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Abstract – Haze is one of the common factors that degrades 

the visual quality of the images and videos. This diminishes 

contrast and reduces visual efficiency. The ALS 

(Atmospheric light scattering) model which has two 

unknowns to be estimated from the scene: atmospheric light 

and transmission map, is commonly used for dehazing. The 

process of modelling the atmospheric light scattering is 

complex and estimation of scattering is time consuming. 

This condition makes dehazing in real-time difficult. In this 

work, a new approach is employed for dehazing in real-time 

which reads the orientation sensor of mobile device and 

compares the amount of rotation with a pre-specified 

threshold. The system decides whether to recalculate the 

atmospheric light or not. When the amount of rotation is 

little means there are only subtle changes to the scene, it uses 

the pre-estimated atmospheric light. Therefore, the system 

does not need to recalculate it at each time instant and this 

approach accelerates the overall dehazing process. 0.07s fps 

(frame per second) per frame processing time (~15fps) is 

handled for 360p imagery. Frame processing time results 

show that our approach is superior to the state-of-the-art 

real-time dehazing implementations on mobile operating 

systems.  

 

Keywords – atmospheric light, hazy imagery, depth map, 

transmission. 

1. Introduction 

Image and video dehazing are crucial for offline and online 

computer vision applications needed in security, transportation, 

video surveillance and military. Consequently, the number of 

studies related to image enhancement has steadily increased in 

recent years [1]. Image dehazing is a kind of image 

enhancement, however it varies from others due to changes in 

image deterioration regarding the scene distance from the 

observation point and the amount of haze globally and locally. 

In other terms, as the distance between the sensor and the scene 

increases the thickness of the haze also increases and the 

transmission of the media decreases. Likewise, when the 

density of haze is high and differs locally, the complexity of 

dehazing process increases. To illustrate, Figure 1 displays two 

hazy and haze-free (dehazed) image pairs. Image (a) is a hazy 

image, and (b) is the result of haze removal process applied to 

(a). Similarly, (c) is the hazy image and (d) is the haze-free pair 

of (c). Since  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the thickness of the haze is higher in the second image pair, haze 

removal operation is less effective, and the visual quality of the 

dehazed image is poor. 

There are many ways of image dehazing and they can be 

grouped into three categories which are contrast enhancement 

[2-5], restoration [6-10] and fusion based [11-15] methods. 

Contrast enhancement approaches aim to improve the visual 

quality of the hazy images to some degree; however, they 

cannot eliminate the haze efficiently. The subcategories of 

image enhancement models are histogram enrichment [16-18] 

which can be applied locally and/or globally, frequency 

transform methods: wavelet transform, and homomorphic 

filtering, and the Retinex method: single and multi-scale 

Retinex [19]. Restoration based methods focus on recovering 

the lost information by modelling the image degradation model 

and applying inverse filtering. 
 

 

 

Figure 1 (a) Hazy image (b) Haze-free (dehazed) image of (a) 

(c) Hazy image (d) Haze-free (dehazed) image of (c) 

 

Since this study is based on the application of image 

dehazing in real-time, the specifics of dehazing methods will 

not be covered. On the other hand, ALS (atmospheric light 

scattering) model which is shown in Figure 2 is used as the basis 

of our method. 
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Figure 2 Atmospheric light scattering model 

 

Equations 1-3 which were adopted from the study in [20] 

express atmospheric light scattering model where 𝐼𝐼(𝑥𝑥, 𝜆𝜆) is the 

hazy image, 𝐷𝐷(𝑥𝑥, 𝜆𝜆) is the transmitted light through the haze 

(after the reflection from the scene) and 𝐴𝐴(𝑥𝑥, 𝜆𝜆) is the air light 

which is the reflected atmospheric light from haze. The sensor 

integrates the incoming light and the resulted imagery is the 

hazy image. In Equation 2, 𝑡𝑡(𝑥𝑥, 𝜆𝜆) is the transmission map of 

the hazy scene, 𝑅𝑅(𝑥𝑥, 𝜆𝜆) is the reflected light from the scene and 𝐿𝐿∞ is the atmospheric light. The transmission term is expressed 

as 𝑒𝑒−𝛽𝛽(𝜆𝜆)𝑑𝑑(𝑥𝑥) where 𝑑𝑑(𝑥𝑥) is the depth map of the scene and 𝛽𝛽(𝜆𝜆) 

is the atmospheric scattering coefficient with respect to 

wavelength. It can simply be understood from Equation 3 that, 

when the depth from the sensor increases, the transmission 

decreases and vice versa. 

