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 

Abstract—Circular-harmonic spectra are a compact representation of local image features in two dimensions. It is well known that the 

computational complexity of such transforms is greatly reduced when polar separability is exploited in steerable filter-banks. Further 

simplifications are possible when Cartesian separability is incorporated using the radial apodization (i.e. weight, window, or taper) described 

here, as a consequence of the Laguerre/Hermite correspondence over polar/Cartesian coordinates. The chosen form also mitigates undesirable 

discretization artefacts due to angular aliasing. The possible utility of circular-harmonic spectra for the description of simple features is 
illustrated using real data from an airborne electro-optic sensor. The spectrum is deployed in a test-statistic to detect and characterize corners 

of arbitrary angle and orientation (i.e. wedges). The test-statistic considers uncertainty due to finite sampling and clutter/noise. 
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I. INTRODUCTION 

The detection, classification, and matching, of simple geometric features are critical low-level operations in image-registration 
and target-tracking functions of modern image/video-processing systems [1],[2],[3],[4],[5]. Cartesian coordinates (𝑥, 𝑦), are 
convenient for digital image storage, display and filtering; however, local polar coordinates (𝑟, 𝜃), are ideal for image analysis and 
the rotation-invariant description of primitive shape information. First- and second-order Cartesian derivatives or bivariate 
quadratic polynomials are an adequate representation of simple features such as edges, ridges, peaks, and right-angle corners 
[2],[3],[6],[7],[8]. However, more complex features such as junctions (e.g. street intersections in satellite imagery) and wedges (e.g. 
ship wakes, aircraft wings or the corners of non-rectangular buildings) have simpler representations in polar coordinates 
[9],[10],[11],[12]; particularly when the dependence of the intensity on the radial and angular coordinates is assumed to be 
separable and the radial dependence is assumed to be constant over the chosen spatial scale. 

This angle-only description of a known feature of interest (i.e. a template) or an unknown patch of (real) pixels is remarkably 

simple yet effective. A linear combination of circular harmonics 𝜑𝑙(𝜃) = 𝑒𝑖𝑙𝜃  (where 𝑖 is the imaginary unit and 𝑙 is the angular 
wavenumber), captures the salient characteristics of the local angular profile, and the fidelity of the representation increases with 
the number of harmonic components considered; furthermore, the profile is readily rotated through an arbitrary angle by shifting 
the phase of each component appropriately. The vector 𝒄 of complex coefficients 𝑐𝑙 used in the linear combination (i.e. the angular 
spectrum) is a compact feature descriptor. The descriptors of a patch and a template, or multiple patches in consecutive image 
frames, may then be compared to form a test statistic to support detection/classification or matching decisions. As an alternative 
to the use of so-called ‘hand-crafted’ features considered here, there is growing interest in the incorporation of rotation invariance 
– realized via “atomic filters” [13], “orientation channels” [14], “basis filters” [15], “steerable representations” [16], or “scale 
steerable filters” [17], for instance – in convolutional neural-networks. 

In this note, the image is processed using a sequence of convolution operations realized in the pixel domain via a bank of linear 
basis-filters with a finite impulse-response (FIR) of square (𝑀 × 𝑀) support in two dimensions (2-D). Moreover, a (complex) linear 
combination of their (complex) outputs may be formed to synthesize the output of a virtual filter with a response that is steered in 

an arbitrary direction. The impulse response of the 𝑙th basis filter ℎ𝑙(𝑚𝑥, 𝑚𝑦), with frequency response 𝐻𝑙(𝜔𝑥 , 𝜔𝑦), is simply 

defined by sampling the 𝑙th basis function 𝜓𝑙(𝑟, 𝜃), on a uniform Cartesian grid. 
The general framework discussed above is often described in the literature, although there are substantial differences in the 

