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Abstract
Smoke detection represents a critical task for avoiding large scale fire disaster in industrial environment and cities. Including 
intelligent video-based techniques in existing camera infrastructure enables faster response time if compared to traditional 
analog smoke detectors. In this work presents a hybrid approach to assess the rapid and precise identification of smoke in 
a video sequence. The algorithm combines a traditional feature detector based on Kalman filtering and motion detection, 
and a lightweight shallow convolutional neural network. This technique allows the automatic selection of specific regions 
of interest within the image by the generation of bounding boxes for gray colored moving objects. In the final step the con-
volutional neural network verifies the actual presence of smoke in the proposed regions of interest. The algorithm provides 
also an alarm generator that can trigger an alarm signal if the smoke is persistent in a time window of 3 s. The proposed 
technique has been compared to the state of the art methods available in literature by using several videos of public and 
non-public dataset showing an improvement in the metrics. Finally, we developed a portable solution for embedded systems 
and evaluated its performance for the Raspberry Pi 3 and the Nvidia Jetson Nano.

Keywords  Video smoke detection · Kalman filter · Convolutional neural network · Deep learning · Raspberry Pi · Nvidia 
Jetson Nano

1  Introduction

Prevention of fire accidents is an important safety, economic 
and environmental issue that is constantly addressed in vari-
ous research fields [1]. Fire protection and prevention sys-
tems are available in the majority of public buildings and 
they are ubiquitous in public and private transportation. Tra-
ditional smoke detector devices are able to identify the pres-
ence of smoke only in the close proximity of the source of 
emission, but they lack the ability to signal the presence non-
local hazards. Moreover, such devices can be easily damaged 
by the smoke and high temperatures developed during a fire. 
To overcome these limitations, video-based fire detection 

systems are currently commonly used mainly supported by 
new emerging image processing and computer vision tech-
niques. These techniques enable cameras and closed-circuit 
television (CCTV) systems to be used for smoke and fire 
detection, thus providing remote coverage for wider areas. 
Vision-based smoke/fire sensors also provide faster reaction 
times compared to sensors based on photometry, thermal 
or chemical detection that instead require larger amount of 
fire/smoke to trigger. Additionally, vision-based detection 
algorithms can be easily included in existing surveillance 
systems and deployed in city streets, industrial buildings and 
in public transportation. Since these algorithms are generally 
developed for low-cost IoT embedded devices with network-
ing capabilities, they can also be used to provide remote sig-
nalling procedures complete with useful information about 
the location and extension of the fire [2].

New high-performance hardware platforms, such as 
graphic processing units (GPUs) and general purpose pro-
cessors (GPPs) with significant computing capabilities with 
high level of parallelism, have allowed the development 
of artificial intelligence techniques that have dramatically 
improved the state-of-the-art in object detection, visual 
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object recognition, in speech recognition, and many other 
domains [3].

While traditional video-based smoke detectors need pre-
processing and feature extraction steps, such as colour and 
shape characteristics of smoke, recent deep learning algo-
rithms allow for automatic data-driven feature extraction and 
classification from raw image streams. Thus, deep learn-
ing models may prove to be valid alternatives to traditional 
visual detectors.

In this paper we present a novel smoke detection pipe-
line specifically designed for embedded devices with high 
throughput and with small memory requirements. We com-
pared our algorithm on a state-of-the-art dataset and other 
non-public videos. We also deployed our processing pipeline 
as a real-time video processing application on two single 
board embedded platforms, namely an Nvidia Jetson Nano 
and a Raspberry Pi 3. Hereafter, the paper is organized as 
follows: Sects. 1 and  2 deal with introduction and state of 
art video-based fire/smoke detectors. Section 3 presents 
the algorithm description and discusses the global Neural 
Network architecture used in the video processing chains. 
Section 4 shows the experiment results and discussion. Sec-
tion 5 presents the algorithm implementation in the embed-
ded systems evaluating their performance. Conclusions are 
reported in Sect. 6.

