGAs. Taheri et al. [26] provide some initial 
results for FPGAs, where the main attention is the scheduling 
of statistical kernels (i.e., histogram). The image processing 
DSLs in [3, 19] use similar techniques to implement user 
applications as a streaming pipeline. Section 5.2.1 shows how 
to instrument these techniques for the OpenVX API. Omidian 
et al. [12] present a heuristic algorithm for the design space 
exploration of OpenVX graphs for FPGAs. This algorithm 
could be simplified by using HipaccVX ’ abstractions (see 
Sect. 4) instead of OpenVX ’ CV functions. Then it could 
be used in conjunction with HipaccVX to explore the design 
space of hardware/software platforms. Moreover, Omidian 
et al. [11] suggest an overlay architecture for FPGA imple-
mentations of OpenVX. The proposed overlay implemen-
tation requires the optimized implementation of OpenVX 
’ CV functions, which could be generated by HipaccVX. 
Furthermore, an overlay architecture based on HipaccVX ’s 
abstractions, which is a smaller set of functions compared to 
OpenVX CV functions, could reduce resource usage in [11].

Intel’s OpenVX implementation  [1] is the first work 
extending the OpenVX standard with an interoperability API 
for OpenCL. This is supported in OpenVX v1.3 [30]. Yet, 
performance portability still cannot be assured for the cus-
tom nodes. An OpenCL code tuned for a specific CPU might 
perform very poorly on FPGAs and GPU architectures [4, 

22]. Contrary to our approach, the performance of this 
approach relies on the user code.

3 � OpenVX and image processing DSLs

In the following Sects. 3.1 and 3.2, we briefly explain the 
programming models of OpenVX and image processing 
DSLs, respectively. Then we discuss the complementary 
features of these approaches in Sect. 3.3, which are the moti-
vation of this work.

3.1 � OpenVX programming model

OpenVX is an open, royalty-free C-based standard for the 
cross-platform acceleration of computer vision applications. 
The specification does not mandate any optimizations or 
requirements on device execution; instead, it concentrates on 
software abstractions that are freed from low-level platform-
specific declarations. The OpenVX API is totally opaque; 
that is, the memory hierarchy and device synchronization 
are hidden from the user. Typically, platform experts of the 

Fig. 1   Graph representation for the OpenVX code given in List-
ing 1. The output image (img1) contains solely the horizontal edges 
extracted from the input image (img0). The virt2 image is defined 
only because OpenVX’ Sobel function returns both horizontal and 

vertical edges. This redundant computation is eliminated during 
the optimization passes of our HipaccVX compiler framework (see 
Sect. 5.2.2)

Listing 1: OpenVX code for an edge detection algorithm. The appli-
cation graph derived for this OpenVX program is shown in Fig. 1
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individual hardware vendors provide optimized implementa-
tions of the OpenVX API [28].

Listing 1 shows an example OpenVX code for a simple 
edge detection algorithm, for which the application graph is 
shown in Fig. 1. An application is described as a Directed 
Acyclic Graph (DAG), where nodes represent CV functions 
(see Lines 14–18) and data objects, i.e., images, scalars (see 
Lines 4–12), while edges show the dependencies between 
nodes. All OpenVX objects (i.e., graph, node, image) exist 
within a context (Line 1). A context keeps track of the allocated 
memory resources and promotes implicit freeing mechanisms 
at release calls (Line 24). A graph (Line 2) solely operates 
on the data objects attached to the same context.

The data objects that are used only for the intermediate 
steps of a calculation, which can be inaccessible for the rest 
of the application, should be specified as virtual by the users. 
Virtual data objects (i.e., virtual images defined in Lines 
9–12) cannot be accessed via read/write operations. This 
paves the way for system-level optimizations applied in a 
platform-specific back end, i.e., host-device data transfers 
or memory allocations [17].