details. One of the most obvious points of departure is the way in which the integration/summation over the radial coordinate is 
weighted, shaped, or tapered (i.e. apodized) for scale selectivity and the suppression of spurious artefacts caused by window 
truncation and image discretization. Various approaches for polar-separable bases are surveyed in Section II.A. Laguerre-function 
components are used here as the radial weight because Cartesian-separable realizations are reached [18],[19],[20], with 2𝑀 ×
(𝑙 + 1) multiply and add operations per basis-filter per pixel instead of 𝑀2 (for pixel-domain realizations). This approach is 
detailed in Section III.A. Various ways of testing detection, classification, and matching, hypotheses using the angular spectrum 
are also surveyed in Section II.B. A test statistic for wedge detection is then described in Section III.B. In Section IV it is compared 
with some other simple yet popular approaches using simulated (see Section IV.A) and real (see Section IV.B) data. The test 
statistic and example application are provided to motivate and illustrate the utility and flexibility of circular-harmonic transforms 
in an image/video-processing context. 
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II. CONTEXT 

A. Filter realization 

Bessel functions are used to represent radial oscillation in the polar Fourier transform; they are also radial eigenfunctions of the 
polar Laplacian [21]. Indeed, any family of orthogonal functions (e.g. Laguerre-Gauss [22],[23],[24],[25]) may in principle be used 
to represent radial form; however, a constant is sufficient for the primitive shapes considered here. The radial dependence 𝑤(𝑟), 
of the FIR filters is instead designed to set the scale of analysis 𝜆 (in pixels), which is particularly important in multiscale methods, 
and to maintain the fidelity of the angular transform. Polar transforms are defined in the continuous domain and it is usually 
assumed that the required orthonormality of the basis-functions is retained in the discrete Cartesian coordinates of the digitized 
sensor data [10]; however, this is not always the case. 

For 2-D FIR filters, rotational invariance and magnitude isotropy are degraded if the ideal impulse response is prematurely 
truncated by the finite window of the filter. Furthermore, the reproduction fidelity of high angular-frequencies on a Cartesian-
grid diminishes as 𝑟 = 0 is approached. This phenomenon is quantified in [9], using an angular analog of the Nyquist sampling 
theorem. It is also acknowledged in [26]; however, the form of the radial-weight applied is not specified there. The Laplacian of 
Gaussian [12], radial Gaussians [13], log radial (scaled by a Gaussian divided by a radial power) [17], triangular window [27], and 
various trigonometric forms on the unit disk [28], are examples of radial profiles defined in the spatial domain. The first scale of 
the Meyer-type profile [12], Simoncelli’s bio-inspired isotropic wavelet [9], Erlang functions [29], and Log-Gabor responses with 
an infinite number of vanishing moments for multiscale analysis [30],[31], are examples of radial profiles defined in the frequency 
domain. A numerical optimization procedure is used to maximally localize wavelet frames, using measures of variance, in either 
the spatial or transform domains in [32]. Responses are bandlimited and polar-separable in all cases. Despite their apparent 
diversity, all rotationally-invariant image-analysis methods, e.g. multiscale circular-harmonics [24],[25], Fourier histograms of 
oriented gradients [5],[27], steerable wavelets [9],[12],[32] and high-order Riesz transforms [30], are fundamentally similar 
[10],[33]. All methods that use circular-harmonic expansions to describe the shape of local image features may potentially benefit 
from the simplification (i.e. Cartesian-separable realizations) described in this note. 