2 � State of art video‑based fire/smoke 
detectors

Smoke detection systems that use machine vision methods to 
classify frame sequences are mainly based on static informa-
tion from single frames, or include dynamic characteristics 
of the smoke. This kind of smoke detection systems use tex-
ture, shape, color, movement, energy, and frequency, flutter 
or frequency spectrum, as in [4–6].

This class of algorithms may produce poor results when 
there is small chromatic difference between the background 
and fire/smoke pixels, potentially generating too many false 
alarms for the system to be useful in practice. Therefore, in 
[7], the problem of background estimation and segmenta-
tion is directly addressed. In [8] a smoke detector based on 
Kalman estimator, color analysis, image segmentation, blob 
labeling, geometrical features analysis and M of N decisor 
is used to produce an alarm signal within a strict real-time 
deadline.

New deep learning approaches can automate the feature 
extraction process thus making the process more effective 
in image classification and object detection [9]. Moreover, 
optimization techniques and model approximations can be 
used to allow the implementation of medium-size models 
on low-performance embedded devices, Thus allowing the 
system to be used in different domains.

Consequentially, various deep learning methods have 
been proposed for fire and smoke detection. For example, 
R-CNN, YOLO and SSD networks are used in [10] in order 
to detect forest fire in real-time. A fire detection system 
based on pre-trained VGG16 and Resnet50 models is pro-
posed in [11], whereas in [12] and in [13], a YOLO network 
[14] is used to perform fire detection and flame detection.

Although deep learning methods may achieve higher 
results in terms of accuracy, they tend to be more complex 
than traditional algorithms and may be unsuitable for low-
memory embedded devices.

In this paper, we used a mixed approach based on Kalman 
estimation for background subtraction and a Convolutional 
Neural Network for region classification. In this work, we 
specifically targeted low-cost embedded platform for real-
time video processing and selected a light-weight network 
model suitable for this class of devices.

3 � Algorithm description

Figure 1 shows the logical flow of the proposed video smoke 
detection algorithm, which is based on motion detection, 
color segmentation, bounding boxes extraction, and a predic-
tion from the convolutional neural network. The algorithm 
is designed as a chain of image and video processing tasks.

The sequence of elaborations starts with a new frame 
coming from the video camera, or a test set video, and ends 
with the computation of a smoke alarm signal. The tasks of 
motion-detection/color-segmentation and the tasks of CNN 
prediction can be parallelized in a typical implementation 
on computer platform or embedded systems. The rest of the 
functions, instead, will be calculated according to a sequen-
tial flow of the figure. Hereafter, we report in details the 
main video processing steps of the workflow of Fig.  1.

3.1 � Motion detection

The Kalman filter is used in this work to estimate move-
ment within a series of frames. The motion detection 
algorithm detects groups of pixels that change their value 

Fig. 1   Signal processing of smoke detection algorithm
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over time. We allow the value of the pixel to evolve in 
time following a linear model. We use the Kalman filter 
to predict the expected value of a pixel based on its previ-
ous state history. If the difference between the predicted 
value and the actual value is larger than a threshold, a 
movement is detected and the pixel is marked accordingly. 
The background prediction is given by Eq. (1), where B̃Gk 
is the background prediction of the current frame I, B̂Gk−1 
is the background estimation at the previous frame, and 
a = A∕(1 − �) is a weighting coefficient for the previous 
state of the pixel. We allow a to be dependent on the cam-
era frame rate with the relation � = 1∕(1 + �� ⋅ fr) , where 
fr is the frame rate in FPS of the processed video and �� is 
a time constant set to 10s, and A is a constant set to 0.618.

The background estimation B̂Gk of the frame I is obtained 
from Eq.  (2), where B̃Gk in Eq.  (1), and K1 and K2 are 
defined in Eq. (3).

