
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2021) 18:765–777
https://doi.org/10.1007/s11554-020-01015-5

ORIGINAL RESEARCH PAPER

HipaccVX: wedding of OpenVX and DSL‑based code generation

M. Akif Özkan1  · Burak Ok1 · Bo Qiao1 · Jürgen Teich1 · Frank Hannig1

Received: 4 February 2020 / Accepted: 27 August 2020 / Published online: 22 September 2020
© The Author(s) 2020

Abstract
Writing programs for heterogeneous platforms optimized for high performance is hard since this requires the code to be tuned
at a low level with architecture-specific optimizations that are most times based on fundamentally differing programming
paradigms and languages. OpenVX promises to solve this issue for computer vision applications with a royalty-free industry
standard that is based on a graph-execution model. Yet, the OpenVX ’ algorithm space is constrained to a small set of vision
functions. This hinders accelerating computations that are not included in the standard. In this paper, we analyze OpenVX
vision functions to find an orthogonal set of computational abstractions. Based on these abstractions, we couple an existing
domain-specific language (DSL) back end to the OpenVX environment and provide language constructs to the programmer
for the definition of user-defined nodes. In this way, we enable optimizations that are not possible to detect with OpenVX
graph implementations using the standard computer vision functions. These optimizations can double the throughput on an
Nvidia GTX GPU and decrease the resource usage of a Xilinx Zynq FPGA by 50% for our benchmarks. Finally, we show
that our proposed compiler framework, called HipaccVX, can achieve better results than the state-of-the-art approaches
Nvidia VisionWorks and Halide-HLS.

Keywords  OpenVX · Domain-specific language · Image processing · GPU · FPGA

1  Introduction

The emergence of cheap, low-power cameras and embed-
ded platforms has boosted the use of smart systems with
Computer Vision (CV) capabilities in a broad spectrum of
markets, ranging from consumer electronics, such as mobile,
to real-time automotive applications and industrial automa-
tion, e.g., semiconductors, pharmaceuticals, packaging.
The global machine vision market size was valued at $16.0

billion already in 2018, and yet is expected to reach a value
of $24.8 billion by 2023 [2]. A CV application might be
implemented on a great variety of hardware architectures
ranging from Graphics Processing Units (GPUs) to Field
Programmable Gate Arrays (FPGAs) depending on the
domain and the associated constraints (e.g., performance,
power, energy, and cost). Yet, for sophisticated real-life
applications, the best trade-off is often achieved by hetero-
geneous systems incorporating different computing compo-
nents that are specialized for particular tasks.

Optimizing CV programs to achieve high performance on
such heterogeneous systems usually goes along with sacrific-
ing readability, portability, and modularity. The programs
need to be tuned at a low level with architecture-specific
optimizations that are typically based on drastically differ-
ent programming paradigms and languages (e.g., parallel
programming of multicore processors using C++ com-
bined with OpenMP; vector data types, libraries, or intrin-
sics to utilize the SIMD1 units of CPU; CUDA or OpenCL
for programming GPU accelerators; hardware description

 *	 M. Akif Özkan
	 akif.oezkan@fau.de

	 Burak Ok
	 ok.burak@web.de

	 Bo Qiao
	 bo.qiao@fau.de

	 Jürgen Teich
	 teich@fau.de

	 Frank Hannig
	 hannig@fau.de

1	 Hardware/Software Co‑Design, Department of Computer
Science, Friedrich-Alexander University Erlangen-Nürnberg
(FAU), Erlangen, Germany

1  Single Instruction, Multiple Data (SIMD) units are CPU compo-
nents for vector processing, i.e., they execute the same operation on
multiple data elements in parallel.

http://orcid.org/0000-0001-5067-2268
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-020-01015-5&domain=pdf

766	 Journal of Real-Time Image Processing (2021) 18:765–777

1 3

languages such as Verilog or VHDL for targeting FPGAs).
Partitioning a program across different computing units,
and accordingly, synchronizing the execution is difficult. To
achieve these ambitious goals, high development effort and
architecture expert knowledge are required.

In 2014, the Khronos Group released OpenVX as a
C-based API to facilitate cross-platform portability not only
of the code but also of the performance for CV applica-
tions [27]. This is momentous since OpenVX is the first
(royalty free) standard for a graph-based specification of
CV algorithms. Yet, the OpenVX ’ algorithm space is con-
strained to a relatively small set of vision functions. Users
are allowed to instantiate additional code in the form of cus-
tom nodes, but these cannot be analyzed at the system-level
by the graph-based optimizations applied from an OpenVX
back end. Additionally, this requires users to optimize their
implementations, who supposedly should not consider the
optimizations of the performance. Standard programming
languages such as OpenCL do not offer performance port-
ability across different computing platforms [4, 22]. There-
fore, the user code, even optimized for one specific device,
might not provide the expected high performance when
compiled for another target device. These deficiencies are
listed in Table 1.

A solution to the problems mentioned above is offered
by the community working on Domain-Specific Languages
(DSLs) for image processing. Recent works show that
excellent results can be achieved when high-level image
processing abstractions are specialized to a target device
via modern metaprogramming, compiler, or code genera-
tion approaches [8, 10, 16]. These DSLs are able to gener-
ate code from a set of algorithmic abstractions that lead to
high-performance execution for diverse types of computing
platforms. However, existing DSLs lack formal verification;
hence, they do not ensure the safe execution of a user appli-
cation whereas OpenVX is an industrial standard.

In this paper, we couple the advantages of DSL-based
code generation with OpenVX (summarized in Table 1). We
present a set of abstractions that are used as basic build-
ing blocks for expressing OpenVX ’ standard CV func-
tions. These building blocks are suitable for generating
optimized, device-specific code from the same functional
description, and are systematically utilized for graph-based

optimizations. In this way, we achieve performance portabil-
ity not only for OpenVX ’ CV functions but also for user-
defined kernels2 that are expressed with these computational
abstractions. The contributions of this paper are summarized
as follows:

–	 We systematically categorize and specify OpenVX ’ CV
functions by high-level abstractions that adhere to dis-
tinct memory access patterns (see Sect. 4).

