
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2021) 18:2085–2095
https://doi.org/10.1007/s11554-021-01094-y

ORIGINAL RESEARCH PAPER

A real‑time video smoke detection algorithm based on Kalman filter
and CNN

Alessio Gagliardi1  · Francesco de Gioia1 · Sergio Saponara1

Received: 25 September 2020 / Accepted: 6 March 2021 / Published online: 19 March 2021
© The Author(s) 2021

Abstract
Smoke detection represents a critical task for avoiding large scale fire disaster in industrial environment and cities. Including
intelligent video-based techniques in existing camera infrastructure enables faster response time if compared to traditional
analog smoke detectors. In this work presents a hybrid approach to assess the rapid and precise identification of smoke in
a video sequence. The algorithm combines a traditional feature detector based on Kalman filtering and motion detection,
and a lightweight shallow convolutional neural network. This technique allows the automatic selection of specific regions
of interest within the image by the generation of bounding boxes for gray colored moving objects. In the final step the con-
volutional neural network verifies the actual presence of smoke in the proposed regions of interest. The algorithm provides
also an alarm generator that can trigger an alarm signal if the smoke is persistent in a time window of 3 s. The proposed
technique has been compared to the state of the art methods available in literature by using several videos of public and
non-public dataset showing an improvement in the metrics. Finally, we developed a portable solution for embedded systems
and evaluated its performance for the Raspberry Pi 3 and the Nvidia Jetson Nano.

Keywords  Video smoke detection · Kalman filter · Convolutional neural network · Deep learning · Raspberry Pi · Nvidia
Jetson Nano

1  Introduction

Prevention of fire accidents is an important safety, economic
and environmental issue that is constantly addressed in vari-
ous research fields [1]. Fire protection and prevention sys-
tems are available in the majority of public buildings and
they are ubiquitous in public and private transportation. Tra-
ditional smoke detector devices are able to identify the pres-
ence of smoke only in the close proximity of the source of
emission, but they lack the ability to signal the presence non-
local hazards. Moreover, such devices can be easily damaged
by the smoke and high temperatures developed during a fire.
To overcome these limitations, video-based fire detection

systems are currently commonly used mainly supported by
new emerging image processing and computer vision tech-
niques. These techniques enable cameras and closed-circuit
television (CCTV) systems to be used for smoke and fire
detection, thus providing remote coverage for wider areas.
Vision-based smoke/fire sensors also provide faster reaction
times compared to sensors based on photometry, thermal
or chemical detection that instead require larger amount of
fire/smoke to trigger. Additionally, vision-based detection
algorithms can be easily included in existing surveillance
systems and deployed in city streets, industrial buildings and
in public transportation. Since these algorithms are generally
developed for low-cost IoT embedded devices with network-
ing capabilities, they can also be used to provide remote sig-
nalling procedures complete with useful information about
the location and extension of the fire [2].

New high-performance hardware platforms, such as
graphic processing units (GPUs) and general purpose pro-
cessors (GPPs) with significant computing capabilities with
high level of parallelism, have allowed the development
of artificial intelligence techniques that have dramatically
improved the state-of-the-art in object detection, visual

 *	 Alessio Gagliardi
	 alessio.gagliardi@phd.unipi.it

	 Francesco de Gioia
	 francesco.degioia@phd.unipi.it

	 Sergio Saponara
	 sergio.saponara@iet.unipi.it

1	 Dip. Ingegneria dell’Informazione, University of Pisa, Via
G. Caruso 16, 56122 Pisa, Italy

http://orcid.org/0000-0002-7681-2748
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-021-01094-y&domain=pdf

2086	 Journal of Real-Time Image Processing (2021) 18:2085–2095

1 3

object recognition, in speech recognition, and many other
domains [3].

While traditional video-based smoke detectors need pre-
processing and feature extraction steps, such as colour and
shape characteristics of smoke, recent deep learning algo-
rithms allow for automatic data-driven feature extraction and
classification from raw image streams. Thus, deep learn-
ing models may prove to be valid alternatives to traditional
visual detectors.