In the initialization phase, we set B̃Gk equal to initial frame I 
and �̇BGk equal to zero. This initialization is done only when 
the first frame is received. According to 5, we select the 
pixel of the foreground FGk if their value is higher than the 
threshold THRforeg . In the above equations, FGk is the fore-
ground of the frame I, � = 1∕(1 + �� ⋅ fr) , where �� is a time 
constant set to 16 s. The empirical threshold THRforeg is set 
to 0.08. Compared to [15] where authors used a fixed value 
for a = 0.7 , we let the variable a depend on the value of the 
video frame rate. Specifically, a = A∕(1 − �) depends on � , 
which in turn depends on constants A and �� and on the 
frame rate fr. The coefficient K1 = K2 are derived to quickly 
absorb in the background the objects that are faster than the 
smoke (like moving people) and to filter out static objects 
that are much slower than the smoke. As reported in [8] the 
value of A = 0.618 has been found starting from the value of 
0.7 proposed in [15] and refining it to maximize the detec-
tion performance.
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3.2 � Color segmentation and BW labeling

Color segmentation allows to select pixels in the shade 
of gray, which could potentially represent a smoky cloud. 
Hence the RGB color frames are converted in HSV scale, 
where H is the hue, S is the saturation, and V is the value. 
To select the smoky pixels, we use a saturation threshold 
THRsat that we set to 0.2 having the input image values 
in the range [0, 1]. We select only those regions of the 
scene where pixelsat < THRsat . We choose this parameter 
because the smoke changes color according to the back-
ground, so a good way is to use the saturation channel. The 
threshold value was derived empirically by maximizing 
smoke detection in the video datasets described in Sect. 4. 
At this point the pixels of the motion detection mask and 
the pixels of the color segmentation mask pass through 
a block that performs the logical AND (pixel-wise). So 
we select all pixels that are moving and gray colored. A 
median filter is then applied to this matrix to remove all 
scattered non-aggregated pixels, as they represent noise 
within the image.

Agglomerated pixel regions are labeled according to a 
labeling function and will be supplied later as “blob” to 
the bounding box extraction function.

3.3 � Bounding boxes extraction

The bounding boxes (BB) extraction selects the moving gray 
object in the scene. Such task is performed considering the 
total area of each selected blob that corresponds to the num-
ber of pixels of such region. Hence, we select the blobs for 
BB extraction that satisfy the condition of Eq. (6):

The area threshold is calculated so that for a VGA frame 
(W = 640 × H = 480) the area is about 1.2 k pixels, which 
is a bit less than half of the input size of the convolutional 
neural network. Selection of blobs with area smaller than the 
minimum threshold may induce the network to produce erro-
neous predictions. The function returns four coordinates as 
output representing the position and size of the smallest box 
containing the region. We also introduced an extra function 
to check the ratio between the sides of the bounding boxes. 
This function accepts regions where the ratio between the 
sides is greater than or equal to 0.6. This step is especially 
important as it avoids wrong predictions from the neural 
network that expects square images as input. Images that 
are too narrow or too wide can lead to image distortion and 
therefore to errors, thus they are simply discarded.

The remaining images are scaled to the neural network 
input dimensions and fed to the network.

(6)Areablob > W ⋅ H∕250
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3.4 � Convolutional neural network

In order to discriminate between the bounding boxes that 
contain smoke from those that do not, we developed a Con-
volutional Neural Network classifier. Our network accepts as 
inputs 50 × 50 pixel float RGB images with values in range 
[0–1] and produces as output the prediction value for the 
input image as a single value in the range [0–1]. We report 
the CNN architecture in Fig. 2. We trained our network on 
the smoke dataset collected by Yuan et al. [16]. Such data-
set contains 14,271 images labelled as “Smoke” or “Non 
Smoke”.