–	 We propose a framework called HipaccVX, which is an
OpenVX implementation that achieves high performance
for a wide variety of target platforms, namely GPUs,
CPUs, and FPGAs (see Sect. 5).

–	 HipaccVX3 supports the definition of custom nodes (i.e.,
user-defined kernels) based on the proposed abstractions
(see Sect. 5.1).

–	 To the best of our knowledge, our approach is the first
one that allows for graph-based optimizations that incor-
porate not only standard OpenVX CV nodes but also
user-defined custom nodes (see Sect. 5.2), i.e., optimiza-
tions across standard and custom nodes.

2 � Related work

The OpenVX specification is not constrained to a certain
memory model as OpenCL and OpenMP, therefore enables
better performance portability than traditional libraries such
as OpenCV [17]. It has been implemented by a few major
vendors, including Nvidia, Intel, AMD, and Synopsys [28].
The authors of [5, 9, 25, 31, 32] focus on graph schedul-
ing and design space exploration for heterogeneous systems
consisting of GPUs, CPUs, and custom instruction-set archi-
tectures. Unlike the prior work, [24] suggests static OpenVX
compilation for low-power embedded systems instead of
runtime-library implementations. Our work is similar to
this since we statically analyze a given OpenVX application
and combine the benefits of domain-specific code generation
approaches [3, 8, 10, 14, 16, 19].

Table 1   Available features in
OpenVX (VX), DSL compiler
Hipacc (H), and our joint
approach HipaccVX (HVX)

Features VX H HVX

Industrial standard (open, royalty free) ✓ ✗ ✓
Community-driven open-source implementations ✗ ✓ ✓
Well-known CV functions (e.g., optical flow) ✓ ✗ ✓
High-level abstractions that adhere to distinct memory access patterns (e.g., local) ✗ ✓ ✓
Custom node execution on accelerator devices (i.e., OpenCL) ✓ ✗ ✓
Acceleration of the custom nodes that are based on high-level abstractions ✗ ✓ ✓

2  A kernel in OpenVX is the abstract representation of a computer
vision function [30].
3  https​://githu​b.com/akifo​ezkan​/Hipac​cVX

https://github.com/akifoezkan/HipaccVX

767Journal of Real-Time Image Processing (2021) 18:765–777	

1 3

Halide [16], Hipacc [8], and PolyMage [10] are image
processing DSLs that provide language constructs and
scheduling primitives to generate code that is optimized for
the target device, i.e., CPUs, GPUs. Halide [16] decouples
the algorithm description from scheduling primitives, i.e.,
vectorization, tiling, while Hipacc [8] and PolyMage [10]
implicitly apply these optimizations on a graph-based
description similar to OpenVX. CAPH [20], RIPL [23], and
Rigel [6] are image processing DSLs that generate optimized
code for FPGAs. Hipacc-FPGA [19] supports HLS tools of
both Xilinx and Intel, while Halide-HLS [14], PolyMage-
HLS [3], and RIPL only target Xilinx devices. CAPH relies
upon the actor/dataflow model of computation to generate
VHDL or SystemC code. Our approach could also be used
to implement OpenVX by these image processing DSLs.

There is no publicly available OpenVX implementation
for Xilinx FPGAs to the best of our knowledge. Intel Open-
Vino [7] provides a few example applications that are specific
to Arria-10 FPGAs. Taheri et al. [26] provide some initial
results for FPGAs, where the main attention is the scheduling
of statistical kernels (i.e., histogram). The image processing
DSLs in [3, 19] use similar techniques to implement user
applications as a streaming pipeline. Section 5.2.1 shows how
to instrument these techniques for the OpenVX API. Omidian
et al. [12] present a heuristic algorithm for the design space
exploration of OpenVX graphs for FPGAs. This algorithm
could be simplified by using HipaccVX ’ abstractions (see
Sect. 4) instead of OpenVX ’ CV functions. Then it could
be used in conjunction with HipaccVX to explore the design
space of hardware/software platforms. Moreover, Omidian
et al. [11] suggest an overlay architecture for FPGA imple-
mentations of OpenVX. The proposed overlay implemen-
tation requires the optimized implementation of OpenVX
’ CV functions, which could be generated by HipaccVX.
Furthermore, an overlay architecture based on HipaccVX ’s
abstractions, which is a smaller set of functions compared to
OpenVX CV functions, could reduce resource usage in [11].

Intel’s OpenVX implementation [1] is the first work
extending the OpenVX standard with an interoperability API
for OpenCL. This is supported in OpenVX v1.3 [30]. Yet,
performance portability still cannot be assured for the cus-
tom nodes. An OpenCL code tuned for a specific CPU might
perform very poorly on FPGAs and GPU architectures [4,

22]. Contrary to our approach, the performance of this
approach relies on the user code.

3 � OpenVX and image processing DSLs

In the following Sects. 3.1 and 3.2, we briefly explain the
programming models of OpenVX and image processing
DSLs, respectively. Then we discuss the complementary
features of these approaches in Sect. 3.3, which are the moti-
vation of this work.

3.1 � OpenVX programming model

OpenVX is an open, royalty-free C-based standard for the
cross-platform acceleration of computer vision applications.
The specification does not mandate any optimizations or
requirements on device execution; instead, it concentrates on
software abstractions that are freed from low-level platform-
specific declarations. The OpenVX API is totally opaque;
that is, the memory hierarchy and device synchronization
are hidden from the user. Typically, platform experts of the

Fig. 1   Graph representation for the OpenVX code given in List-
ing 1. The output image (img1) contains solely the horizontal edges
extracted from the input image (img0). The virt2 image is defined
only because OpenVX’ Sobel function returns both horizontal and

vertical edges. This redundant computation is eliminated during
the optimization passes of our HipaccVX compiler framework (see
Sect. 5.2.2)

Listing 1: OpenVX code for an edge detection algorithm. The appli-
cation graph derived for this OpenVX program is shown in Fig. 1

768	 Journal of Real-Time Image Processing (2021) 18:765–777

1 3

individual hardware vendors provide optimized implementa-
tions of the OpenVX API [28].