In this paper we present a novel smoke detection pipe-
line specifically designed for embedded devices with high
throughput and with small memory requirements. We com-
pared our algorithm on a state-of-the-art dataset and other
non-public videos. We also deployed our processing pipeline
as a real-time video processing application on two single
board embedded platforms, namely an Nvidia Jetson Nano
and a Raspberry Pi 3. Hereafter, the paper is organized as
follows: Sects. 1 and 2 deal with introduction and state of
art video-based fire/smoke detectors. Section 3 presents
the algorithm description and discusses the global Neural
Network architecture used in the video processing chains.
Section 4 shows the experiment results and discussion. Sec-
tion 5 presents the algorithm implementation in the embed-
ded systems evaluating their performance. Conclusions are
reported in Sect. 6.

2 � State of art video‑based fire/smoke
detectors

Smoke detection systems that use machine vision methods to
classify frame sequences are mainly based on static informa-
tion from single frames, or include dynamic characteristics
of the smoke. This kind of smoke detection systems use tex-
ture, shape, color, movement, energy, and frequency, flutter
or frequency spectrum, as in [4–6].

This class of algorithms may produce poor results when
there is small chromatic difference between the background
and fire/smoke pixels, potentially generating too many false
alarms for the system to be useful in practice. Therefore, in
[7], the problem of background estimation and segmenta-
tion is directly addressed. In [8] a smoke detector based on
Kalman estimator, color analysis, image segmentation, blob
labeling, geometrical features analysis and M of N decisor
is used to produce an alarm signal within a strict real-time
deadline.

New deep learning approaches can automate the feature
extraction process thus making the process more effective
in image classification and object detection [9]. Moreover,
optimization techniques and model approximations can be
used to allow the implementation of medium-size models
on low-performance embedded devices, Thus allowing the
system to be used in different domains.

Consequentially, various deep learning methods have
been proposed for fire and smoke detection. For example,
R-CNN, YOLO and SSD networks are used in [10] in order
to detect forest fire in real-time. A fire detection system
based on pre-trained VGG16 and Resnet50 models is pro-
posed in [11], whereas in [12] and in [13], a YOLO network
[14] is used to perform fire detection and flame detection.

Although deep learning methods may achieve higher
results in terms of accuracy, they tend to be more complex
than traditional algorithms and may be unsuitable for low-
memory embedded devices.

In this paper, we used a mixed approach based on Kalman
estimation for background subtraction and a Convolutional
Neural Network for region classification. In this work, we
specifically targeted low-cost embedded platform for real-
time video processing and selected a light-weight network
model suitable for this class of devices.

3 � Algorithm description

Figure 1 shows the logical flow of the proposed video smoke
detection algorithm, which is based on motion detection,
color segmentation, bounding boxes extraction, and a predic-
tion from the convolutional neural network. The algorithm
is designed as a chain of image and video processing tasks.

The sequence of elaborations starts with a new frame
coming from the video camera, or a test set video, and ends
with the computation of a smoke alarm signal. The tasks of
motion-detection/color-segmentation and the tasks of CNN
prediction can be parallelized in a typical implementation
on computer platform or embedded systems. The rest of the
functions, instead, will be calculated according to a sequen-
tial flow of the figure. Hereafter, we report in details the
main video processing steps of the workflow of Fig. 1.

3.1 � Motion detection

The Kalman filter is used in this work to estimate move-
ment within a series of frames. The motion detection
algorithm detects groups of pixels that change their value

Fig. 1   Signal processing of smoke detection algorithm

2087Journal of Real-Time Image Processing (2021) 18:2085–2095	

1 3

over time. We allow the value of the pixel to evolve in
time following a linear model. We use the Kalman filter
to predict the expected value of a pixel based on its previ-
ous state history. If the difference between the predicted
value and the actual value is larger than a threshold, a
movement is detected and the pixel is marked accordingly.
The background prediction is given by Eq. (1), where B̃Gk
is the background prediction of the current frame I, B̂Gk−1
is the background estimation at the previous frame, and
a = A∕(1 − �) is a weighting coefficient for the previous
state of the pixel. We allow a to be dependent on the cam-
era frame rate with the relation � = 1∕(1 + �� ⋅ fr) , where
fr is the frame rate in FPS of the processed video and �� is
a time constant set to 10s, and A is a constant set to 0.618.