The execution is not eager; an OpenVX graph must be 
verified (Line 20) before it is executed (Line 22). The veri-
fication ensures the safe execution of the graph and resolves 
the implementation types of virtual data objects. The 
OpenVX standard mandates that a verification procedure 
must (i) validate the node parameters (i.e., presence, direc-
tions, data types, range checks), and (ii) assure the graph 
connectivity (detection of cycles), at the minimum [29]. 
Optimizations of an OpenVX back end should be performed 
during the verification phase. The verification is considered 
to be an initialization procedure and might restructure the 
application graph before the execution. A verified graph can 
be executed repeatedly for different input parameters (i.e., a 
new frame in video processing).

3.1.1 � Deficiencies of OpenVX

As mentioned above, the OpenVX standard relieves an 
application programmer from low-level, implementation-
specific descriptions, and thus enables portability across a 
variety of computing platforms. In OpenVX, the smallest 
component to express a computation is a graph node (e.g., 
vxGaussian3x3Node) from the set of base CV functions. 
However, these CV functions are restricted to a small set 
since OpenVX has a tight focus on cross-platform accel-
eration [30]. Custom nodes can be added to extend this 

functionality4, but, they leave the following issues unre-
solved: (i) Users are responsible for the performance of a 
custom node, who supposedly should not consider perfor-
mance optimizations. (ii) Portability of performance cannot 
be enabled for the cross-platform acceleration of user code. 
(iii) The graph optimization routines cannot analyze custom 
nodes.

For instance, consider Fig. 2 that depicts an OpenVX 
application graph with three CV function nodes (red) and 
a user-defined kernel node (blue). A GPU back end would 
offer optimized implementations of the vxNodes (e.g., 
Gauss), but the user code (custom node) is a black box for 
the graph optimizations.

Programming models such as OpenCL can be used to 
implement custom nodes. This enables functional portabil-
ity across a great variety of computing platforms. However, 
the user should have expertise in the target architecture in 
order to optimize an implementation for high performance. 
Furthermore, OpenCL cannot assure the portability of 

Listing 2: Hipacc application code for a Gaussian filter. It instantiates 
the LinearFilter Kernel given in Listing 3

4  The support for the execution of a user code (custom node) as part 
of an application graph on an accelerator device was introduced only 
recently (August 2019) with the release of OpenVX v1.3  [30]. Pre-
vious versions  [29] constraint the usage of the user-defined kernels 
to the host platform and required them to be implemented as C++ 
kernels.

Fig. 2   HipaccVX enables performance portability for user-defined 
code by representing OpenVX ’ CV functions as well as custom 
nodes by a small set of computational abstractions
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the performance since the code needs to be tuned accord-
ing to the target device, i.e., usage of device-specific syn-
chronization primitives, exploitation of texture memory if 
available, usage of vector operations, or different numbers 
of hardware threads [4, 22]. In fact, an OpenCL code opti-
mized for an Instruction Set Architecture (ISA) has to be 
ultimately rewritten for an FPGA implementation to deliver 
high-performance [13].

3.2 � Image processing DSLs

Recently proposed DSL compilers for image processing, 
such as Halide [16], Hipacc [8], and PolyMage [10], enable 
the portability of high-performance across varying comput-
ing platforms. All of them take as input a high-level, func-
tional description of the algorithm and generate platform-
specific code tuned for the target device. In this work, we 
use Hipacc to present our approach.

Hipacc provides language constructs that are embed-
ded into C++ for the concise description of computations. 
Applications are defined in a Single Program, Multiple Data 
(SPMD) context, similar to kernels in CUDA and OpenCL. 
For instance, Listing 2 shows the description of a discrete 
Gaussian blur filter application. First, a Mask is defined in 
Line 7 from a constant array. Then, input and output Images 
are defined as C++ objects in Line 12 and 13, respectively. 
Clamping is selected as the image boundary handling mode 
for the input image in Line 16. The whole input and output 
images are defined as Region of Interest (ROI) by the Acces-
sor and IterationSpace objects that are specified in Line 17 
and 20, respectively. Finally, the Gaussian kernel is instanti-
ated in Line 23 and executed in Line 24.