Listing 1 shows an example OpenVX code for a simple
edge detection algorithm, for which the application graph is
shown in Fig. 1. An application is described as a Directed
Acyclic Graph (DAG), where nodes represent CV functions
(see Lines 14–18) and data objects, i.e., images, scalars (see
Lines 4–12), while edges show the dependencies between
nodes. All OpenVX objects (i.e., graph, node, image) exist
within a context (Line 1). A context keeps track of the allocated
memory resources and promotes implicit freeing mechanisms
at release calls (Line 24). A graph (Line 2) solely operates
on the data objects attached to the same context.

The data objects that are used only for the intermediate
steps of a calculation, which can be inaccessible for the rest
of the application, should be specified as virtual by the users.
Virtual data objects (i.e., virtual images defined in Lines
9–12) cannot be accessed via read/write operations. This
paves the way for system-level optimizations applied in a
platform-specific back end, i.e., host-device data transfers
or memory allocations [17].

The execution is not eager; an OpenVX graph must be
verified (Line 20) before it is executed (Line 22). The veri-
fication ensures the safe execution of the graph and resolves
the implementation types of virtual data objects. The
OpenVX standard mandates that a verification procedure
must (i) validate the node parameters (i.e., presence, direc-
tions, data types, range checks), and (ii) assure the graph
connectivity (detection of cycles), at the minimum [29].
Optimizations of an OpenVX back end should be performed
during the verification phase. The verification is considered
to be an initialization procedure and might restructure the
application graph before the execution. A verified graph can
be executed repeatedly for different input parameters (i.e., a
new frame in video processing).

3.1.1 � Deficiencies of OpenVX

As mentioned above, the OpenVX standard relieves an
application programmer from low-level, implementation-
specific descriptions, and thus enables portability across a
variety of computing platforms. In OpenVX, the smallest
component to express a computation is a graph node (e.g.,
vxGaussian3x3Node) from the set of base CV functions.
However, these CV functions are restricted to a small set
since OpenVX has a tight focus on cross-platform accel-
eration [30]. Custom nodes can be added to extend this

functionality4, but, they leave the following issues unre-
solved: (i) Users are responsible for the performance of a
custom node, who supposedly should not consider perfor-
mance optimizations. (ii) Portability of performance cannot
be enabled for the cross-platform acceleration of user code.
(iii) The graph optimization routines cannot analyze custom
nodes.

For instance, consider Fig. 2 that depicts an OpenVX
application graph with three CV function nodes (red) and
a user-defined kernel node (blue). A GPU back end would
offer optimized implementations of the vxNodes (e.g.,
Gauss), but the user code (custom node) is a black box for
the graph optimizations.

Programming models such as OpenCL can be used to
implement custom nodes. This enables functional portabil-
ity across a great variety of computing platforms. However,
the user should have expertise in the target architecture in
order to optimize an implementation for high performance.
Furthermore, OpenCL cannot assure the portability of

Listing 2: Hipacc application code for a Gaussian filter. It instantiates
the LinearFilter Kernel given in Listing 3

4  The support for the execution of a user code (custom node) as part
of an application graph on an accelerator device was introduced only
recently (August 2019) with the release of OpenVX v1.3 [30]. Pre-
vious versions [29] constraint the usage of the user-defined kernels
to the host platform and required them to be implemented as C++
kernels.

Fig. 2   HipaccVX enables performance portability for user-defined
code by representing OpenVX ’ CV functions as well as custom
nodes by a small set of computational abstractions

769Journal of Real-Time Image Processing (2021) 18:765–777	

1 3

the performance since the code needs to be tuned accord-
ing to the target device, i.e., usage of device-specific syn-
chronization primitives, exploitation of texture memory if
available, usage of vector operations, or different numbers
of hardware threads [4, 22]. In fact, an OpenCL code opti-
mized for an Instruction Set Architecture (ISA) has to be
ultimately rewritten for an FPGA implementation to deliver
high-performance [13].

3.2 � Image processing DSLs

Recently proposed DSL compilers for image processing,
such as Halide [16], Hipacc [8], and PolyMage [10], enable
the portability of high-performance across varying comput-
ing platforms. All of them take as input a high-level, func-
tional description of the algorithm and generate platform-
specific code tuned for the target device. In this work, we
use Hipacc to present our approach.

Hipacc provides language constructs that are embed-
ded into C++ for the concise description of computations.
Applications are defined in a Single Program, Multiple Data
(SPMD) context, similar to kernels in CUDA and OpenCL.
For instance, Listing 2 shows the description of a discrete
Gaussian blur filter application. First, a Mask is defined in
Line 7 from a constant array. Then, input and output Images
are defined as C++ objects in Line 12 and 13, respectively.
Clamping is selected as the image boundary handling mode
for the input image in Line 16. The whole input and output
images are defined as Region of Interest (ROI) by the Acces-
sor and IterationSpace objects that are specified in Line 17
and 20, respectively. Finally, the Gaussian kernel is instanti-
ated in Line 23 and executed in Line 24.

Listing 3 describes the actual operator kernel for the
Gaussian shown in Listing 2. The LinearFilter is a
user-defined class that is derived from Hipacc ’s Kernel
class, where the kernel method is overridden. There, a user
describes a convolution as a lambda function using the con-
volve() construct, which computes an output pixel (output())
from an input window (input(mask)). Hipacc ’s compiler
utilizes Clang’s Abstract Syntax Tree (AST) to specialize the
lambda function according to the selected platform and gen-
erates device-specific code that provides high-performance
implementations when compiled with the target architecture
compiler. We refer to [8, 19] for more detailed explanations,
further programming language constructs of Hipacc as well
as corresponding code generation techniques.

3.3 � Combining OpenVX with image processing DSLs

Our solution to the posed challenges in Sect. 3.1.1 is intro-
ducing an orthogonal set of so-called computational abstrac-
tions that enables high-performance implementations for

Listing 3: Hipacc kernel code for an FIR filter

Fig. 3   The application graph in Fig. 1 is implemented using high-
level abstractions called point and local (explained Sect. 4) instead of
OpenVX vision function. This enables high-performance code gener-

ation for various targets when coupled with a DSL compiler and addi-
tional optimizations such as dead computation elimination and node
aggregation (see Sects. 5.1.1 and 5.2)

770	 Journal of Real-Time Image Processing (2021) 18:765–777

1 3

a variety of computing platforms (such as CPUs, GPUs,
FPGAs), similar to the DSLs discussed in Sect. 3.2. These
abstractions should be used to implement OpenVX ’ CV
functions and, at the same time, be served to the user for the
definition of custom nodes.