 𝐼𝐼(𝑥𝑥, 𝜆𝜆) = 𝐷𝐷(𝑥𝑥, 𝜆𝜆) + 𝐴𝐴(𝑥𝑥, 𝜆𝜆) (1) 𝐼𝐼(𝑥𝑥, 𝜆𝜆) = 𝑡𝑡(𝑥𝑥, 𝜆𝜆) 𝑅𝑅(𝑥𝑥, 𝜆𝜆) + 𝐿𝐿∞(1− 𝑡𝑡(𝑥𝑥, 𝜆𝜆)) (2) 𝐼𝐼(𝑥𝑥, 𝜆𝜆) = 𝑒𝑒−𝛽𝛽(𝜆𝜆)𝑑𝑑(𝑥𝑥)𝑅𝑅(𝑥𝑥, 𝜆𝜆) + 𝐿𝐿∞(1− 𝑒𝑒−𝛽𝛽(𝜆𝜆)𝑑𝑑(𝑥𝑥)) (3) 

 

The key point of ALS is the accurate estimation of the 

transmission and the atmospheric light. DCP (The Dark 

Channel Prior Method) [21] is one of the most commonly used 

methods in which the per-pixel dark channel previous is used 

for haze estimation. At the same time, for measuring the 

atmospheric light, quadtree decomposition is applied. Another 

research that uses the DCP as its basis is [22]. In this study, both 

per-pixel and spatial blocks are used for calculation of the dark 

channel. 

Recent approaches on image dehazing is mostly based on 

artificial intelligence approaches which mostly use deep 

learning models [23-25]. In [26] a deep architecture is 

developed by using CNN (Convolutional Neural Network) and 

a new unit called “bilateral rectified linear unit” is added to the 

neural network. It reports that it achieves superior results 

compared to previous dehazing studies. The study in [27] 

employs an end-to-end encoder-decoder CNN architecture to 

handle the haze-free images. 

There are many successful image dehazing studies in the 

literature. However, when the focus is real-time 

implementation, many bottlenecks such as the complexity of 

the algorithms, hardware constraints and high financial costs 

should be considered. Nonetheless, there have been several 

successful studies underway. The study in [28] estimates the 

atmospheric light by using super-pixel segmentation and 

applies a guidance filter to refine the transmission map. It 

mentions that more accurate results compared to other state-of-

the-art models are handled.  The study in [29] proposes parallel 

processing dehazing method for mobile devices and achieves 

1.12s per frame processing time for HD imagery on a Windows 

Phone by using CPU (Central Process Unit) and GPU together. 

The study in [30] uses DCP but substitutes guided filter with 

mean filter in order to increase the processing speed. It reports 

25 fps over C6748 pure DSP (Digital Signal Processing) device 

[31]. 

The study in [32] converts hazy RGB (Red-Green-Blue) 

image to HSV (Hue-Saturation-Value) colour space and applies 

a global histogram flattening on value component, modifies the 

saturation component to be consistent with previous reduced 

value and applies contrast enhancement on value component. It 

achieves 90ms dehazing time for HD imagery on GPU 

(Graphics Processing Unit). The study in [33] conducts 2 level 

image processing with a smart way. It first applies histogram 

enhancement and if the resulted image meets the system 

requirements then no further action is taken. If it does not, then 

DCP is used to remove the haze. By using a smart way, it saves 

a lot of time and achieves real-time processing. 