The training of such network is performed on 11,014 
training images and 3257 test images, which represents the 
70% and the 30% of the dataset respectively. The training is 
performed for 100 epochs with batch size 64 achieving 98% 
accuracy on test data. Since the images of the dataset have 
a size of 100 × 100 pixels we perform an image resize to 
match the input size of 50 × 50 × 3 of the input layer before 
the training phase. We used binary cross entropy as loss 
function and Adam algorithm as optimizer. For reference, 
we performed the same training with Adamax as optimizer, 
obtaining similar results. Details of training parameters and 
optimizer are shown in Table 1.

The Fig. 3 instead shows the training process relative 
accuracy vs number of epochs for both training set and vali-
dation set, and the values of the loss function. We limited 
ourselves in using only convolutional layers, max pooling 

layers and fully connected layers as these are the most sup-
ported layers in tensor processing units (TPUs) for on board 
AI acceleration. The network consists of 12 levels in total 
with only Convolution layers for feature extraction. We spe-
cifically addressed the problem of overfitting introducing a 

Fig. 2   Convolutional neural network architecture

Table 1   Training hyper-
parameters for CNN

Parameter Value

Optimizer Adam
Learning rate 0.01
Beta1 0.9
Beta2 0.999
Epsilon 1e−7
Number of epochs 150
Batch size 64
Dropout value 0.5

Fig. 3   (Top) training history for accuracy metric on training set and 
validation set. (Bottom) loss function history on training set and vali-
dation set



2089Journal of Real-Time Image Processing (2021) 18:2085–2095	

1 3

dropout layer with high (0.5) dropout value. Moreover, to 
improve training convergence, we used LeakyReLU instead 
of plain ReLU obtaining marginal training speedup. We 
intentionally designed a relatively flat CNN as we aimed at 
low computational power and high processing speed. Given 
the simplicity of its architecture, the network may sometimes 
misclassify ambiguous images, however we are able to han-
dle spurious in-frame misclassifications and remove them 
in a post-processing filtering step. Indeed, we can accept 
only the region where the score of the prediction is higher 
than 0.7.

This way we are sure to select only bounding boxes that 
almost certainly contain smoke and discard everything else.

3.5 � Alarm generator

Every bounding box promoted as possible area containing 
smoke are classified as “smoke” or “non smoke” as output 
of the Neural Network already presented. To activate the 
smoke alarm, we want that the classification of “smoke” 
persists for some certain amount of time, to be sure to do not 
identify false alarm. For each frame we must have at least 
one bounding box classified as “smoke” for at least one 1.5 
s over a 3 s window.

If these considerations are valid, then an alarm signal will 
be generated. These time window thresholds can be changed 
at will in relation to how fast the detection is intended to be 
performed. Threshold values that are too low can lead to 
false alarms, whereas high threshold values may hinder the 
ability to detect fire and exceedingly increase the system 
reaction time.

These values have been obtained empirically to achieve 
excellent detection performance and also to comply with the 
EN50155 [17] standard for onboard train fire-alarm systems.

4 � Experimental results

The aim of this work is to present a technique that can be 
easily deployed to an embedded device in order to finally 
build a smoke detection unit. For doing so, it becomes inevi-
table to use a dataset that contains videos and images with 
smoke-fire emergencies from the real world. For the training 
phase of the neural network we used the Yuan et al. dataset 
[16] that contains smoke and non-smoke images captured 
manually by cameras or from internet.

Figure 4 shows that the used smoke images have a vari-
ety of texture, shades and shapes while non-smoke images 
contain different scenes and objects like cars, plants, people 
and buildings.

As a result of the training phase we obtained a model of 
just 126KB requiring low memory space and suitable to be 
contained in low cost embedded platforms. We can compare 

our neural network with the network designed in [18] on 
the same image dataset. Although our network consists of 
only 12 layers compared to the 25 in [18], we obtained only 
a minor drop in accuracy decreasing from 99% accuracy 
obtained in [18] to 98% accuracy perhaps we used less train-
able parameter.