Listing 3 describes the actual operator kernel for the 
Gaussian shown in Listing 2. The LinearFilter is a 
user-defined class that is derived from Hipacc ’s Kernel 
class, where the kernel method is overridden. There, a user 
describes a convolution as a lambda function using the con-
volve() construct, which computes an output pixel (output()) 
from an input window (input(mask)). Hipacc ’s compiler 
utilizes Clang’s Abstract Syntax Tree (AST) to specialize the 
lambda function according to the selected platform and gen-
erates device-specific code that provides high-performance 
implementations when compiled with the target architecture 
compiler. We refer to [8, 19] for more detailed explanations, 
further programming language constructs of Hipacc as well 
as corresponding code generation techniques.

3.3 � Combining OpenVX with image processing DSLs

Our solution to the posed challenges in Sect. 3.1.1 is intro-
ducing an orthogonal set of so-called computational abstrac-
tions that enables high-performance implementations for 

Listing 3: Hipacc kernel code for an FIR filter

Fig. 3   The application graph in Fig.  1 is implemented using high-
level abstractions called point and local (explained Sect. 4) instead of 
OpenVX vision function. This enables high-performance code gener-

ation for various targets when coupled with a DSL compiler and addi-
tional optimizations such as dead computation elimination and node 
aggregation (see Sects. 5.1.1 and 5.2)
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a variety of computing platforms (such as CPUs, GPUs, 
FPGAs), similar to the DSLs discussed in Sect. 3.2. These 
abstractions should be used to implement OpenVX ’ CV 
functions and, at the same time, be served to the user for the 
definition of custom nodes.

Assume that the geometric shapes in Fig. 2 represent 
the abstractions above. By implementing both the OpenVX 
CV functions and the custom node using the basic building 
block (different geometric shapes in the figure), a consistent 
graph is constructed for the implementation. Consequently, 
the problem of instantiating the user code as a black box is 
eliminated. Likewise, assume that all the CV functions of 
the OpenVX code in Listing 1 are implemented by using the 
computational abstractions called point and local (explained 
in Sect. 4). Then its application graph (Fig. 1) transforms 
into the implementation graph shown in Fig. 3. This imple-
mentation graph could be used for target-specific optimi-
zations and code generation similar to the DSL compiler 
approaches for image processing.

In this paper, we implement the OpenVX standard by 
the computational abstractions explained in Sect. 4. We 
accomplish this task by developing a back end for OpenVX 
using Hipacc (as an existing image processing DSL) instead 
of standard programming languages. In this way, we get 
the best of both worlds (OpenVX and DSL works). Our 
approach relies on OpenVX ’ industry-standard graph speci-
fication and enables DSL-based code generation. The user is 
offered well-known CV functions as well as DSL elements 
(i.e., programming constructs, abstractions) for the descrip-
tion of custom nodes. As a result of this, programmers can 
write functional descriptions for custom nodes without hav-
ing concerns about the performance; and, as a consequence, 
allows writing performance-portable OpenVX programs for 
a larger algorithm space.

4 � Computational abstractions

We have analyzed OpenVX ’ CV functions and categorized 
them into the computational abstractions summarized in 
Table 2. The categorization is mainly based on three groups 
of operators: (i) point operators that compute an output from 
one input pixel, (ii) local operators depend on neighbor pix-
els over a certain region, and (iii) global operators where the 

output might depend on the whole input image, (presented 
in Fig. 4). We have identified the following patterns for the 
global operators: (a) reduction: traverses an input image to 
compute one output (e.g., max, mean), (b) histogram: cat-
egorizes (maps) input pixels to bins according to a binning 
(reduce) function, (c) scaling: downsizes or expands input 
images by interpolation, (d) scan: each output pixel depends 
on the previous output pixel. Warp, transpose, and matrix 
multiplication are denoted as global operator blocks.

Through the introduction of the node-internal computa-
tional abstractions, our approach enables additional optimi-
zations that manipulate the computation (see Sect. 5.2 and 
5.1.1). This is also illustrated in Fig. 3, where redundant 
computations are eliminated, and nodes are aggregated for 
better exploitation of locality. Memory access patterns of our 
abstractions entail system-level optimization strategies moti-
vated by the OpenVX standard, such as image tiling [25] 
and hardware-software partitioning [26]. An abstraction-
based implementation allows expressing aggregated com-
putations as part of the reconstructed graph. In this way, an 
implementation graph, as well as an application graph can 
be expressed using the same graph structure. Furthermore, 
using the proposed set of abstractions reduces code duplica-
tion compared to typical approaches, where the libraries are 
implemented using hand-written CV functions. For instance, 
36 of OpenVX ’ CV functions can be implemented solely 
with the description of point and local operators as shown in 
Table 2; that is, a few highly optimized building blocks for a 
single target platform (e.g., GPU) can be reused.