It is well known that steerable filters derived from Hermite functions (or derivatives of a Gaussian) are separable in Cartesian 
coordinates; indeed, low-order derivatives (i.e. 0th, 1st and 2nd) are sufficient in many applications [2],[3],[6],[7],[8]. Such filtering 
operations are sometimes approximated and accelerated using recursively-realized box-kernels [1]. Closed-form expressions for 
the interconversion of Hermite functions (in Cartesian coordinates) and Laguerre-Gauss functions (in polar coordinates) have also 
been derived [22],[23]; however in these treatments, computational efficiency is not the aim and Cartesian separability is not 
exploited. For instance: in [22], Cartesian (astronomical) sensor measurements are converted to polar coordinates to support the 
rotational invariant analysis of spiral galaxies; and in [23], polar (biomedical) sensor measurements are converted to Cartesian 
coordinates for display and visualization. Furthermore in [24], it is shown that a Laguerre-Gauss function may be decomposed 
into its component terms and that it is sufficient to work with these non-orthonormal components; however, the 2-D FIR kernels 
of the corresponding basis filters in Cartesian coordinates are not decoupled and separated into perpendicular 1-D kernels. In [34], 
it is stated that Laguerre-Gauss circular-harmonics yield non-separable filters and that processing an entire image is time 
consuming. However, in Section III.A of this note (and in [18],[19],[20]) it is shown that Cartesian-separable realizations are 
reached if radial terms, referred to here as Laguerre-Gauss components ℒ𝑙(𝑟), are used as the radial weight 𝑤𝑙(𝑟), for the 
corresponding angular terms 𝜑𝑙(𝜃). The resulting polar-separable basis-filters 𝜓𝑙(𝑟, 𝜃) = 𝑤𝑙(𝑟)𝜑𝑙(𝜃), have the required behavior 
for large 𝑟 (due to the Gaussian decay) and for small 𝑟 (due to the monomial notch). 

B. Spectrum analysis 

It is well known that the matched filter is an optimal detector that maximizes the signal-to-noise power ratio for a given signal 
in white noise; however, its performance may be very unsatisfactory in the presence of structured noise (e.g. clutter, interference, 
or even a dc offset) [35]. The matched filter is a sliding inner product and it is used to correlate angular spectra in [12] for the 
estimation of junction orientation angle (location and detection are not considered). Normalization of the feature template and the 
image patch yields a dimensionless test-statistic on the [−1,1] interval [26]; however, the detection probability (𝑃𝐷) is then 
rendered independent of intensity, which elevates the probability of false alarm (𝑃𝐹) on dim structured noise. These correlation 
metrics are measures of similarity. 

The sum-of-squared residuals (i.e. the square of the error norm) for a patch that is regressed against a template is a measure of 
dissimilarity and it may be more robust in the presence of structured noise. It is also used to match multi-scale circular-harmonic 
spectra [30]. Other quadratic similarity and dissimilarity measures for matching angular spectra are analyzed in [36], and a 
sparsity-based method for texture recognition is used in [33]. Templates are defined by maximizing an overlap integral, subject to 
a normalization constraint in [9],[12]; this approach is a continuous generalization of the piecewise-constant method used to 
design Slepian windows [33]. 

The dimensionless ratio of a model coefficient and an error standard-deviation (or their squares), estimated from randomly 
sampled populations, is routinely used as a test statistic in linear regression analysis [37]. In the context of a binary classifier, a 
detection event is declared when the coefficient-is-zero hypothesis (i.e. the ‘null’ hypothesis of the test) is rejected. The probability 
of a false declaration (i.e. 𝑃𝐹), when the null hypothesis is indeed true (i.e. the ‘size’ of the test), is determined from the tails of 
Student’s t-distribution (or the tail of Snedecor's F-distribution). This test statistic may be interpreted as a ratio of similarity to 
dissimilarity. A test statistic of this form is adopted in this note because it is posited to have a higher 𝑃𝐷 (i.e. the ‘power’ of the 
test) for a given 𝑃𝐹, in the presence of structured clutter, which is always present in images/videos of real-world scenes. A large 
denominator is an indication of a poor model, which means that a large numerator is less meaningful. Such metrics may be 
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interpreted as a signal-to-noise ratio (SNR) [11]. In Section III.B an integral analog of this statistic is evaluated from the angular 
spectrum 𝒄, of an image patch in the transform domain, for a wedge template of a specified angular width 2𝜙Δ, in the spatial 
domain. The test statistic is evaluated for a finite number of possible wedge orientations 𝜃Δ. 