Assume that the geometric shapes in Fig. 2 represent
the abstractions above. By implementing both the OpenVX
CV functions and the custom node using the basic building
block (different geometric shapes in the figure), a consistent
graph is constructed for the implementation. Consequently,
the problem of instantiating the user code as a black box is
eliminated. Likewise, assume that all the CV functions of
the OpenVX code in Listing 1 are implemented by using the
computational abstractions called point and local (explained
in Sect. 4). Then its application graph (Fig. 1) transforms
into the implementation graph shown in Fig. 3. This imple-
mentation graph could be used for target-specific optimi-
zations and code generation similar to the DSL compiler
approaches for image processing.

In this paper, we implement the OpenVX standard by
the computational abstractions explained in Sect. 4. We
accomplish this task by developing a back end for OpenVX
using Hipacc (as an existing image processing DSL) instead
of standard programming languages. In this way, we get
the best of both worlds (OpenVX and DSL works). Our
approach relies on OpenVX ’ industry-standard graph speci-
fication and enables DSL-based code generation. The user is
offered well-known CV functions as well as DSL elements
(i.e., programming constructs, abstractions) for the descrip-
tion of custom nodes. As a result of this, programmers can
write functional descriptions for custom nodes without hav-
ing concerns about the performance; and, as a consequence,
allows writing performance-portable OpenVX programs for
a larger algorithm space.

4 � Computational abstractions

We have analyzed OpenVX ’ CV functions and categorized
them into the computational abstractions summarized in
Table 2. The categorization is mainly based on three groups
of operators: (i) point operators that compute an output from
one input pixel, (ii) local operators depend on neighbor pix-
els over a certain region, and (iii) global operators where the

output might depend on the whole input image, (presented
in Fig. 4). We have identified the following patterns for the
global operators: (a) reduction: traverses an input image to
compute one output (e.g., max, mean), (b) histogram: cat-
egorizes (maps) input pixels to bins according to a binning
(reduce) function, (c) scaling: downsizes or expands input
images by interpolation, (d) scan: each output pixel depends
on the previous output pixel. Warp, transpose, and matrix
multiplication are denoted as global operator blocks.

Through the introduction of the node-internal computa-
tional abstractions, our approach enables additional optimi-
zations that manipulate the computation (see Sect. 5.2 and
5.1.1). This is also illustrated in Fig. 3, where redundant
computations are eliminated, and nodes are aggregated for
better exploitation of locality. Memory access patterns of our
abstractions entail system-level optimization strategies moti-
vated by the OpenVX standard, such as image tiling [25]
and hardware-software partitioning [26]. An abstraction-
based implementation allows expressing aggregated com-
putations as part of the reconstructed graph. In this way, an
implementation graph, as well as an application graph can
be expressed using the same graph structure. Furthermore,
using the proposed set of abstractions reduces code duplica-
tion compared to typical approaches, where the libraries are
implemented using hand-written CV functions. For instance,
36 of OpenVX ’ CV functions can be implemented solely
with the description of point and local operators as shown in
Table 2; that is, a few highly optimized building blocks for a
single target platform (e.g., GPU) can be reused.

5 � The HipaccVX framework

In this paper, we developed a framework, called HipaccVX,
which is a DSL-based implementation of OpenVX. We
extended OpenVX specification by Hipacc code interoper-
ability (see Sect. 5.1) such that programmers are allowed to
register Hipacc kernels as custom nodes to OpenVX pro-
grams. The HipaccVX framework consists of an OpenVX
graph implementation and optimization routines that verify
and optimize input OpenVX applications (see Sect. 5.2).
Ultimately, it generates a device-specific code for the target
platform using Hipacc ’s code generation. The tool flow is
presented in Fig. 5.

(a) (b) (c)

Fig. 4   The considered computational abstractions (listed in Table 2) are based on three groups of operators

771Journal of Real-Time Image Processing (2021) 18:765–777	

1 3

5.1 � DSL back‑end and user‑defined kernels

OpenVX mandates the verification of parameters and the rela-
tionship between input and output and parameters as presented
in Listing 4. There, first, a user kernel and all of its parameters
should be defined (lines 6–26). Then a custom node should
be created by vxCreateGenericNode (Line 30) after the user
kernel is finalized by a vxFinalizeKernel call (Line 27). The
kernel parameter types are defined, and the node parameters
are set by vxAddParameterToKernel (lines 20–26) and vxSet-
ParameterByIndex (lines 31–33), respectively.

We extended OpenVX by vxHipaccKernel function
(Line 6) to instantiate a Hipacc kernel as an OpenVX ker-
nel. The Hipacc kernels should be written in a separate
file and added as a generic node according to the OpenVX

standard [30]. Programmers do not have to describe the
dependency between Hipacc kernels as in Listing 2, instead,
they write a regular OpenVX program to describe an appli-
cation graph. This sustains the custom node definition pro-
cedure of OpenVX. Ultimately, the HipaccVX framework
verifies and optimizes a given OpenVX application, gener-
ates the corresponding Hipacc code, and employs Hipacc for
device-specific code generation.

OpenVX ’ CV functions are implemented as a library using
our extension for Hipacc code instantiation. For instance,
the HipaccVX implementation of the vxGaussian3x3Node
API is shown in Listing 4. Users can simply use these CV
functions as in Listing 1. A minority of OpenVX functions
are implemented as OpenCV kernels since they cannot be
fully described in Hipacc. These are listed in Table 2 with a

Table 2   Categorization of the OpenVX Kernels according to data access patterns

OpenVX Kernels HipaccVX Abstractions hipacc abstractions

AbsDiff, Copy, Add, Subtract, And, Xor, Or, Not, ChannelCombine,
ChannelExtract, ColorConvert, ConvertDepth, Magnitude, Phase,
Multiply, ScaleImage, Threshold, TensorAdd, TensorSubtract, Tens-
orConvertDepth, TensorMultiply, ScalarOperation, Select, Remap