The study in [34] uses locally adaptive neighbourhood and 

calculates order statistics. By using this information, it produces 

the transmission map and handles the haze-free image. The 

study in [35] parallelizes the base Retinex model and 

decompose the image into brightness and contrast components. 

For restoration of the image, it applies gamma correction and 

non-parametric mapping and reports 1.12ms processing time 

for 1024x2048 high resolution image on parallel GPU system. 

The study in [36] constructs a transmission function estimator 

by using genetic programming. Then this function is used for 

computing the transmission map. Transmission map and hazy 

image are used to obtain the haze-free images. The system runs 

with high-rate processing time on synthetic and real-world 

imagery. 

Another successful real-time dehazing method is 

implemented in [37]. A novel pixel-level optimal dehazing 

criteria is proposed to merge a virtual haze-free image series of 

candidates into a resulted single hazy-free image. This sequence 

of images is calculated from the input hazy image by exhausting 

all possible values of discreetly sampled depth of the scene. The 

advantage of this method is the computing any single pixel 

position independent of the others. Therefore, it is easy to 

implement this method by using a fully parallel GPU system.  

The literature is very rich about dehazing the single image 

and the video. Implementations in real-time are also very 

interesting. However, real-time processing is very rare on 

mobile devices such as Android and IOS. The study in [29] 

implements real-time dehazing on a Windows phone. This 

study is also one of the benchmark studies in this paper in which 

the results of the proposed study is compared. In this paper, 

DCP-based algorithm is implemented on a mobile android 

operating system with reading the sensor data from the device's 

orientation sensor. A smart way which determines the run time 

of re-estimation of atmospheric light is created. If system 

movement is measured as minor which means that the scene 

doesn't shift roughly, the previous ambient light is used to 

dehaze the imagery. If the movement exceeds some 

predetermined threshold then the estimation will be done 



 

3 

 

once. By using this smart strategy, it is possible to achieve 

promising time gain in processing. On the other hand, 

transmission is based on the depth map and minor changes of 

orientation also lead to major changes on the depth map, so on 

the transmission map. Therefore, the transmission map is 

always calculated for each time instant. 

The rest of the paper is structured to clarify the details of the 

proposed approach and its implementation in real-time in 

section 2. The average real-time processing results and the 

benchmark table with some other real-time studies are given in 

Section 3. Section 4 is the final part and some guidelines on 

some potential future studies relating to real-time dehazing are 

included. 

 

2. Proposed Method 

 

In this study we improve the algorithm introduced in [22] by 

adding a smart decision method for atmospheric light 

calculation. DCP approach, information fidelity, and image 

entropy are used to estimate atmospheric light and map 

transmission. The steps are prior estimation of the dark channel 

image, estimation of the atmospheric light, estimation of the 

transmission, refinement of the transmission with guided filter 

and reconstruction of the haze-free image by applying Equation 

2. 

The study in [22] provides very promising accuracy results. 

The benchmark scores for two different hazy images are given 

in Table 1 and 2. The images and the visual results of different 

methods are given in Figure 3. In Table 1 and 2, the 

comparisons are done based on the colorfulness, GCF (Global 

Contrast Factor) and visible edge gradient. The visible edge 

gradient measures the visibility using the restored and hazy 

images. It has three indicators 𝑒𝑒, 𝑟𝑟 and 𝜎𝜎 where 𝑒𝑒 is the amount 

of visible new edge after dehazing,  𝑟𝑟 is the average ratio of 

gradient norm values at visible edges, and 𝜎𝜎 is the percentage 

of pixels after processing which becomes black or white. 

 

 

Figure 3 The visual comparison of several methods. (a) Hazy 

image (b) Fattal’s result (c) Kopf’s result (d) He’s result (e) 

Park’s result. 

The quality of dehazed images improves when 𝜎𝜎 gets smaller 

and the other indicators gets bigger. Although Kopf’s method 

[39] shows good performance in close-range regions, it is not 

successful in far-range. Because it cannot remove the haze 

effectively. As GCF and 𝑟𝑟 scores, Kopf’s algorithm provides 

promising results, however it is not satisfactory for colorfulness 

and 𝜎𝜎 scores. In addition, He’s method [40] has limited 

performance, since it has good scores only for GCF and 𝜎𝜎. 