III. DETAILS 

A. Filter realization 

The Laguerre-Gauss ℒ𝑙, and Hermite-function ℋ𝑘, components are defined here as 
 

ℒ𝑙(𝑟) = 𝑟𝑙𝑒−𝑟2 2𝜆2⁄   

ℋ𝑘(𝑥) = 𝑥𝑘𝑒−𝑥2 2𝜆2⁄  and ℋ𝑘(𝑦) = 𝑦𝑘𝑒−𝑦2 2𝜆2⁄ .  (1) 

They are used below to facilitate the transformation of 𝜓𝑙(𝑟, 𝜃),  into Cartesian-separable form. The polar basis-function 

𝜓𝑙
ℒ(𝑟, 𝜃), or its Cartesian equivalent 𝜓𝑙

ℋ(𝑥, 𝑦), is sampled over the discrete Cartesian coordinates of the basis filter to yield 

ℎ𝑙
ℒ(𝑚𝑥, 𝑚𝑦) where 𝑚 is an integer shift index (see Fig. 1). Using 𝑤𝑙(𝑟) = ℒ𝑙(𝑟) and 𝜑𝑙(𝜃) = 𝑒𝑖𝑙𝜃  yields  

 

𝜓𝑙
ℒ(𝑟, 𝜃) = 𝑟𝑙𝑒−𝑟2 2𝜆2⁄ [cos(𝑙𝜃) + 𝑖 sin(𝑙𝜃)] or (2a) 

𝜓𝑙
ℒ(𝑟, 𝜃) = 𝑒−𝑟2 2𝜆2⁄  ∑ Γ𝑘,𝑙−𝑘

𝑙
𝑘=0 𝑟𝑘 cos𝑘(𝜃) 𝑟𝑙−𝑘 sin𝑙−𝑘(𝜃) where 

Γ𝑘,𝑙−𝑘 = (
𝑙
𝑘

) {cos(𝜋 [𝑙 − 𝑘] 2⁄ ) + 𝑖 sin(𝜋 [𝑙 − 𝑘] 2⁄ )} (2b) 

after using the multiple-angle formulae. Substituting 𝑟 cos 𝜃 = 𝑥, 𝑟 sin 𝜃 = 𝑦 and 𝑟2 = 𝑥2 + 𝑦2 into (2b) then yields 
 

𝜓𝑙
ℋ(𝑥, 𝑦) = 𝑒−[𝑥2+𝑦2] 2𝜆2⁄ ∑ Γ𝑘,𝑙−𝑘

𝑙
𝑘=0 𝑥𝑘𝑦𝑙−𝑘 or (3a) 

𝜓𝑙
ℋ(𝑥, 𝑦) = ∑ Γ𝑘,𝑙−𝑘

𝑙
𝑘=0 ℋ𝑘(𝑥)ℋ𝑙−𝑘(𝑦) . (3b) 

 

 

 

 
Fig. 1. Response of polar-separable basis-filters for 𝑙 = 0 … 6 (left to right).  Real part, imaginary part, and magnitude, of impulse response 

ℎ𝑙
ℒ(𝑚𝑥, 𝑚𝑦) over 𝑚 = ±12, magnitude of frequency response 𝐻𝑙

ℒ(𝜔𝑥, 𝜔𝑦) over 𝜔 = ±𝜋 (top to bottom). These basis-filters are not Cartesian 

separable but they may be formed from a sum of 𝑙 + 1 component-filters that are (see Fig. 2). 
 