The neural network model represents only a small piece 
of the whole processing chain which is instead depicted in 
Fig. 5. The figure provides an example application of a smart 
city antifire system showing the output mask of each pro-
cessing step already described in Sect. 3.

The images of Fig. 5 are obtained by processing a cer-
tain number of frames (about 30 frames), to allow Kalman 

Fig. 4   (Top) Non-smoke images example of the dataset. (Bottom) 
Smoke images example from dataset

Fig. 5   Detection of smoke on a test video. a Current Frame n; b 
motion detection; c color segmentation; d logic AND pixelwise and 
median filter; e bounding box extractor; f final result at runtime with 
bounding boxes and accuracy predicted as smoke from the neural net-
work
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filter to accurately estimate the moving parts of the scene. 
In Fig. 5d we notice that the firefighters on top of the roof 
are also selected in the mask. However, this region is dis-
carded at the next step as shown in Fig. 5e. In the last figure 
(Fig. 5f) we see the Nth frame in which the bounding boxes 
are correctly classified as smoke by the neural network and 
drown into the frame with their prediction scores.

To measure the detection performance of the algorithm 
we used the metrics reported in Eqs. (7)–(11) where the TP 
represents the true positive, TN the true negative, FP the 
false positive and FN the false negative. We define the video 
as positive if smoke is present, otherwise, if smoke is absent, 
we define the video as negative. If the algorithm identifies 
the smoke in a positive video, then we mark the result as true 
positive (TP). If the algorithm does not identify the smoke 
in a positive video, then we mark the result as false negative 
(FN). If the algorithm identifies the smoke in a negative 
video, then we mark the result as false positive (FP). If the 
algorithm does not identify the smoke in a negative video, 
then we mark the result as a true negative (TN).

The Table 2 shows the detection performance obtained by 
using two different dataset. The first one is the Firesense 
[19] public dataset developed within the FP7-ENV-244088 
project, and contains videos for testing flame and smoke 
detection algorithms. The second dataset is provided by [8] 
for a total 42 videos of which 30 are smoke videos while 12 
are of non-smoke videos. Our algorithm has excellent per-
formance in almost all metrics in the first column of Table 2 

(7)Hit rate = TP∕(TP + FN)

(8)Accuracy = (TP + TN)∕(TP + FN + TN + FP)

(9)F1 score = 2 ⋅ TP∕(2 ⋅ TP + FP + FN)

(10)Precision = TP∕(TP + FP)

(11)

MCC =
(TP ⋅ TN − FP ⋅ FN)

√
(TP + FP) ⋅ (TP + FN) ⋅ (TN + FP) ⋅ (TN + FN)

for the Firesense dataset. This is certainly attributed to the 
higher specificity of such video dataset. Indeed, the dataset 
[8] contains also videos in which the smoke is very far from 
the scene, so it is more difficult to detect it with the algo-
rithm presented. This would explain a Hit Rate of about 0.9 
which corresponds to 2 FN for this dataset, as the algorithm 
is not able to detect smoke slowly moving and far from the 
camera frame especially in bad video quality. Nevertheless, 
the global detection performance remains stable even in 
both datasets. Regarding the results of the Firesense dataset 
we observe a Hit Rate of 1 and consequently zero FN. In 
the same dataset we obtain a precision of about 0.87 due 
to 2 false positives. However, in this security scenario it is 
always preferable to have an algorithm that prevents the risk 
of fire obtaining slightly higher false alarm, but lowering the 
chances to miss a detection which would be dangerous for 
human life and the environment.

This technique has been compared with the AdViSED 
algorithm and its dataset. The results for all metrics are very 
similar for the two techniques and are shown in Table 3. The 
difference concerns the presence of 2 FN that, as already 
presented, are due to bad quality videos and in which the 
smoke is caught far from the scene. The difference between 
the two techniques lies in the automatic feature extraction 
by CNN which it makes easier for the developer to calibrate 
the algorithm as it is for AdViSED.