5 � The HipaccVX framework

In this paper, we developed a framework, called HipaccVX, 
which is a DSL-based implementation of OpenVX. We 
extended OpenVX specification by Hipacc code interoper-
ability (see Sect. 5.1) such that programmers are allowed to 
register Hipacc kernels as custom nodes to OpenVX pro-
grams. The HipaccVX framework consists of an OpenVX 
graph implementation and optimization routines that verify 
and optimize input OpenVX applications (see Sect. 5.2). 
Ultimately, it generates a device-specific code for the target 
platform using Hipacc ’s code generation. The tool flow is 
presented in Fig. 5.

(a) (b) (c)

Fig. 4   The considered computational abstractions (listed in Table 2) are based on three groups of operators
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5.1 � DSL back‑end and user‑defined kernels

OpenVX mandates the verification of parameters and the rela-
tionship between input and output and parameters as presented 
in Listing 4. There, first, a user kernel and all of its parameters 
should be defined (lines 6–26). Then a custom node should 
be created by vxCreateGenericNode (Line 30) after the user 
kernel is finalized by a vxFinalizeKernel call (Line 27). The 
kernel parameter types are defined, and the node parameters 
are set by vxAddParameterToKernel (lines 20–26) and vxSet-
ParameterByIndex (lines 31–33), respectively.

We extended OpenVX by vxHipaccKernel function 
(Line 6) to instantiate a Hipacc kernel as an OpenVX ker-
nel. The Hipacc kernels should be written in a separate 
file and added as a generic node according to the OpenVX 

standard [30]. Programmers do not have to describe the 
dependency between Hipacc kernels as in Listing 2, instead, 
they write a regular OpenVX program to describe an appli-
cation graph. This sustains the custom node definition pro-
cedure of OpenVX. Ultimately, the HipaccVX framework 
verifies and optimizes a given OpenVX application, gener-
ates the corresponding Hipacc code, and employs Hipacc for 
device-specific code generation.

OpenVX ’ CV functions are implemented as a library using 
our extension for Hipacc code instantiation. For instance, 
the HipaccVX implementation of the vxGaussian3x3Node 
API is shown in Listing 4. Users can simply use these CV 
functions as in Listing 1. A minority of OpenVX functions 
are implemented as OpenCV kernels since they cannot be 
fully described in Hipacc. These are listed in Table 2 with a 

Table 2   Categorization of the OpenVX Kernels according to data access patterns

OpenVX Kernels HipaccVX Abstractions hipacc abstractions

AbsDiff, Copy, Add, Subtract, And, Xor, Or, Not, ChannelCombine, 
ChannelExtract, ColorConvert, ConvertDepth, Magnitude, Phase, 
Multiply, ScaleImage, Threshold, TensorAdd, TensorSubtract, Tens-
orConvertDepth, TensorMultiply, ScalarOperation, Select, Remap

Point Kernel

NonMaxSuppression, Dilate3x3, Erode3x3, NonLinearFilter, Medi-
an3x3, BilateralFilter, Sobel3x3, Box3x3, Convolve, Gaussian3x3, 
LBP, FastCorners

Local Kernel

MinMaxLoc, MeanStdDev, Min, Max Reduce (global) Reduction
Histogram Histogram (global) Histogram
Scale-image Scale (global) Interpolation
GaussianPyramid, LaplacianPyramid, LaplacianReconstruct Pyramid (global) Pyramid
IntegralImage Scan (global) Software
WarpAffine, WarpPerspective Warp (global) Software
TensorTranspose, TensorMatrixMultiply (Global) transpose, matrixMult Software
HarrisCorners Point + local + custom Kernel, Software
EqualizeHist Histogram + point Kernel, Histogram
OpticalFlowPyrLK Point + local + pyramid + custom Kernel, Pyramid, Software
HOGCells Custom + local + histogram Kernel, Software
CannyEdge Point + local + custom Kernel, Software

Fig. 5   HipaccVX overview
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Software label instead of a Hipacc abstraction type. As future 
work, we can extend Hipacc to support these functions.