Thus ℋ𝑘 is sampled over −𝐾 ≤ 𝑚 ≤ 𝐾 (i.e. 𝑀 = 2𝐾 + 1), and the indexing direction reversed, to produce the 1-D kernels of the 

(real) Hermite-function component-filters ℎ𝑘
ℋ(𝑚) (see Fig. 2). The 𝑙th angular spectrum coefficient 𝐶𝑙 at pixel index (𝑛𝑥, 𝑛𝑦), for 

0 ≤ 𝑙 ≤ 𝐿 and 0 ≤ 𝑛 < 𝑁, is therefore evaluated using two consecutive 1-D convolutions followed by a (complex) linear 
combination:  
 

𝐴𝑘𝑥
(𝑛𝑥, 𝑛𝑦) = ∑ ℎ𝑘𝑥

ℋ (𝑚𝑥)𝐼(𝑛𝑥 − 𝑚𝑥 , 𝑛𝑦)𝐾
𝑚𝑥=−𝐾  and (4) 

𝐵𝑘𝑥,𝑘𝑦
(𝑛𝑥, 𝑛𝑦) = ∑ ℎ𝑘𝑦

ℋ (𝑚𝑦)𝐴𝑘𝑥
(𝑛𝑥, 𝑛𝑦 − 𝑚𝑦)𝐾

𝑚𝑦=−𝐾  then 

𝐶𝑙(𝑛𝑥, 𝑛𝑦) = 𝜌𝑙
−1 2⁄ ∑ Γ̅𝑘,𝑙−𝑘

𝑙
𝑘=0 𝐵𝑘,𝑙−𝑘(𝑛𝑥, 𝑛𝑦) where  

𝜌𝑙 = ∑ ∑ |ℎ𝑙
ℒ(𝑚𝑥, 𝑚𝑦)|

2𝐾
𝑚𝑦=−𝐾

𝐾
𝑚𝑥=−𝐾  and  

𝐼(𝑛𝑥, 𝑛𝑦) is the (real) input image ([∙]̅̅̅ denotes complex conjugation). 
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An isotropic magnitude response in the continuous frequency- domain (𝜔𝑥, 𝜔𝑦), indicates that the basis-functions are faithfully 

reproduced and that the discretized basis-set is approximately orthogonal (see Fig. 1, bottom row). This is generally the case for a 
given scale (as set using 𝜆) if 𝑙 is not too large and 𝐾 is not too small. Imperfections may be less noticeable in the discrete spatial-

domain (𝑚𝑥, 𝑚𝑦). 

 

 
Fig. 2. Impulse responses of Cartesian-separable Hermite-function component-filters ℎ𝑘𝑥

ℋ (𝑚𝑥)ℎ𝑘𝑦

ℋ (𝑚𝑦); 𝑘𝑥 = 0 … 6 (top to bottom); 𝑘𝑦 = 0 … 6 (left 

to right). Within each subplot: 𝑚𝑥 = −12 … 12 (top to bottom); 𝑚𝑦 = −12 … 12 (left to right). The 𝑙th basis-filter (see Fig. 1) is a complex linear 

combination (using coefficients Γ𝑘,𝑙−𝑘) of the component-filters along the 𝑙th diagonal, running from upper right to lower left. 
 

B. Spectrum analysis 

Negative wavenumbers are included using 𝐶−𝑙 = 𝐶𝑙̅ to make full use of the rotational symmetry afforded by a complex 

representation in the equations below. The angular spectrum 𝒄 (a column vector of length 2𝐿+1), is formed from 𝐶𝑙(𝑛𝑥, 𝑛𝑦) for 

−𝐿 ≤ 𝑙 ≤ 𝐿 at a given pixel. It may then be used to reconstruct the angular dependence of the local image intensity via the inverse 
circular-harmonic transform  
 

𝐼(𝜃) = ∑ 𝑐𝑙𝑒𝑖𝑙𝜃𝐿
𝑙=−𝐿 . (5) 

This inverse transform allows the circular-harmonic functions to interpolate in the angular coordinate. However, in addition to 
visual clutter and interference, sampling and truncating in the Cartesian domain yields spurious oscillatory artefacts in the 
locally-fitted angular-function. The test-statistic 𝑍𝑡 presented below, incorporates and considers these imperfections, via a 

variance term, when the structure of a local image feature is analyzed. Fortunately, the required integrals of 𝐼(𝜃) are readily 
evaluated in the transform domain using 𝒄. 