In fact, in AdViSED the parameters such as Area, 
Extent, Eccentricity etc. must be adjusted by hand and this 
can presents a difficulty in some specific cases. The CNN 
instead has the task to extract itself the characteristics and 
no calibration is required if the training phase was success-
ful. Another important parameter is about the speed of the 
algorithm in detecting the smoke, recognizing it as danger 
element into the scene caught by the camera. Therefore, in 
the Table 4 we compare the proposed techniques respect 
to the state of the art algorithm [8, 20, 21] using the same 
test video shown in Fig. 6. Such comparison consists of the 
calculation of the delay, in terms of number of frames, to 
necessary reveal the presence of smoke.

We achieve as good results as those in [8] for both video 
n.1 and video n.2. Compared to the latter, we obtain a much 
better result for video n.3, since our neural network seems 
to be more robust to the noise generated from the metal 

Table 2   Detection performance for two different dataset

Firesense [19] AdViSED [8]

Hit rate 1.0000 0.9049
Precision 0.8667 0.8636
Accuracy 0.9091 0.8438
F1 score 0.9286 0.8837
MCC 0.8210 0.6467
False positives 0.2221 0.2726
False negatives 0.0000 0.0951

Table 3   Detection Performance respect AdViSED algorithm

Our algorithm AdViSED [8]

Hit rate 0.9049 1.0000
Precision 0.8636 0.8890
Accuracy 0.8438 0.8500
F1 score 0.8837 0.8750
MCC 0.6467 0.7035
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fence placed in front of the smoke. Note that, although our 
algorithm is able to detect smoke in a few frames, it waits 
for the time-threshold of 1.5 s already defined in Sect. 3.5 
before triggering an alarm. However, this signal allows us 
to be about × 15 faster than the EN50155-standardized tech-
niques, which rather have to react in a range of about 60 s. In 
Fig. 7 we show the output of other test videos as example of 
a final application of our algorithm. Such challenging data-
set contains indoors and outdoors scenes for custom antifire 
application for Intelligent Transportation System and Smart 
Cities. On top of Fig. 6 are depicted smoke scenes with fire 
alarm activated and bounding boxes containing the detected 
smoke. At the bottom of Fig. 6 are shown videos containing 
moving objects, clouds and scenarios that could mislead the 
algorithm. However, no bounding boxes have been drawn in 
these cases and so the algorithm works properly. Indeed, the 
alarm is generated when the red circle appears on the top left 
of the image otherwise the circle displayed is green.

5 � Embedded system implementation

We developed a Python [22] implementation from an ini-
tial Matlab [23] code using Keras 2.3.0 [24], Numpy 1.18.0 
[25], Scikit-image 0.17.2 [26] and openCV 4.3.0 [27]. Such 
Python implementation has been carried out perhaps in 
order to have no difference with respect to the initial Matlab 
source code and in order to obtain the same metrics already 
described in Sect. 4. We selected two development boards 
for such implementation as they are ubiquitous low-cost 
embedded platforms with reasonably low power consump-
tion. We selected an Nvidia Jetson Nano and a Raspberry Pi 
3 (RPi 3) considering their ease of use and their popularity 
on the market. As comparison we also performed a test on 

a PC equipped with Intel Core i3-4170 CPU, 8GB DDR3 
RAM and Windows 10 OS running the same algorithm.

5.1 � Nvidia Jetson nano

Jetson Nano is a powerful but compact embedded computer 
with the low cost of approximately $100 [28]. The board is 
equipped with a Quad-core ARM A57 at 1.43 GHz CPU, a 
128-core Maxwell GPU, 4 GB 64-bit LPDDR4 25.6 GB/s of 
RAM, and multiple port for connecting peripherals such as 
4x USB 3.0, CSI (Camera Serial Interface) connectors etc. 
We used as testing camera a Raspberry Pi Camera Module 
V2 with 8M pixel. This camera can work with a camera 
resolution of 1080p@30 frames per second and is connected 
on the CSI port. The official operating system for the Jetson 
Nano is called Linux4Tegra, which is actually a version of 
Ubuntu 18.04 that’s designed to run on Nvidia’s hardware.