Park’s study [22] provides better results for overall evaluations. 

Table 1 Accuracy results for image 1 

Index Fattal [38] Kopf [39] He [40] Park [22] 𝑒𝑒 0.11 0.02 0.02 0.32 𝑟𝑟 1.53 1.61 1.63 2.27 𝜎𝜎 1.7 1.35 0.01 0.06 

Colorfulness 652.45 455.84 963.62 1127.42 

GCF 7.87 8.53 8.63 8.49 

 

Table 2 Accuracy results for image 2 

Index Fattal [38] Kopf [39] He [40] Park [22] 𝑒𝑒 0.05 0.03 0.04 0.08 𝑟𝑟 1.28 1.4 1.39 1.41 𝜎𝜎 9.4 0.29 0.01 0.05 

Colorfulness 387.01 390.67 509.9 706.09 

GCF 5.89 6.65 6.72 6.8 

 

Park’s method is successful and effective to be improved for 

real-time implementation.   

In this study, firstly, the amount of time spent for 

atmospheric light estimation and the other steps of dehazing 

algorithm is calculated. 50 hazy images are used with various 

amount of haze and resolution. The atmospheric light 

estimation step covers most of the processing time spent with a 

mean percentage of 78%. Therefore, by measuring the 

orientation and calculating the atmospheric light in a smart 

manner, the proposed approach presents its value and 

contribution to related literature. 

 The overall system diagram for the proposed method is 

shown in Figure 4. Note that in order to prevent possible 

synchronization problems, dehazing operation is implemented 

once atmospheric light, transmission map and camera data is 

handled. 𝐴𝐴𝐴𝐴𝐴𝐴 term in Figure 4 stands for ‘Amount of 

Orientation’. Since the device can rotate in 3D space, all 

possible pitch, yaw and roll angles are checked in the data 

controller. If any of them is above a predetermined threshold, 

the atmospheric light and transmission map is recalculated. If 

not, then the atmospheric light of the previous time instant is 

used and only the transmission map is calculated. Finally, the 

dehazing module reconstructs the dehazed image by using 

camera data, atmospheric light and transmission map. Dehazed 

image data is displayed on the device screen in real-time. 
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Figure 4 Overall System diagram 

The optimal 𝐴𝐴𝐴𝐴𝐴𝐴 threshold is determined empirically. 

Determining the optimal threshold is the core of the proposed 

study. Because, the atmospheric light estimation is the most 

important step for a high-quality reconstruction process. To 

determine the optimal 𝐴𝐴𝐴𝐴𝐴𝐴 for each axis, following steps are 

applied: 

 

1. The clear imagery of the scene is captured from 2m distance 

by fixing the place of the android device. 

 

2. The device is rotated up to 20°, only towards one direction, 

by a step size of 2° on the axis pitch, yaw and roll and the 

imagery for each step size is captured. 

 

3. Haze is produced by using dry ice and hot water and step 2 is 

repeated. One example of clear and hazy imagery pair is shown 

in Figure 5. 

 

 

Figure 5 (a) Clear image (b) Hazy image 

4. For each hazy image, the haze-free partner is reconstructed 

both using [22] with calculation of atmospheric light for each 

step and using the same atmospheric light which was calculated 

once at beginning. So, we have TS (threesome) of 11 clear, haze 

free with [22] and haze free with [22] in the case of using the 

same atmospheric light. The TS images are named as TS-1 

(𝑇𝑇𝑇𝑇1), TS-2 (𝑇𝑇𝑇𝑇2), …, TS-11 (𝑇𝑇𝑇𝑇11). Threesome members are 𝑇𝑇𝑇𝑇(𝑥𝑥)1,   𝑇𝑇𝑇𝑇(𝑥𝑥)2 and 𝑇𝑇𝑇𝑇(𝑥𝑥)3 respectively where 𝑥𝑥 denotes the 

threesome index number. 