The mean and variance (𝜇, 𝜎2) of 𝐼(𝜃), over the inner and outer domains of the wedge template (denoted using [∙]1 and [∙]0 

subscripts, respectively) are computed for a given steering angle and used to evaluate 𝑍𝑡(𝑛𝑥, 𝑛𝑦) as follows: 

 

𝑍𝑡 = (𝜇1 − 𝜇0) √𝜎1
2 + 𝜎0

2 + 𝜎min
2⁄  (6a) 

where 

𝜇1 = 𝒔1
⊺ 𝒄𝜃 (2𝜙1)⁄ ,   

𝜇0 = 𝒔0
⊺ 𝒄𝜃 (2𝜋 − 2𝜙0)⁄   

𝜎1
2 = 𝒄𝜃

† 𝑺1𝒄𝜃 (2𝜙1)⁄ − 𝜇1
2   

𝜎0
2 = 𝒄𝜃

† 𝑺0𝒄𝜃 (2𝜋 − 2𝜙0)⁄ − 𝜇0
2  

𝜎min
2  is the minimum intensity variance (a fixed parameter) 

𝜙1 = 𝜙Δ − 𝜖Δ   

𝜙0 = 𝜙Δ + 𝜖Δ  
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2𝜙Δ is the angular width of the wedge (the inner domain)  

2𝜖Δ is the width of the gap between the inner and outer domains 

𝒄𝜃 is the steered angular spectrum with elements 𝑐𝑙𝑒𝑖𝑙𝜃Δ 

𝜃Δ is the hypothesized orientation angle of the wedge  

([∙]⊺ is a transpose, [∙]† is a Hermitian transpose). (6b) 

 
The 𝑙th elements of 𝒔1 & 𝒔0 (column vectors) and the elements in the 𝑙𝑚th row and 𝑙𝑛th column of 𝑺1 & 𝑺0 (symmetric matrices) 

are, respectively: 
 

∫ 𝑒𝑖𝑙𝜃𝑑𝜃
𝜙1

−𝜙1
= 𝒮𝑙(𝜙1)  

∫ 𝑒𝑖𝑙𝜃𝑑𝜃
−𝜙0

−𝜋
+ ∫ 𝑒𝑖𝑙𝜃𝑑𝜃

𝜋

𝜙0
= 𝒮𝑙(𝜋) − 𝒮𝑙(𝜙0)  

∫ 𝑒𝑖(𝑙𝑚−𝑙𝑛)𝜃𝑑𝜃
𝜙1

−𝜙1
= 𝒮𝑙𝑚−𝑙𝑛

(𝜙1) and 

∫ 𝑒𝑖(𝑙𝑚−𝑙𝑛)𝜃𝑑𝜃
−𝜙0

−𝜋
+ ∫ 𝑒𝑖(𝑙𝑚−𝑙𝑛)𝜃𝑑𝜃

𝜋

𝜙0
= 𝒮𝑙𝑚−𝑙𝑛

(𝜋) − 𝒮𝑙𝑚−𝑙𝑛
(𝜙0) where  

𝒮𝑙(𝜙𝑐) = {
2 sin(𝑙𝜙𝑐) 𝑙⁄  𝑙 ≠ 0

2𝜙𝑐 𝑙 = 0
 . (7) 

The 𝒮𝑙 auxiliary functions are also used in Slepian designs [33]. All elements are real and precomputed offline. The test statistic 
is large: when the difference of intensity means is large, i.e. the numerator of (6a); and when the sum of intensity variances is 
small, i.e. the denominator of (6a); over the inner and outer domains of the wedge template. An arbitrary decision threshold is 
applied (𝑍𝑡 > 𝜆Δ). The 𝑍𝑡 statistic is signed; therefore, it is used to discriminate between bright and dark objects; otherwise, 

𝑍𝐹 = 𝑍𝑡
2 is used. The estimate of the wedge’s orientation 𝜃Δ, is set equal to the angle 𝜃Δ, that maximizes 𝑍. The joint estimation of 

𝜃Δ and 𝜙Δ is not attempted here. 