The background estimation B̂Gk of the frame I is obtained
from Eq. (2), where B̃Gk in Eq. (1), and K1 and K2 are
defined in Eq. (3).

In the initialization phase, we set B̃Gk equal to initial frame I
and �̇BGk equal to zero. This initialization is done only when
the first frame is received. According to 5, we select the
pixel of the foreground FGk if their value is higher than the
threshold THRforeg . In the above equations, FGk is the fore-
ground of the frame I, � = 1∕(1 + �� ⋅ fr) , where �� is a time
constant set to 16 s. The empirical threshold THRforeg is set
to 0.08. Compared to [15] where authors used a fixed value
for a = 0.7 , we let the variable a depend on the value of the
video frame rate. Specifically, a = A∕(1 − �) depends on � ,
which in turn depends on constants A and �� and on the
frame rate fr. The coefficient K1 = K2 are derived to quickly
absorb in the background the objects that are faster than the
smoke (like moving people) and to filter out static objects
that are much slower than the smoke. As reported in [8] the
value of A = 0.618 has been found starting from the value of
0.7 proposed in [15] and refining it to maximize the detec-
tion performance.

(1)

[
�BGk

�̇BGk

]

=

[
1 a

0 a

]

⋅

[
�BGk−1

̇�BGk−1

]

(2)

[
�BGk

�̇BGk

]

=

[
�BGk

�̇BGk

]

+

[
K1

K2

]

(I −
[
1 0

]
⋅

[
�BGk

�̇BGk

]

)

(3)K1 = K2 = � ⋅ FGk + � ⋅ (1 − FGk)

(4)FGk =
||
|
I − B̃Gk−1

||
|

(5)FGk ≥ THRforeg

3.2 � Color segmentation and BW labeling

Color segmentation allows to select pixels in the shade
of gray, which could potentially represent a smoky cloud.
Hence the RGB color frames are converted in HSV scale,
where H is the hue, S is the saturation, and V is the value.
To select the smoky pixels, we use a saturation threshold
THRsat that we set to 0.2 having the input image values
in the range [0, 1]. We select only those regions of the
scene where pixelsat < THRsat . We choose this parameter
because the smoke changes color according to the back-
ground, so a good way is to use the saturation channel. The
threshold value was derived empirically by maximizing
smoke detection in the video datasets described in Sect. 4.
At this point the pixels of the motion detection mask and
the pixels of the color segmentation mask pass through
a block that performs the logical AND (pixel-wise). So
we select all pixels that are moving and gray colored. A
median filter is then applied to this matrix to remove all
scattered non-aggregated pixels, as they represent noise
within the image.

Agglomerated pixel regions are labeled according to a
labeling function and will be supplied later as “blob” to
the bounding box extraction function.

3.3 � Bounding boxes extraction

The bounding boxes (BB) extraction selects the moving gray
object in the scene. Such task is performed considering the
total area of each selected blob that corresponds to the num-
ber of pixels of such region. Hence, we select the blobs for
BB extraction that satisfy the condition of Eq. (6):

The area threshold is calculated so that for a VGA frame
(W = 640 × H = 480) the area is about 1.2 k pixels, which
is a bit less than half of the input size of the convolutional
neural network. Selection of blobs with area smaller than the
minimum threshold may induce the network to produce erro-
neous predictions. The function returns four coordinates as
output representing the position and size of the smallest box
containing the region. We also introduced an extra function
to check the ratio between the sides of the bounding boxes.
This function accepts regions where the ratio between the
sides is greater than or equal to 0.6. This step is especially
important as it avoids wrong predictions from the neural
network that expects square images as input. Images that
are too narrow or too wide can lead to image distortion and
therefore to errors, thus they are simply discarded.

The remaining images are scaled to the neural network
input dimensions and fed to the network.