PSNR (Peak Signal to Noise Ratio) which is based on the 

mean squared error, is one of the mostly used metric for 

measuring the similarity of the restored image to ground-truth 

[41, 42]. Therefore, PSNR is used in this study to measure the 

similarity between the clear image and dehazed image in order 

to determine an orientation threshold. 

 

5. PSNR between each clear and haze-free images is calculated 

and named as 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅�𝑇𝑇𝑇𝑇(1)1,𝑇𝑇𝑇𝑇(1)2� and 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅�𝑇𝑇𝑇𝑇(1)1,𝑇𝑇𝑇𝑇(1)3�. For instance, if 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅�𝑇𝑇𝑇𝑇(1)1,𝑇𝑇𝑇𝑇(1)3� 
don’t reduce by 20% compared to 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅�𝑇𝑇𝑇𝑇(1)1,𝑇𝑇𝑇𝑇(1)2�, then 

the next threesome is processed and same calculation is done 

for 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅(𝑇𝑇𝑇𝑇21,𝑇𝑇𝑇𝑇22) and 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅(𝑇𝑇𝑇𝑇21,𝑇𝑇𝑇𝑇23) and so on. Note 

that for each following threesome, the atmospheric light which 

was calculated in the dehazing process of 𝑇𝑇𝑇𝑇(1)3 is used for 

reconstruction of 𝑇𝑇𝑇𝑇(𝑥𝑥)3. 

 

6. When the 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅�𝑇𝑇𝑇𝑇(𝑥𝑥)1,𝑇𝑇𝑇𝑇(𝑥𝑥)3� drops 20% below of 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅�𝑇𝑇𝑇𝑇(𝑥𝑥)1,𝑇𝑇𝑇𝑇(𝑥𝑥)2�, we choose the optimal rotation value as 

the rotation value of the image 𝑇𝑇𝑇𝑇(𝑥𝑥−1)1. An example of 

threesome is given in Figure 6. This shows an example of the 

dehazing results where the  𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅�𝑇𝑇𝑇𝑇(𝑥𝑥)1,𝑇𝑇𝑇𝑇(𝑥𝑥)3� drops 20 % 

below of 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅�𝑇𝑇𝑇𝑇(𝑥𝑥)1,𝑇𝑇𝑇𝑇(𝑥𝑥)2�.  
 

The change of PSNR values for yaw, roll, pitch axis with 

respect to threesome index is given in Tables 3-5. These tables 

show the PSNR as the rotation of the device changes. Starting 

from zero, for each 2° change of orientation, a new dehazed 

image is reconstructed and 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅 between dehazed image pairs 

is re-calculated. The orientation angle is increased by 2° at each 

step and since the PSNR tolerance is chosen as 20%, this is 

continued up to the 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅�𝑇𝑇𝑇𝑇(𝑥𝑥)1,𝑇𝑇𝑇𝑇(𝑥𝑥)3� drops 20 % below of 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅�𝑇𝑇𝑇𝑇(𝑥𝑥)1,𝑇𝑇𝑇𝑇(𝑥𝑥)2�. This procedure is repeated for each of 

yaw, roll and pitch axis. 

 

Table 3 PSNR values for each threesome w.r.t yaw 𝑥𝑥 Yaw angle (°) 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅�𝑇𝑇𝑇𝑇(𝑥𝑥)1,𝑇𝑇𝑇𝑇(𝑥𝑥)3� 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅�𝑇𝑇𝑇𝑇(𝑥𝑥)1,𝑇𝑇𝑇𝑇(𝑥𝑥)2� 
1 0 23.6 23.6 

2 2 21.3 22.5 

3 4 22.7 24.1 

4 6 23.8 25.2 

5 8 19.6 23.4 

6 10 19.3 23.9 

7 12* 19.5 24.0 

8 14 18.1 23.8 

* Optimal angle 

 