5.1.1 � Optimizations based on code generation

We inherited many device-specific optimization techniques 
by implementing a Hipacc back end for OpenVX. Hipacc 
internally applies several optimizations for the code gen-
eration from its DSL abstractions. These include memory 
padding, constant propagation, utilization of textures, loop 
unrolling, kernel fusion, thread-coarsening, implicit use of 
unified CPU/GPU memory [8, 15, 18]. At the same time, 
Hipacc targets Intel and Xilinx FPGAs using their High-
Level Synthesis (HLS) tools. There, an input application 
is implemented through application circuits derived from 
the DSL abstractions and optimized by hardware techniques 
such as pipelining and loop coarsening [19].

5.2 � OpenVX graph and system‑level optimizations

As mentioned before, an OpenVX application is represented 
by a DAG Gapp = (V ,E) , where V is a set of vertices, and 
E is a set of edges E ⊆ V × V  denoting data dependencies 

between nodes. The set of vertices V can further be divided 
into two disjoint sets D and N ( V = D ∪ N  , D ∩ N = � ) 
denoting data objects and CV functions, respectively.

Both data (i.e., Image, Scalar, Array) and node 
(i.e., CV functions) objects are implemented as C++ 
classes that inherit the OpenVX Object class. Verti-
ces v ∈ V  of our OpenVX graph implementation consist 
of OpenVX Object pointers. The verification phase 
first checks if an application graph Gapp (derived from 
the user code, see, e.g., Listing 1) does not contain any 
cycles. Then it verifies that the description is a bipartite 
graph, i.e., ∀(v,w) ∈ E ∶ v ∈ D ∧ w ∈ N ∨ v ∈ N ∧ w ∈ D . 
Finally, the verification phase applies the following 
optimizations:

5.2.1 � Reduction of data transfers

Data nodes of an application graph that are not virtual must 
be accessible to the host, while the intermediate (virtual) 
points of a computation should be stored in the device mem-
ory. We distinguish these two data node types by the set of 
non-virtual data nodes Dnv and the set of virtual data nodes 
Dv , where D = Dnv ∪ Dv , Dnv ∩ Dv = � . HipaccVX keeps 
this information in its graph implementation and determines 
the subgraphs between non-virtual data nodes, which can 
be kept in the device memory. In this way, data transfers 
between host and device are avoided.

5.2.2 � Elimination of dead computations

An application graph may consist of nodes that do not affect 
the results. Inefficient user code or other compiler transfor-
mations might cause such dead code. A less apparent reason 
could be the usage of OpenVX compound CV functions for 
smaller tasks. Consider Sobel3x3 as an example, which 
computes two images, one for the horizontal and one for 
the vertical derivative of a given image. As the OpenVX 
API does not offer these algorithms separately, programmers 
have to call Sobel3x3, even when they are only interested 
in one of the two resulting images. Our implementation is 
based on abstractions and allows a better analysis of the 
computation compared to OpenVX ’ CV functions, i.e., the 
Sobel API is implemented by two parallel local operators 
as shown in Fig. 3. HipaccVX optimizes a given applica-
tion graph using the procedure described in Algorithm 1. 
Conventional compilers do not analyze this redundancy if 
utilizing the host/device execution paradigm (e.g., OpenCL, 
CUDA); that means, when OpenVX kernels are offloaded to 
an accelerator device, and device kernels are executed by the 
host according to the application dependency (see Sect. 6.2).

Algorithm 1 assumes that the non-virtual data nodes 
whose input and output degrees are zero must be the inputs 
( Din ) and the results ( Dout ) of an application, respectively. 