IV. APPLICATION AND ILLUSTRATION 

A. Synthetic data 

The Area Under Curve (AUC) of the Receiver Operating Characteristic (ROC) for the proposed wedge detector (Det. A), a 
detector with a maximally concentrated (i.e. Slepian) wedge template (Det. B), a least-squares fitted wedge template (Det. C), a 
Harris corner detector (Det. D, [4],[26],[38],[39]) and a Kitchen-Rosenfeld detector (Det. E, [39],[40]) were examined (see Table I). 
Dets. B & C both used a standard correlation-type measure of similarity (see Section II.B).  

Each (25 x 25) synthetic frame contained a wedge with an intensity of 255 on a background with an intensity of 100. Other 

wedge parameters were randomly drawn from the following uniform distributions: 2𝜙̃Δ~𝒰(𝜋 12⁄ , 𝜋), 𝜃Δ~𝒰(0,2𝜋), 𝑟̃Δ~𝒰(0,6), 

𝜗̃Δ~𝒰(0,2𝜋). The displacement of the wedge apex from the center of the frame is Δ𝑥̃ = 𝑟̃Δ cos 𝜗̃Δ and Δ𝑦̃ = 𝑟̃Δ sin 𝜗̃Δ. The test 
statistic (𝑍𝑡) at the center of the frame was evaluated. The achieved 𝑃𝐹 and 𝑃𝐷 for a range of threshold settings was computed, 
from 10,000 random instantiations of each angle scenario. For a given wedge width 2𝜙Δ and threshold 𝜆Δ combination, any 

detection for a wedge with 𝑟̃Δ < 2 and 2𝜙̃Δ > 2𝜙Δ − 𝜋 12⁄  and 2𝜙̃Δ < 2𝜙Δ + 𝜋 12⁄  is deemed to be true; otherwise it is false. The 𝜃Δ 

grid was quantized using steps of 𝜋 12⁄  (for Dets. A-C); the accuracy of 𝜃Δ is not considered here. Two random instantiations and 
their corresponding 𝑍𝑡 calculations are illustrated in Fig. 3. 

Det. A has the highest AUC for all angles and detectors in all but one case. The AUC of Dets. D & E is maximized for right-
angle corners as expected. Unlike the least-squares design of Det. C and the integral metric of Det. A, the eigen-design of Det. B 
works best for narrower wedges.  

 
 

TABLE I 
AUC* OF ROC FOR VARIOUS WEDGE WIDTHS AND DETECTORS 

2𝜙Δ (°) A a,b B b C b D E 

45 0.9074 0.8739 0.8365 0.8385 0.7652 
60 0.9133 0.9196 0.8519 0.9071 0.8262 
90 0.9522 0.8816 0.8634 0.9099 0.8743 
120 0.9409 0.7795 0.8486 0.7906 0.8348 
135 0.9512 0.7064 0.8355 0.6781 0.7689 

*A perfect detector has unity AUC 
a 𝜖Δ = 𝜃Δ 3⁄ , 𝜎min

2 = 2552; b 𝐿 = 6, 𝐾 = 12 and 𝜆 = 3 pix (see Fig. 1) 
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Fig. 3.  Sample image instantiations for ROC simulations (left) and plots of 𝐼(𝜃) vs. 𝜃 for test-statistic evaluations (right) for false (top) and true 

(bottom) detections for a template tuned to 2𝜙Δ = 90∘. Dotted cyan: 𝐼(𝜃) in image coordinates; Solid blue: 𝐼(𝜃) in template coordinates (i.e. rotated 

through −𝜃Δ); Solid green: ±𝜙1; Dashed green: 𝜇1; Dotted green: 𝜇1 ± 𝜎1; Solid red: ±𝜙0; Dashed red: 𝜇0; Dotted red: 𝜇0 ± 𝜎0; 𝑍𝑡 & 𝜃Δ evaluations 
are also shown. 