Point Kernel

NonMaxSuppression, Dilate3x3, Erode3x3, NonLinearFilter, Medi-
an3x3, BilateralFilter, Sobel3x3, Box3x3, Convolve, Gaussian3x3,
LBP, FastCorners

Local Kernel

MinMaxLoc, MeanStdDev, Min, Max Reduce (global) Reduction
Histogram Histogram (global) Histogram
Scale-image Scale (global) Interpolation
GaussianPyramid, LaplacianPyramid, LaplacianReconstruct Pyramid (global) Pyramid
IntegralImage Scan (global) Software
WarpAffine, WarpPerspective Warp (global) Software
TensorTranspose, TensorMatrixMultiply (Global) transpose, matrixMult Software
HarrisCorners Point + local + custom Kernel, Software
EqualizeHist Histogram + point Kernel, Histogram
OpticalFlowPyrLK Point + local + pyramid + custom Kernel, Pyramid, Software
HOGCells Custom + local + histogram Kernel, Software
CannyEdge Point + local + custom Kernel, Software

Fig. 5   HipaccVX overview

772	 Journal of Real-Time Image Processing (2021) 18:765–777

1 3

Software label instead of a Hipacc abstraction type. As future
work, we can extend Hipacc to support these functions.

5.1.1 � Optimizations based on code generation

We inherited many device-specific optimization techniques
by implementing a Hipacc back end for OpenVX. Hipacc
internally applies several optimizations for the code gen-
eration from its DSL abstractions. These include memory
padding, constant propagation, utilization of textures, loop
unrolling, kernel fusion, thread-coarsening, implicit use of
unified CPU/GPU memory [8, 15, 18]. At the same time,
Hipacc targets Intel and Xilinx FPGAs using their High-
Level Synthesis (HLS) tools. There, an input application
is implemented through application circuits derived from
the DSL abstractions and optimized by hardware techniques
such as pipelining and loop coarsening [19].

5.2 � OpenVX graph and system‑level optimizations

As mentioned before, an OpenVX application is represented
by a DAG Gapp = (V ,E) , where V is a set of vertices, and
E is a set of edges E ⊆ V × V denoting data dependencies

between nodes. The set of vertices V can further be divided
into two disjoint sets D and N ( V = D ∪ N  , D ∩ N = � )
denoting data objects and CV functions, respectively.

Both data (i.e., Image, Scalar, Array) and node
(i.e., CV functions) objects are implemented as C++
classes that inherit the OpenVX Object class. Verti-
ces v ∈ V of our OpenVX graph implementation consist
of OpenVX Object pointers. The verification phase
first checks if an application graph Gapp (derived from
the user code, see, e.g., Listing 1) does not contain any
cycles. Then it verifies that the description is a bipartite
graph, i.e., ∀(v,w) ∈ E ∶ v ∈ D ∧ w ∈ N ∨ v ∈ N ∧ w ∈ D .
Finally, the verification phase applies the following
optimizations:

5.2.1 � Reduction of data transfers

Data nodes of an application graph that are not virtual must
be accessible to the host, while the intermediate (virtual)
points of a computation should be stored in the device mem-
ory. We distinguish these two data node types by the set of
non-virtual data nodes Dnv and the set of virtual data nodes
Dv , where D = Dnv ∪ Dv , Dnv ∩ Dv = � . HipaccVX keeps
this information in its graph implementation and determines
the subgraphs between non-virtual data nodes, which can
be kept in the device memory. In this way, data transfers
between host and device are avoided.

5.2.2 � Elimination of dead computations

An application graph may consist of nodes that do not affect
the results. Inefficient user code or other compiler transfor-
mations might cause such dead code. A less apparent reason
could be the usage of OpenVX compound CV functions for
smaller tasks. Consider Sobel3x3 as an example, which
computes two images, one for the horizontal and one for
the vertical derivative of a given image. As the OpenVX
API does not offer these algorithms separately, programmers
have to call Sobel3x3, even when they are only interested
in one of the two resulting images. Our implementation is
based on abstractions and allows a better analysis of the
computation compared to OpenVX ’ CV functions, i.e., the
Sobel API is implemented by two parallel local operators
as shown in Fig. 3. HipaccVX optimizes a given applica-
tion graph using the procedure described in Algorithm 1.
Conventional compilers do not analyze this redundancy if
utilizing the host/device execution paradigm (e.g., OpenCL,
CUDA); that means, when OpenVX kernels are offloaded to
an accelerator device, and device kernels are executed by the
host according to the application dependency (see Sect. 6.2).

Algorithm 1 assumes that the non-virtual data nodes
whose input and output degrees are zero must be the inputs
( Din ) and the results ( Dout ) of an application, respectively.

Listing 4: DSL code interoperability extension (onlyLine 6)

773Journal of Real-Time Image Processing (2021) 18:765–777	

1 3

Other non-virtual data nodes could be input, output, or inter-
mediate points of an application depending on the number of
connected virtual data nodes. These are initialized in Line 2.
Then, all of the nodes in the same component between the
node vstart and the set V

in
 are traversed via the depth-first visit

function (Line 18) and marked as alive (Lines 2–20). Finally,
in Line 21, a filtered view of an application graph is created
from the set of alive nodes.

The complexity of the functions transpose (Line 15)
and depth-first visit (Line 18) are O(|V| + |E|) and O(|E|) ,
correspondingly. The filter graph function (Line 21) is
only an adaptor that requires no change in the application
graph [21]. In the worst case, the graph has |V| − 2 output
data nodes. That is, the complexity of Algorithm 1 becomes
O(|V|2 + |E|) in time and O(|V| + |E|) in space.