Table 4 PSNR values for each threesome w.r.t roll  𝑥𝑥 Roll angle (°) 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅�𝑇𝑇𝑇𝑇(𝑥𝑥)1,𝑇𝑇𝑇𝑇(𝑥𝑥)3� 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅�𝑇𝑇𝑇𝑇(𝑥𝑥)1,𝑇𝑇𝑇𝑇(𝑥𝑥)2� 
1 0 23.6 23.6 

2 2 21.6 23.1 

3 4 20.2 22.8 

4 6 19.7 24.3 

5 8 19.2 24.6 

6 10* 19.3 23.9 

7 12 18.7 23.5 

* Optimal angle 
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Table 5 PSNR values for each threesome w.r.t pitch 𝑥𝑥 Pitch angle (°) 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅�𝑇𝑇𝑇𝑇(𝑥𝑥)1,𝑇𝑇𝑇𝑇(𝑥𝑥)3� 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅�𝑇𝑇𝑇𝑇(𝑥𝑥)1,𝑇𝑇𝑇𝑇(𝑥𝑥)2� 
1 0 23.6 23.6 

2 2 22.4 25.3 

3 4 21.3 24.7 

4 6 20.5 23.2 

5 8 20.0 25.4 

6 10* 19.8 24.8 

7 12 18.1 24.1 

* Optimal angle 

 

 

 

Figure 6 An example threesome. (a) Clear Image (b) Result of 

direct application of Park’s method (c) Result of proposed 

approach. (PSNR is just below the threshold). 

 

7. The same procedure is repeated for each pitch, roll and yaw 

axis. The founded optimal rotation angles for 3 different scenes 

are given in Table 6.  

 

For instance, for scene-1 the optimal angles for pitch, roll and 

yaw are 10°, 10° and 12° respectively. Similarly, they are 10°, 

12°, 14° for scene-2 and 12°, 12° and 12° for scene-3. 

Therefore, the most common optimal angle (12° for this case) 

for pitch, roll and yaw among scenes is chosen as the optimal 

angle for 20% PSNR tolerance.  

 

Table 6 Optimal rotation angles for pitch, roll and yaw 

Scenes Pitch (°) Roll (°) Yaw (°) 
1 10 10 12 

2 10 12 14 

3 12 12 12 

 

According to Table 6, the optimal rotation angle is 12°. 

 

2.1 Design on MATLAB and Deploying on Android OS 

 

In the literature, to now, there is no complete work on 

dehazing on the Android operating system in real-time. In this 

study, MATLAB SIMULINK is used for implementation of the 

proposed method. MATLAB SIMULINK has Android device 

support for developing and deploying MATLAB codes and 

MATLAB SIMULINK models [43]. The SIMULINK model 

developed is given in Figure 7. 

 

 

Figure 7 SIMULINK Model for Real-Time Implementation 

A Simulink block called “FromAppMethod” is used which 

named as ‘readOrientation’ and coded in Android studio. This 

function reads and outputs the android device's actual and 

preceding time orientation data in real-time. Since the ‘size’ 

output is not needed, it is terminated. On the other hand, the 

‘Android Camera’ block reads live video from the device’s 

camera. The camera resolution can be set by also using this 

block. Real-time video and orientation data are fed to the 'Image 

dehazing' function that compares the previous and current 

orientation data and runs the proposed dehazing algorithm. The 

next block in Simulink is the image type conversion block 

which converts its input’s type to double. ‘Image splitting’ 

block splits the RGB image to its color components R, G and 

B. Then these components are displayed on device screen by 

using ‘Android Video Display’ block. 

This project is deployed on an Android device by using 

‘Android Studio’ [44]. By the way, The MATLAB codes are 

transferred to C++ code and a Java code is produced for user 

updates and declaring new functions. The android device used 

has Qualcomm® Snapdragon™ 665 Octa-core processor, 

which has frequency up to 2GHz. It has 3 GB RAM. The 

camera’s video resolution is up to 4K at 30 fps. 