(6)Areablob > W ⋅ H∕250

2088	 Journal of Real-Time Image Processing (2021) 18:2085–2095

1 3

3.4 � Convolutional neural network

In order to discriminate between the bounding boxes that
contain smoke from those that do not, we developed a Con-
volutional Neural Network classifier. Our network accepts as
inputs 50 × 50 pixel float RGB images with values in range
[0–1] and produces as output the prediction value for the
input image as a single value in the range [0–1]. We report
the CNN architecture in Fig. 2. We trained our network on
the smoke dataset collected by Yuan et al. [16]. Such data-
set contains 14,271 images labelled as “Smoke” or “Non
Smoke”.

The training of such network is performed on 11,014
training images and 3257 test images, which represents the
70% and the 30% of the dataset respectively. The training is
performed for 100 epochs with batch size 64 achieving 98%
accuracy on test data. Since the images of the dataset have
a size of 100 × 100 pixels we perform an image resize to
match the input size of 50 × 50 × 3 of the input layer before
the training phase. We used binary cross entropy as loss
function and Adam algorithm as optimizer. For reference,
we performed the same training with Adamax as optimizer,
obtaining similar results. Details of training parameters and
optimizer are shown in Table 1.

The Fig. 3 instead shows the training process relative
accuracy vs number of epochs for both training set and vali-
dation set, and the values of the loss function. We limited
ourselves in using only convolutional layers, max pooling

layers and fully connected layers as these are the most sup-
ported layers in tensor processing units (TPUs) for on board
AI acceleration. The network consists of 12 levels in total
with only Convolution layers for feature extraction. We spe-
cifically addressed the problem of overfitting introducing a

Fig. 2   Convolutional neural network architecture

Table 1   Training hyper-
parameters for CNN

Parameter Value

Optimizer Adam
Learning rate 0.01
Beta1 0.9
Beta2 0.999
Epsilon 1e−7
Number of epochs 150
Batch size 64
Dropout value 0.5

Fig. 3   (Top) training history for accuracy metric on training set and
validation set. (Bottom) loss function history on training set and vali-
dation set

2089Journal of Real-Time Image Processing (2021) 18:2085–2095	

1 3

dropout layer with high (0.5) dropout value. Moreover, to
improve training convergence, we used LeakyReLU instead
of plain ReLU obtaining marginal training speedup. We
intentionally designed a relatively flat CNN as we aimed at
low computational power and high processing speed. Given
the simplicity of its architecture, the network may sometimes
misclassify ambiguous images, however we are able to han-
dle spurious in-frame misclassifications and remove them
in a post-processing filtering step. Indeed, we can accept
only the region where the score of the prediction is higher
than 0.7.

This way we are sure to select only bounding boxes that
almost certainly contain smoke and discard everything else.

3.5 � Alarm generator

Every bounding box promoted as possible area containing
smoke are classified as “smoke” or “non smoke” as output
of the Neural Network already presented. To activate the
smoke alarm, we want that the classification of “smoke”
persists for some certain amount of time, to be sure to do not
identify false alarm. For each frame we must have at least
one bounding box classified as “smoke” for at least one 1.5
s over a 3 s window.

If these considerations are valid, then an alarm signal will
be generated. These time window thresholds can be changed
at will in relation to how fast the detection is intended to be
performed. Threshold values that are too low can lead to
false alarms, whereas high threshold values may hinder the
ability to detect fire and exceedingly increase the system
reaction time.

These values have been obtained empirically to achieve
excellent detection performance and also to comply with the
EN50155 [17] standard for onboard train fire-alarm systems.

4 � Experimental results

The aim of this work is to present a technique that can be
easily deployed to an embedded device in order to finally
build a smoke detection unit. For doing so, it becomes inevi-
table to use a dataset that contains videos and images with
smoke-fire emergencies from the real world. For the training
phase of the neural network we used the Yuan et al. dataset
[16] that contains smoke and non-smoke images captured
manually by cameras or from internet.

Figure 4 shows that the used smoke images have a vari-
ety of texture, shades and shapes while non-smoke images
contain different scenes and objects like cars, plants, people
and buildings.