6 � Evaluation and results

We present results for a Xilinx Zynq ZYNQ-zc706 FPGA
using Xilinx Vivado HLS 2019.1 and an Nvidia GeForce
GTX 680 with CUDA driver 10.0. We evaluate the fol-
lowing applications: As image smoothers, we consider
a Gaussian blur (Gauss) and a Laplacian filter with a
5 × 5 and 3 × 3 local node, respectively. The filter chain
(FChain) is an image pre-processing algorithm consist-
ing of three convolution (local) nodes. The SobelX deter-
mines the horizontal derivative of an input image using
the OpenVX vxSobel function. The edge detector in
Fig. 1 (EdgFig2) finds horizontal edges in an input image,

while Sobel computes both horizontal and vertical edges
using three CV nodes. The Unsharp filter sharpens the
edges of an input image using one Gauss node and three
point operator nodes. Both Harris and Tomasi detect cor-
ners of a given image using 13 (4 local + 9 point) and
14 (4 local + 10 point) CV nodes, respectively. These
applications are representative to show the optimization
techniques discussed in this paper. The performance of
a simple CV application (e.g., Gauss) solely depends on
the quality of code generation, while graph-based opti-
mizations can further optimize the performance of more
complex applications (e.g., Tomasi). Laplacian uses the
OpenVX ’ custom convolution API and EdgFig2 consists
of redundant kernels.

6.1 � Acceleration of user‑defined nodes

User-defined nodes can be accelerated on a target plat-
form (e.g., GPU accelerator) when they are expressed with
HipaccVX ’ abstractions (see Sect. 5.1). A C++ imple-
mentation of these custom nodes results in executing them
on the host device. This is illustrated in Fig. 6 for a cor-
ner detection algorithm that consists of nine kernels. The
CPU codes for these custom nodes are also acquired using
hipacc. As can be seen in Fig. 6, HipaccVX provides the
same performance invariant to the number of user-defined
nodes, whereas using the OpenVX API decreases the
throughput severely since each user-defined node has to be
executed on the host CPU.

Fig. 6   Throughput for different versions of the same corner detection
application (consisting of 9 kernels) on the Nvidia GTX680 (higher is
better). The blue bars denote an increasing number of CV functions
implemented as user-defined nodes using C++. In OpenVX, these
user-defined functions have to be executed on the host CPU, which
leads to a performance degradation; whereas, HipaccVX accelerates
all user-defined nodes on the GPU

774	 Journal of Real-Time Image Processing (2021) 18:765–777

1 3

6.2 � System‑level optimizations based on OpenVX
Graph

Reduction of data transfers HipaccVX eliminates the data
transfers between the execution of subsequent functions on
a target accelerator device, as explained in Sect. 5.2.1. This
is disabled for naive implementations. The improvements
for the two applications are shown in Fig. 7. HipaccVX ’
throughput optimizations reach a speedup of 13.5.

Elimination of dead computation HipaccVX eliminates
the computations that do not affect the results of an applica-
tion (see Sect. 5.2.2). This is illustrated in Fig. 8. HipaccVX
improves the throughput by a factor of 2.1 on the GTX 680.
The throughput improvement for the Zynq FPGA is only

slightly better since the applications fit into the target device;
thus, run in parallel. Yet, HipaccVX ’ FPGA implementa-
tion for the same application reduces the number of FPGA
resources (elementary programmable logic blocks called
slices and on-chip block RAMs, short BRAMs) significantly
(around 50% for SobelX) on the Zynq (see Fig. 9).

6.3 � Evaluation of the performance

In Fig. 10, we compare HipaccVX with the Vision-
Works (v1.6) provided by Nvidia, which provides an opti-
mized commercial implementation of OpenVX. Hipac-
cVX, as well as typical library implementations, exploit
the graph-based OpenVX API to apply system-level opti-
mizations [17], such as reduction of data transfers (see
Sect. 5.2). Additionally, HipaccVX generates code that is
specific to target GPU architectures and applies optimiza-
tions such as constant propagation, thread coarsening, and
multiple program multiple data (MPMD) [8]. As shown in
Fig. 10, HipaccVX can generate implementations that pro-
vide higher throughput than VisionWorks. Here, the speed-
ups for applications that are composed of multiple kernels
(Harris, Tomasi, Sobel, Unsharp) are higher than the ones
solely consisting of one OpenVX CV function (Gauss and
Laplacian). This performance boost is, to a large extent,
due to the locality optimization achieved by fusing con-
secutive kernels at the compiler level [15]. This requires
code rewriting and the resource analysis of the target GPU
architectures.

There was no publicly available FPGA implementation
of OpenVX at the time this paper was written. Therefore,
in Table 3, we compare HipaccVX with Halide-HLS [14],
which is a state-of-the-art DSL targeting Xilinx FPGAs. As
can be seen, HipaccVX uses fewer resources and achieves a
higher throughput for the benchmark applications.

HipaccVX transforms a given OpenVX application into
a streaming pipeline by replacing virtual images with FIFO

(a) (b)

Fig. 7   Normalized execution time (lower is better) for 1024 × 1024
images. HipaccVX eliminates redundant transfers by analyzing
OpenVX ’ graph-based application code

(a) (b)

Fig. 8   Normalized execution time (lower is better) for 1024 × 1024
images

Fig. 9   Post-Place and Route (PPnR) results for the Xilinx Zynq
FPGA. Elimination of dead computation reduces the area, signifi-
cantly

Fig. 10   Comparison of Nvidia VisionWorks v1.6 and HipaccVX on
the Nvidia GTX 680. Image sizes are 2048 × 2048

775Journal of Real-Time Image Processing (2021) 18:765–777	

1 3

semantics. Thereby, it uses an internal representation in
Static Single Assignment (SSA) form. Furthermore, it rep-
licates the innermost kernel to achieve higher parallelism for
a given factor v. For practical purposes, we present results
only for Xilinx technology. Prior work [13, 19] shows that
Hipacc can achieve a performance similar to handwritten
examples provided by Intel for image processing. This also
indicates that the memory abstractions given in Table 2 are
suitable to generate optimized code for HLS tools.

Figure 11 compares the throughputs that were achieved
from the same OpenVX application code for different accel-
erators. Here, we generated OpenCL, CUDA, and Vivado
HLS (C++) code to implement a given application on an
Intel i7-4790 CPU, an Nvidia GTX680 GPU, and a Xilinx
Zynq FPGA, respectively. GPUs and FPGAs can exploit data-
level parallelism by processing a significantly higher number
of operations in parallel compared to CPUs. This makes them
very suitable for computer vision applications. Modern GPUs

operate on a higher clock frequency compared to existing
FPGAs; therefore, they could provide higher throughput for the
abundantly parallel applications. This is the case for Gauss and
Unsharp. Whereas FPGAs can exploit temporal locality using
pipelining and eliminate unnecessary data transfers to global
memory between consecutive kernels. Therefore, all the FPGA
implementations in Fig. 11 achieve a similar throughput.