5.2 � Raspberry Pi 3

Raspberry Pi is small, powerful, and low-cost embedded 
device at about 30$ per unit. It is a perfect platform for appli-
cations like distributed and networked measuring notes in 
smart city or intelligent transport systems scenarios. The 
board is equipped with a Broadcom BCM2837, a System on 

Table 4   Detection delay in number of frames vs state of the art

Video in 
Fig. 6

Dura-
tion (in 
frames)

Delay in smoke detection (in frames)

Yu [20] Toreyin 
[21]

AdViSED 
[8]

Our 
Algo-
rithm

n. 1 900 86 98 9 11
n. 2 244 121 127 19 21
n. 3 630 118 132 120 39

Fig. 6   Video n.1, video n.2, video n.3 (from left to right)

Fig. 7   (Top) smoke video test with bounding boxes and smoke alarm 
activated. (Bottom) neutral test video with smoke alarm not activated 
as expected
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Chip (SoC) including a 1.2 GHz 64-bit quad-core ARM Cor-
tex-A53 processor, with a cache L2 of 512 KB and 1GB of 
DDR2 RAM, Video Core IV GPU, 4 USB 2.0 ports, onboard 
WiFi @2.4 GHz 802.11n, Bluetooth 4.1 Low Energy, 40 
GPIO pins, and many other features [29]. It runs on Rasp-
bian OS, a Debian-based Linux distribution for download 
[30].

5.3 � Test performance

We initially measured the average frame per seconds (fps) 
for different platform using the same smoke video but chang-
ing the pixels resolution. In particular, we tested our algo-
rithm in two cases: 320 × 240 p and 640 × 480 p since those 
are the most used for CCTV systems. We can easily observe 
in Table 5 that the best performance is achieved on the Jet-
son Nano board reaching almost 55 fps on a camera resolu-
tion of 320 × 240 and about 18 fps by doubling the size of 
the input image. This is mainly due to the Nvidia Maxwell 
GPU integrated on Jetson Nano and therefore specialized in 
highly parallel floating point computations especially those 
dealing with neural network tensors. The Raspberry Pi 3 
board reached almost 10 fps and 3 fps using the first and 
the second camera resolution respectively. Our PC instead 
obtains performance comparable to that of Raspberry Pi. 
This can be explained because such PC machine does not 
have a dedicated GPU for accelerating tensor operations, 
therefore its performance is worse than that of the Jetson 
Nano board. The Jetson Nano board has been used according 
to the MAXN power profile with maximum consumption 
to 10 W, so that the operating system can use the GPU as 
required.

Performance on each board was also measured in terms of 
resource usage such as CPU, GPU, Memory and operating 
temperature. The measurements were carried out for both 
embedded devices without any peripherals connected and 
controlled using a static IP address and remote desktop. We 
monitored 60 min (1 h), of which the first 30 min are in idle 
state (only background task are running), and in the last 30 
the application is running.

In Fig. 8 we reported the CPU usage for RPi 3 and Jetson 
Nano boards, and the GPU usage for Jetson Nano. The CPU 
is around 0–3% of usage for both board while there is a jump 
to 28% of CPU for RPi 3 and 33% for Jetson Nano.

We witnessed more intensive use of the GPU at about 
30 min, although it remains around 10% usage. This is 
mainly due to the small size of the network and therefore 
not computationally expensive. The memory usage, shown 
in Fig. 9, increased instead from about 25–40% for RPi 3 and 
70% on Jetson Nano board. As reported in [31], tempera-
ture can drastically impact the performance of the inference 
system. We performed an experiment measuring the tem-
perature when the CPU is idle and when the application is 
running. Thermal results are shown in Fig. 10. We obtained 
better operating temperature results on the Jetson reaching 
a maximum temperature of about 49 ◦C.