Listing 4: DSL code interoperability extension (onlyLine 6)



773Journal of Real-Time Image Processing (2021) 18:765–777	

1 3

Other non-virtual data nodes could be input, output, or inter-
mediate points of an application depending on the number of 
connected virtual data nodes. These are initialized in Line 2. 
Then, all of the nodes in the same component between the 
node vstart and the set V

in
 are traversed via the depth-first visit 

function (Line 18) and marked as alive (Lines 2–20). Finally, 
in Line 21, a filtered view of an application graph is created 
from the set of alive nodes.

The complexity of the functions transpose (Line 15) 
and depth-first visit (Line 18) are O(|V| + |E|) and O(|E|) , 
correspondingly. The filter graph function (Line 21) is 
only an adaptor that requires no change in the application 
graph [21]. In the worst case, the graph has |V| − 2 output 
data nodes. That is, the complexity of Algorithm 1 becomes 
O(|V|2 + |E|) in time and O(|V| + |E|) in space.

6 � Evaluation and results

We present results for a Xilinx Zynq ZYNQ-zc706 FPGA 
using Xilinx Vivado HLS 2019.1 and an Nvidia GeForce 
GTX 680 with CUDA driver 10.0. We evaluate the fol-
lowing applications: As image smoothers, we consider 
a Gaussian blur (Gauss) and a Laplacian filter with a 
5 × 5 and 3 × 3 local node, respectively. The filter chain 
(FChain) is an image pre-processing algorithm consist-
ing of three convolution (local) nodes. The SobelX deter-
mines the horizontal derivative of an input image using 
the OpenVX vxSobel function. The edge detector in 
Fig. 1 (EdgFig2) finds horizontal edges in an input image, 

while Sobel computes both horizontal and vertical edges 
using three CV nodes. The Unsharp filter sharpens the 
edges of an input image using one Gauss node and three 
point operator nodes. Both Harris and Tomasi detect cor-
ners of a given image using 13 (4 local + 9 point) and 
14 (4 local + 10 point) CV nodes, respectively. These 
applications are representative to show the optimization 
techniques discussed in this paper. The performance of 
a simple CV application (e.g., Gauss) solely depends on 
the quality of code generation, while graph-based opti-
mizations can further optimize the performance of more 
complex applications (e.g., Tomasi). Laplacian uses the 
OpenVX ’ custom convolution API and EdgFig2 consists 
of redundant kernels.

6.1 � Acceleration of user‑defined nodes

User-defined nodes can be accelerated on a target plat-
form (e.g., GPU accelerator) when they are expressed with 
HipaccVX ’ abstractions (see Sect. 5.1). A C++ imple-
mentation of these custom nodes results in executing them 
on the host device. This is illustrated in Fig. 6 for a cor-
ner detection algorithm that consists of nine kernels. The 
CPU codes for these custom nodes are also acquired using 
hipacc. As can be seen in Fig. 6, HipaccVX provides the 
same performance invariant to the number of user-defined 
nodes, whereas using the OpenVX API decreases the 
throughput severely since each user-defined node has to be 
executed on the host CPU.

Fig. 6   Throughput for different versions of the same corner detection 
application (consisting of 9 kernels) on the Nvidia GTX680 (higher is 
better). The blue bars denote an increasing number of CV functions 
implemented as user-defined nodes using C++. In OpenVX, these 
user-defined functions have to be executed on the host CPU, which 
leads to a performance degradation; whereas, HipaccVX accelerates 
all user-defined nodes on the GPU
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6.2 � System‑level optimizations based on OpenVX 
Graph

Reduction of data transfers HipaccVX eliminates the data 
transfers between the execution of subsequent functions on 
a target accelerator device, as explained in Sect. 5.2.1. This 
is disabled for naive implementations. The improvements 
for the two applications are shown in Fig. 7. HipaccVX ’ 
throughput optimizations reach a speedup of 13.5.

Elimination of dead computation HipaccVX eliminates 
the computations that do not affect the results of an applica-
tion (see Sect. 5.2.2). This is illustrated in Fig. 8. HipaccVX 
improves the throughput by a factor of 2.1 on the GTX 680. 
The throughput improvement for the Zynq FPGA is only 

slightly better since the applications fit into the target device; 
thus, run in parallel. Yet, HipaccVX ’ FPGA implementa-
tion for the same application reduces the number of FPGA 
resources (elementary programmable logic blocks called 
slices and on-chip block RAMs, short BRAMs) significantly 
(around 50% for SobelX) on the Zynq (see Fig. 9).