The pseudo code of the proposed method is: 

 
def dehaze (hazyImg, airlight, transMap, 𝛽𝛽) 

dehazedImg=(hazyImg-airlight*(1-𝑒𝑒−𝛽𝛽∗transMap))/ 𝑒𝑒−𝛽𝛽∗transMap 

return dehazedImg 

 

def estimateAtmLight(hazyImg) 

 //estimation of atmospheric light 

return airlight 

def estimateTransMap (hazyImg) 

 //estimation of transmission map 

return transMap 
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//Setting rotation threshold value as the optimal threshold handled 

//empirically. 

Threshold = optimalThreshold 𝛽𝛽 = 0.25 //scattering coefficient 

hazyImg = readImage () 

airlightinit = estimateAtmLight (hazyImg) 

 

while True 

hazyImg = readImage () 

orientation = readOrientation () 

//check if orientation > Threshold 

if orientation > Threshold 

airlight = estimateAtmLight (hazyImg) //atm. light estimation 

transMap = estimateTransMap(hazyImg) 

dehazedImg = dehaze (hazyImg, airlight, transMap, 𝛽𝛽) 

display(dehazedImg) 

airlightinit = airlight 

else 

airlight = airlightinit //no estimation of airlight 

transMap = estimateTransMap (hazyImg) 

dehazedImg = dehaze (hazyImg, airlight, transMap, 𝛽𝛽) 

display(dehazedImg) 

 

 

3. Results 

 

 Theoretically, the most time-consuming part of a dehazing 

algorithm is the estimation of atmospheric light. Therefore, in 

this study, the author focuses on finding a logical way of not 

estimating the atmospheric light for each time instant and a 

novel approach which is based on reading the orientation sensor 

of a mobile device and measuring the amount of orientation 

prior to the dehazing operation is proposed. The atmospheric 

light has not very high variance in many scenes. It may change 

from time to time according to the weather conditions however, 

for a specific time interval it does not change so much within 

some specific rotation limits. This assumption is validated in 

this study by applying it on 3 different scenes and the detail 

procedure is introduced in the ‘Proposed Method’ section. 

Therefore, determining a smart way to measure the rotation of 

the device enables to reduce the processing time. This is 

achieved by estimating the atmospheric light when required 

instead of estimating it for each time instant. By that way, this 

study provides promising real-time processing speed. The mean 

results are shown in Table 7 for different imagery resolutions.  

Table 7 Real-Time Processing Speed 

Resolution Proc. Time (sec) 

per frame 𝐴𝐴𝐴𝐴𝐴𝐴 ≥ 𝑇𝑇ℎ 

Proc. Time (sec) 

per frame 𝐴𝐴𝐴𝐴𝐴𝐴 < 𝑇𝑇ℎ 

1080p (1920x1080) 4.36 0.88 

720p (1280x720) 1.95 0.42 

480p (864x480) 0.87 0.19 

360p (480x360) 0.36 0.07 

 

From Table 7, the mean processing time for HD (High 

Definition) imagery changes from 0.42 to 1.95 seconds per 

frame. This mean time depends on the amount of movement of 

the device. If the amount of movement is high which means for 

a specific time interval the device is rotated much above the 

optimal rotation angle, then the number of recalculation of 

atmospheric light will be high and the processing time per 

frame will increase towards 1.95s. However, if the rotation is 

less, then the mean processing time will go down to 0.42s. 

Secondly, as the resolution of imagery increases, since the 

number of pixels increases, the processing time per frame also 

increases automatically. 

 Another important point is the threshold for atmospheric 

light re-estimation. There is an optimal value of the threshold 

which depends on the day of the year, cloud rate and other 

environmental effects. In our tests, the threshold is empirically 

set to 12° optimally which keeps the reconstructed image visual 

quality and PSNR. Note that this threshold was determined 

empirically and should be set depending on the conditions at the 

time of dehazing. 

The processing time results of this study is compared with 

the results of the studies in [29, 30, 32, 35]. The benchmark 

results are given in Table 8.  