The RPi 3 instead reaches the maximum temperature of 
69 ◦ C that is below the official operating temperature limit 

Table 5   Performance in terms of frames per seconds tested on differ-
ent boards

GPP × 64 (fps) Jetson Nano (fps) Rasp-
berry Pi 3 
(fps)

320 × 240 11.18 54.82 9.37
640 × 480 6.46 17.49 3.01

Fig. 8   CPU GPU usage vs execution time

Fig. 9   Memory usage vs execution time
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of 85 ◦ C, and below the 82 ◦ C of thermal throttle. The meas-
urements are affected by an offset ambient temperature of 
about 30 ◦ C. The RPi also does not have a heat sink compa-
rable to that of the Jetson, so it heats more easily. We meas-
ured also the power consumption in Watts for each board. 
The total amount of power consumption for Raspberry Pi 3 
is around 1.5 W in idle and 2.4 W while the application is 
running. For the Jetson Nano we measured instead 2.7 W in 
idle state and 7 W as average running the algorithm.

As final comparison we benchmarked our algorithm 
respect to the state of the arts object detection artificial neu-
ral network, comparing their inference performance and the 
total memory size in MB or KB. Such benchmarks are par-
tially available from [32] and shown in Table 6.

The purpose of this comparison is to show how an 
already pre-built network can have much lower perfor-
mance than a custom built one. Clearly these bench-
marks are obtained without making a new training on a 
specific dataset containing smoke images but we would 
expect the same outputs. The best results are obtained by 
our algorithm both in terms of processing speed and in 

terms of total amount of memory space occupied. The 
SSD Mobilenet-V2 [33] network reaches around 40 fps 
on Jetson Nano and about 1 fps on RPi 3 with about 18 
MB of memory occupied on disk. Both the Tiny YOLO 
V3 [34] and SSD Resnet18 [35] occupy more than 44MB 
of disk memory and have poor results on RPi 3. The Tiny 
YOLO V3 barely reaches 1 fps while Resnet18 did not run 
(DNR) on RPi3. Note that DNR results occurred due to 
limited memory capacity, unsupported network layers, or 
hardware/software limitations.

In conclusion, the Nvidia Jetson Nano can be considered 
as the final platform for the implementation of a full stack 
IoT antifire application. In fact, while the Raspberry Pi 3 
costs about half as much as its competitor, and gets better 
result in power consumption, at the same time Jetson gets 
the best results in processing and elaboration in real time. 
Although power consumption is slightly higher than in RPI 
3, it is reasonable to consider it low and suitable for the 
applications already mentioned.

6 � Conclusions

This paper proposed a hybrid technique of smoke detection 
consisting of both traditional Image Processing and Artificial 
Intelligence methods. The goal is the development of an 
object detection algorithm specialized in locating the smoke 
blobs within a video stream to prevent fire accident.

During the processing, our algorithm selects the regions 
of interest based on the smoke features while the CNN is 
used to classify them. The CNN was designed to be light-
weight in order to save memory space, and fast in order to 
accelerate the inference step.

We validated our system on different datasets obtaining 
good metrics in terms of accuracy and inference time. The 
results suggest that the system presented in this paper is suit-
able for the future development of smart IoT devices based 
on Raspberry Pi or Nvidia Jetson Nano. In particular, on 
the Nvidia Jetson Nano the system can operate at 55 fps at 
a resolution of 320 × 240 pixels and be included easily in 
common CCTV cameras.

The proposed solution can be employed in various anti-
fire applications as it achieves low-latency detection when 
compared to traditional ceiling-mounted smoke detectors.
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