7 � Conclusion

In this paper, we presented a set of computational abstractions
that are used for expressing OpenVX ’ CV functions as well
as user-defined kernels. This enables the execution of user
nodes on a target accelerator similar to the CV functions and
additional optimizations that improve the performance. We
presented HipaccVX, an implementation for OpenVX using
the proposed abstractions to generate code for GPUs, CPUs,
and FPGAs.

Funding  Open Access funding provided by Projekt DEAL.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

	 1.	 Ashbaugh, B., et al.: OpenCL interoperability with OpenVX
graphs. In: Proc. of the 5th Intern. Workshop on OpenCL, p. 26.
ACM (2017)

	 2.	 BCC Research: Global markets for machine vision technologies.
Tech. rep. (2018)

Table 3   PPnR results for the
Xilinx Zynq for images of
1020 × 1020 and Ttarget = 5 ns
(corresponds to ftarget = 200
MHz)

App v BRAM SLICE DSP Latency [cyc.]

Gauss 1 HipaccVX 8 473 16 1044500
Halide-HLS 8 1823 50 1052673

4 HipaccVX 16 1519 64 261649
Halide-HLS 16 4112 180 266241

Harris 1 HipaccVX 20 1457 34 1042466
Halide-HLS 16 2688 35 1052673

2 HipaccVX 20 2326 68 521756
Halide-HLS 16 4011 70 528385

Fig. 11   Comparison of throughput for the Nvidia GTX680, Xilinx
Zynq, and Intel i7-4790 CPU. The same OpenVX application code
is used to generate different accelerator implementations. The Hipac-
cVX framework allows for both code and performance portability by
generating optimized implementations for a diverse range of accelera-
tors.

http://creativecommons.org/licenses/by/4.0/

776	 Journal of Real-Time Image Processing (2021) 18:765–777

1 3

	 3.	 Chugh, N., et al.: A DSL compiler for accelerating image process-
ing pipelines on FPGAs. In: Proc. of the Intern. Conf.on Parallel
Architecture and Compilation Techniques (PACT), pp. 327–338.
IEEE (2016)

	 4.	 Du, P., et al.: From CUDA to OpenCL: towards a performance-
portable solution for multi-platform GPU programming. Parallel
Comput. 38(8), 391–407 (2012)

	 5.	 Elliott, G.A., et al.: Supporting real-time computer vision work-
loads using OpenVX on multicore+GPU platforms. In: Proc. of
the Real-Time Systems Symp. (RTSS), pp. 273–284. IEEE (2015)

	 6.	 Hegarty, J., et al.: Rigel: flexible multi-rate image processing hard-
ware. ACM Trans. Graph. (TOG) 35(4), 85:1–85:11 (2016)

	 7.	 Intel: Intel’s OpenVX developer guide
	 8.	 Membarth, R., et al.: Hipacc: a domain-specific language and

compiler for image processing. Trans. Parallel Distrib. Syst.
(TPDS) 27(1), 210–224 (2016)

	 9.	 Mori, J.Y., et al.: A design methodology for the next generation real-
time vision processors. In: Proc. of the Intern. Symp. on Applied
Reconfigurable Computing (ARC), pp. 14–25. Springer (2016)

	10.	 Mullapudi, R.T., et al.: Polymage: Automatic optimization for
image processing pipelines. In: Proc. of the Intern. Conf.on Archi-
tectural Support for Programming Languages and Operating Sys-
tems (ASPLOS), pp. 429–443. ACM (2015)

	11.	 Omidian, H., et al.: An accelerated OpenVX overlay for pure
software programmers. In: Proc. of the Intern. Conf. on Field
Programmable Technology (FPT) (2018)

	12.	 Omidian, H., et al.: JANUS: a compilation system for balanc-
ing parallelism and performance in OpenVX. J. Phys. Conf. Ser.
1004(1), 012011 (2018)

	13.	 Özkan, M.A., et al.: FPGA-based accelerator design from a
domain-specific language. In: Proc. of the 26th Intern. Conf. on
Field-Programmable Logic and Applications (FPL). IEEE

	14.	 Pu, J., et al.: Programming heterogeneous systems from an image
processing DSL. ACM Trans. Arch. Code Optim. (TACO) 14(3),
26:1–26:25 (2017)

	15.	 Qiao, B., et al.: From loop fusion to kernel fusion: a domain-
specific approach to locality optimization. In: Proc. of the Intern.
Symp. on Code Generation and Optimization (CGO) (2019)

	16.	 Ragan-Kelley, J., et al.: Halide: a language and compiler for opti-
mizing parallelism, locality, and recomputation in image process-
ing pipelines. In: Proc. of the Conf.on Programming Language
Design and Implementation (PLDI), pp. 519–530. ACM (2013)

	17.	 Rainey, E., et al.: Addressing system-level optimization with
OpenVX graphs. In: Proc. of the Conf. on Computer Vision and
Pattern Recognition Workshops, pp. 644–649. IEEE (2014)

	18.	 Reiche, O., et al.: Auto-vectorization for image processing DSLs.
In: ACM SIGPLAN Notices, vol. 52, pp. 21–30. ACM (2017)

	19.	 Reiche, O., et al.: Generating FPGA-based image processing
accelerators with Hipacc. In: Proc. of the Intern. Conf. on Com-
puter Aided Design (ICCAD), pp. 1026–1033. IEEE (2017)

	20.	 Sérot, J., et al.: CAPH: a language for implementing stream-pro-
cessing applications on FPGAs. In: Embedded Systems Design
with FPGAs, pp. 201–224. Springer (2013)

	21.	 Siek, J., et al.: The Boost Graph Library: User Guide and Refer-
ence Manual. Addison-Wesley, Boston (2002)

	22.	 Steuwer, M., et al.: Generating performance portable code using
rewrite rules: from high-level functional expressions to high-perfor-
mance OpenCL code. ACM SIGPLAN Not. 50(9), 205–217 (2015)