6.3 � Evaluation of the performance

In Fig.  10, we compare HipaccVX with the Vision-
Works (v1.6) provided by Nvidia, which provides an opti-
mized commercial implementation of OpenVX. Hipac-
cVX, as well as typical library implementations, exploit 
the graph-based OpenVX API to apply system-level opti-
mizations [17], such as reduction of data transfers (see 
Sect. 5.2). Additionally, HipaccVX generates code that is 
specific to target GPU architectures and applies optimiza-
tions such as constant propagation, thread coarsening, and 
multiple program multiple data (MPMD) [8]. As shown in 
Fig. 10, HipaccVX can generate implementations that pro-
vide higher throughput than VisionWorks. Here, the speed-
ups for applications that are composed of multiple kernels 
(Harris, Tomasi, Sobel, Unsharp) are higher than the ones 
solely consisting of one OpenVX CV function (Gauss and 
Laplacian). This performance boost is, to a large extent, 
due to the locality optimization achieved by fusing con-
secutive kernels at the compiler level [15]. This requires 
code rewriting and the resource analysis of the target GPU 
architectures.

There was no publicly available FPGA implementation 
of OpenVX at the time this paper was written. Therefore, 
in Table 3, we compare HipaccVX with Halide-HLS [14], 
which is a state-of-the-art DSL targeting Xilinx FPGAs. As 
can be seen, HipaccVX uses fewer resources and achieves a 
higher throughput for the benchmark applications.

HipaccVX transforms a given OpenVX application into 
a streaming pipeline by replacing virtual images with FIFO 

(a) (b)

Fig. 7   Normalized execution time (lower is better) for 1024 × 1024 
images. HipaccVX eliminates redundant transfers by analyzing 
OpenVX ’ graph-based application code

(a) (b)

Fig. 8   Normalized execution time (lower is better) for 1024 × 1024 
images

Fig. 9   Post-Place and Route (PPnR) results for the Xilinx Zynq 
FPGA. Elimination of dead computation reduces the area, signifi-
cantly

Fig. 10   Comparison of Nvidia VisionWorks v1.6 and HipaccVX on 
the Nvidia GTX 680. Image sizes are 2048 × 2048
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semantics. Thereby, it uses an internal representation in 
Static Single Assignment (SSA) form. Furthermore, it rep-
licates the innermost kernel to achieve higher parallelism for 
a given factor v. For practical purposes, we present results 
only for Xilinx technology. Prior work [13, 19] shows that 
Hipacc can achieve a performance similar to handwritten 
examples provided by Intel for image processing. This also 
indicates that the memory abstractions given in Table 2 are 
suitable to generate optimized code for HLS tools.

Figure 11 compares the throughputs that were achieved 
from the same OpenVX application code for different accel-
erators. Here, we generated OpenCL, CUDA, and Vivado 
HLS (C++) code to implement a given application on an 
Intel i7-4790 CPU, an Nvidia GTX680 GPU, and a Xilinx 
Zynq FPGA, respectively. GPUs and FPGAs can exploit data-
level parallelism by processing a significantly higher number 
of operations in parallel compared to CPUs. This makes them 
very suitable for computer vision applications. Modern GPUs 

operate on a higher clock frequency compared to existing 
FPGAs; therefore, they could provide higher throughput for the 
abundantly parallel applications. This is the case for Gauss and 
Unsharp. Whereas FPGAs can exploit temporal locality using 
pipelining and eliminate unnecessary data transfers to global 
memory between consecutive kernels. Therefore, all the FPGA 
implementations in Fig. 11 achieve a similar throughput.

7 � Conclusion

In this paper, we presented a set of computational abstractions 
that are used for expressing OpenVX ’ CV functions as well 
as user-defined kernels. This enables the execution of user 
nodes on a target accelerator similar to the CV functions and 
additional optimizations that improve the performance. We 
presented HipaccVX, an implementation for OpenVX using 
the proposed abstractions to generate code for GPUs, CPUs, 
and FPGAs.
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