 

B. Real Data 

Chips of monochrome image sequences (1024 x 1024, 8-bit, @ 3 Hz) collected from a wide-area airborne-sensor over Port 
Adelaide were processed using various detectors. All detectors label most of the obvious corners in the scene (e.g. see Figs. 4 & 5, 
top 200 detections shown); however, the Harris corner-detector (Det. D) has a proclivity for the ends of lines and small blobs, the 
𝑍𝑡 wedge-detector (Det. A) for non-centered edges; and for this reason, the latter algorithm was tuned using 2𝜙Δ = 60∘ (instead of 
90∘) to attenuate the edge response. When it is tuned using 2𝜙Δ = 270∘, the warehouse in the yellow box (with a dark 90∘corner) 
has the largest 𝑍𝑡 in the scene (see yellow inset of Fig. 6). When the filter-bank is steered to 𝜃Δ = −45∘ only, the missed corner on 
the warehouse in the green box is more prominent (see green inset of Fig. 6). Generation of the 𝒄 spectrum at each pixel of this 
image takes approximately 1.3 s; then approximately 0.6 s per 𝜃Δ hypothesis for the 𝑍𝑡 statistic evaluation (using a MATLAB® 
script with no toolboxes running on a personal computer with an Intel® Core™ i7-6700HQ processor @ 3.4 GHz). Increasing 𝐿 
generally improves angular selectivity by lowing angular side-lobes and decreasing the width of the inner/outer transition 
region; although as reported in [11] & [12], there are rapidly diminishing returns beyond 𝐿 = 6 for this type of problem. 
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Fig. 4.  Output of Harris corner-detector on the input image. 
 

 
Fig. 5.  Output of 𝑍𝑡 wedge-detector, for 2𝜙Δ = 60∘. Wedge locations in yellow and their estimated orientations (𝜃Δ) in red. 

 

 
Fig. 6.  Map of 𝑍𝑡 for 2𝜙Δ = 60∘; yellow inset contains detail for 2𝜙Δ = 270∘, green inset contains detail for 𝜃Δ = −45∘ only). 
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V. CONCLUSION 

We live in a world where objects do not change as they are turned or viewed from a different perspective thus (continuous) 
polar or spherical coordinates are ideal for their representation. However, the digital machines we have built in recent times, to 
sense and perceive such scenes on our behalf, operate on a (discrete) Cartesian grid. It is therefore important to develop 
computer-vision systems with rotationally invariant properties that are able to reconcile this mismatch; for instance: using 
radially-weighted circular harmonics that are uniformly sampled and truncated in Cartesian coordinates. 

In the computer-vision literature, there are a plethora of radial weights for steerable polar-separable basis-functions. In this note, 
the form of the radial weight is chosen for its ability to realize polar-separable responses in Cartesian-separable form for a 
significant reduction in the computational complexity of rotationally-invariant filter-banks. Factoring digital filtering operations 
in this way, allows 2-D convolutions to be replaced by consecutive 1-D convolutions for higher data-throughput rates in online 
image/video-processing systems. The radial weight also focuses the filter-bank around 𝑟 = 0 (i.e. on the pixel-under test) while 
ensuring adequate angular resolution after discretization. The discrete spectrum of circular harmonics produced by these filters is 
used in an angular-integral test-statistic for the detection of wedges in images. Like traditional (t- and F-distributed) test statistics 
used in regression analysis, this similarity measure incorporates and considers uncertainty due to the limitations of finite 
sampling. Further benchmarking and performance comparisons, multiscale extensions, the introduction of a third (e.g. temporal) 
dimension, optimal weights for non-separable realizations, the joint estimation of feature width and orientation, and target 
tracking applications, will be investigated in future work. 
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