	23.	 Stewart, R., et al.: A dataflow IR for memory efficient RIPL com-
pilation to FPGAs. In: Proc. of the Intern. Conf. on Algorithms
and Architectures for Parallel Processing (ICA3PP), pp. 174–188.
Springer

	24.	 Tagliavini, G., et al.: Enabling OpenVX support in mW-scale
parallel accelerators. In: Proc. of the Intern. Conf. on Compilers,

Architectures and Synthesis for Embedded Systems (CASES), pp.
1–10. IEEE (2016)

	25.	 Tagliavini, G., et al.: Optimizing memory bandwidth exploitation
for OpenVX applications on embedded many-core accelerators. J.
Real-Time Image Process. 15(1), 73–92 (2018)

	26.	 Taheri, S., et al.: Acceleration framework for FPGA implementa-
tion of OpenVX graph pipelines. In: Proc. of the Intern. Symp.
on Field-Programmable Custom Computing Machines (FCCM),
pp. 227–227. IEEE (2018)

	27.	 The Khronos Group: Khronos finalizes and releases OpenVX 1.0
specification for computer vision acceleration. Press Release (2014)

	28.	 The Khronos Group: OpenVX resources (2018)
	29.	 The Khronos Vision Working Group and others: The OpenVX

specification v1.2.1 (2018)
	30.	 The Khronos Vision Working Group and others: The OpenVX

specification v1.3 (2019)
	31.	 Yang, M., et al.: Making OpenVX really “real-time”. In: Proc. of

the Real-Time Systems Symp. (RTSS) (2018)
	32.	 Zhang, J., et al.: DS-DSE: Domain-specific design space explora-

tion for streaming applications. In: Proc. of the Conf. on Design,
Automation and Test in Europe (DATE), pp. 165–170. IEEE
(2018)

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

M. Akif Özkan  received B.S. and
M.S. degrees in Electronics
Engineering from Istanbul Tech-
nical University, Turkey, in 2011
and 2014, respectively. Since
2015, he is a Ph.D. student in the
Department of Computer Sci-
ence, Friedrich-Alexander Uni-
versity Erlangen-Nürnberg. His
primary research interests are
SoC ASIC and FPGA design,
efficient mapping strategies of
image algorithms to heterogene-
ous architectures and domain-
specific languages.

Burak Ok  holds a Bachelor’s and
a Master’s degree in Computer
Science, both from the Depart-
ment of Computer Science at the
Friedrich-Alexander University
Erlangen-Nürnberg. His research
interests are embedded systems,
parallelization of algorithms,
and efficient mapping strategies
of image algorithms to heteroge-
neous architectures.

777Journal of Real-Time Image Processing (2021) 18:765–777	

1 3

Bo Qiao  received his B.Sc. degree
from Shanghai Maritime Univer-
sity, China, in 2013, and his
M.Sc. degree from Eindhoven
University of Technology, the
Netherlands, in 2015. Since
2017, he is a Ph.D. student at the
chair for Hardware/Software Co-
Design in the Department of
Computer Science at the Frie-
drich-Alexander University
Erlangen-Nürnberg. His research
interests are compiler optimiza-
tions, domain-specific languages
in image processing, and general
purpose GPU programming.

Jürgen Teich  received the M.Sc.
degree (Dipl.-Ing. with honors)
from the University of Kaiser-
slautern, Kaiserslautern, Ger-
many, in 1989, and the Ph.D.
degree (summa cum laude) from
the University of Saarland, Saar-
brü cken, Germany, in 1993. In
1994, he joined the DSP design
group of Prof. E. A. Lee in the
Department of Electrical Engi-
neering and Computer Sciences
(EECS), University of California
at Berkeley, Berkeley, CA, USA
(postdoctoral work). From 1995
to 1998, he held a position at the

Institute of Computer Engineering and Communications Networks
Laboratory (TIK), ETH Zurich, Zurich, Switzerland (habilitation).
From 1998 to 2002, he was Full Professor in the Electrical Engineering

and Information Technology Department, University of Paderborn,
Paderborn, Germany. Since 2003, he has been Full Professor in the
Department of Computer Science, Friedrich-Alexander University
Erlangen-Nürnberg (FAU), Erlangen, Germany, holding a Chair in
Hardware/Software Co-Design. Prof. Teich is a Fellow of the IEEE and
member of the Academia Europaea. Since 2010, he is the coordinator
of the Transregional Research Center 89 on Invasive Computing funded
by the German Research Foundation (DFG).

Frank Hannig  received the
Diploma degree in an interdisci-
plinary course of study in electri-
cal engineering and computer
science from the University of
Paderborn, Germany, in 2000;
the Ph.D. degree (Dr.-Ing.) and
Habilitation degree in computer
science from Friedrich-Alexan-
der University Erlangen-Nürn-
berg (FAU), Germany, in 2009
and 2018, respectively. He has
led the Architecture and Com-
piler Design Group in the Com-
puter Science Department, FAU,
since 2004. His primary research

interests are the design of massively parallel architectures, ranging
from dedicated hardware to multicore architectures, mapping method-
ologies for domain-specific computing, and architecture/compiler code-
sign. He has authored or coauthored more than 160 peer-reviewed
publications. Dr. Hannig serves in the program committees of several
international conferences (ARC, ASAP, CODES+ISSS, DATE, DASIP,
SAC). He is a Senior Member of the IEEE and an affiliate member of
the European Network of Excellence on High Performance and Embed-
ded Architecture and Compilation (HiPEAC).

	HipaccVX: wedding of OpenVX and DSL-based code generation
	Abstract
	1 Introduction
	2 Related work
	3 OpenVX and image processing DSLs
	3.1 OpenVX programming model
	3.1.1 Deficiencies of OpenVX

	3.2 Image processing DSLs
	3.3 Combining OpenVX with image processing DSLs

	4 Computational abstractions
	5 The HipaccVX framework
	5.1 DSL back-end and user-defined kernels
	5.1.1 Optimizations based on code generation

	5.2 OpenVX graph and system-level optimizations
	5.2.1 Reduction of data transfers
	5.2.2 Elimination of dead computations

	6 Evaluation and results
	6.1 Acceleration of user-defined nodes
	6.2 System-level optimizations based on OpenVX Graph
	6.3 Evaluation of the performance

	7 Conclusion
	References