Note that the studies [30], [32] and [35] are not applied on 

mobile operating systems/devices. Therefore, the processing 

time results are generally better due to the more powerful 

hardware they use. Although they are not directly comparable 

with the proposed method, since they are also useful studies in 

real-time implementation context, their results are also included 

in this study and benchmark table for introducing the current 

level of real-time dehazing on mobile based operating systems 

compared to non-mobile systems. 

Table 8 Benchmark results for processing time per frame 

Studies 1080p 

(1920x1080) 

720p 

(1280x720) 

480p 

(864x480) 

Mobile 

based 

[29] with CPU 105.50 39.27 14.98 Yes 

[29] with (CPU+GPU) 3.22 1.12 0.72 Yes 

[32] with GPU NA 0.09 NA No 

[35] with parallel GPU 0.001 NA NA No 

[30] on DSP 0.04 NA NA No 

Proposed Method 0.88 0.42 0.19 Yes 

 

As it is explained in detail in the previous sections, the 

proposed method gets use of the reality that atmospheric light 

is not very variant in a specific time interval. Therefore, 

measuring the current variance of it at the time of dehazing and 

specifying the threshold rotation angle is the novelty of our 

method. The proposed method reads the orientation sensor of 

the mobile device and decide to recalculate the atmospheric 

light or not. Once the rotation angle exceeds the optimal 

threshold rotation angle, the atmospheric light is recalculated. 

Otherwise, the previously calculated atmospheric light is used 

for dehazing. Since the most time-consuming part in dehazing 

is the estimation of atmospheric light, the proposed approach is 

successful in terms of accelerating the dehazing process.  From 

Table 8 it can be observed that the proposed method is more 

successful among the other studies which implement dehazing 

on mobile operating systems. It is better than the study in [29] 

both for CPU case and CPU and GPU together case.       

 

4. Conclusion and Future Work 

 

In this study, a new image dehazing method which is based 

on measuring the change of the scene by reading the device 

orientation sensor in real-time and a mechanism to re-calculate 

the atmospheric light is implemented. Since, the change of the 
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scene has not high variance in many real-time dehazing 

applications, this study gets use of defining some reconstruction 

error toleration for dehazed image. This study proves that it is 

possible to handle high quality dehazed images by skipping the 

calculation of the atmospheric light for some time instant up to 

exceeding a pre-defined orientation threshold. Since the most 

time-consuming part of image dehazing is atmospheric light 

calculation, proposed approach accelerates the overall process 

and reduce the processing time for each frame. This enables to 

dehaze in real-time. By keeping the visual quality of the 

reconstructed image, promising image processing time results 

are achieved despite limited power of hardware and only CPU 

is used. The results are superior or on par with the other state-

of-the-art real-time dehazing applications. Processing time 

results show that proposed method can be applied in real-time 

on the devices which have android operating system. If the 

system is empowered in terms of hardware specifications, then 

the processing time will decrease dramatically. 

The future work should be based on using GPU and/or CPU 

and GPU together. On the other hand, more powerful hardware 

devices should be used. Furthermore, similar implementation 

should be done on IOS devices. Another important point is that 

transmission maps may be estimated by using stereo imaging 

which enables more accurate estimation of the depth maps. 

The next work will be based on using deep learning models 

and deploying the model on Android devices. This will most 

probably increase the visual quality besides increasing the 

processing speed.  
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Figures

Figure 1

(a) Hazy image (b) Haze-free (dehazed) image of (a) (c) Hazy image (d) Haze-free (dehazed) image of (c)



Figure 2

Atmospheric light scattering model

Figure 3

The visual comparison of several methods. (a) Hazy image (b) Fattal’s result (c) Kopf’s result (d) He’s
result (e) Park’s result.



Figure 4

Overall System diagram



Figure 5

(a) Clear image (b) Hazy image



Figure 6

An example threesome. (a) Clear Image (b) Result of direct application of Park’s method (c) Result of
proposed approach. (PSNR is just below the threshold).



Figure 7

SIMULINK Model for Real-Time Implementation
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