As a result of the training phase we obtained a model of
just 126KB requiring low memory space and suitable to be
contained in low cost embedded platforms. We can compare

our neural network with the network designed in [18] on
the same image dataset. Although our network consists of
only 12 layers compared to the 25 in [18], we obtained only
a minor drop in accuracy decreasing from 99% accuracy
obtained in [18] to 98% accuracy perhaps we used less train-
able parameter.

The neural network model represents only a small piece
of the whole processing chain which is instead depicted in
Fig. 5. The figure provides an example application of a smart
city antifire system showing the output mask of each pro-
cessing step already described in Sect. 3.

The images of Fig. 5 are obtained by processing a cer-
tain number of frames (about 30 frames), to allow Kalman

Fig. 4   (Top) Non-smoke images example of the dataset. (Bottom)
Smoke images example from dataset

Fig. 5   Detection of smoke on a test video. a Current Frame n; b
motion detection; c color segmentation; d logic AND pixelwise and
median filter; e bounding box extractor; f final result at runtime with
bounding boxes and accuracy predicted as smoke from the neural net-
work

2090	 Journal of Real-Time Image Processing (2021) 18:2085–2095

1 3

filter to accurately estimate the moving parts of the scene.
In Fig. 5d we notice that the firefighters on top of the roof
are also selected in the mask. However, this region is dis-
carded at the next step as shown in Fig. 5e. In the last figure
(Fig. 5f) we see the Nth frame in which the bounding boxes
are correctly classified as smoke by the neural network and
drown into the frame with their prediction scores.

To measure the detection performance of the algorithm
we used the metrics reported in Eqs. (7)–(11) where the TP
represents the true positive, TN the true negative, FP the
false positive and FN the false negative. We define the video
as positive if smoke is present, otherwise, if smoke is absent,
we define the video as negative. If the algorithm identifies
the smoke in a positive video, then we mark the result as true
positive (TP). If the algorithm does not identify the smoke
in a positive video, then we mark the result as false negative
(FN). If the algorithm identifies the smoke in a negative
video, then we mark the result as false positive (FP). If the
algorithm does not identify the smoke in a negative video,
then we mark the result as a true negative (TN).

The Table 2 shows the detection performance obtained by
using two different dataset. The first one is the Firesense
[19] public dataset developed within the FP7-ENV-244088
project, and contains videos for testing flame and smoke
detection algorithms. The second dataset is provided by [8]
for a total 42 videos of which 30 are smoke videos while 12
are of non-smoke videos. Our algorithm has excellent per-
formance in almost all metrics in the first column of Table 2

(7)Hit rate = TP∕(TP + FN)

(8)Accuracy = (TP + TN)∕(TP + FN + TN + FP)

(9)F1 score = 2 ⋅ TP∕(2 ⋅ TP + FP + FN)

(10)Precision = TP∕(TP + FP)

(11)

MCC =
(TP ⋅ TN − FP ⋅ FN)

√
(TP + FP) ⋅ (TP + FN) ⋅ (TN + FP) ⋅ (TN + FN)

for the Firesense dataset. This is certainly attributed to the
higher specificity of such video dataset. Indeed, the dataset
[8] contains also videos in which the smoke is very far from
the scene, so it is more difficult to detect it with the algo-
rithm presented. This would explain a Hit Rate of about 0.9
which corresponds to 2 FN for this dataset, as the algorithm
is not able to detect smoke slowly moving and far from the
camera frame especially in bad video quality. Nevertheless,
the global detection performance remains stable even in
both datasets. Regarding the results of the Firesense dataset
we observe a Hit Rate of 1 and consequently zero FN. In
the same dataset we obtain a precision of about 0.87 due
to 2 false positives. However, in this security scenario it is
always preferable to have an algorithm that prevents the risk
of fire obtaining slightly higher false alarm, but lowering the
chances to miss a detection which would be dangerous for
human life and the environment.

This technique has been compared with the AdViSED
algorithm and its dataset. The results for all metrics are very
similar for the two techniques and are shown in Table 3. The
difference concerns the presence of 2 FN that, as already
presented, are due to bad quality videos and in which the
smoke is caught far from the scene. The difference between
the two techniques lies in the automatic feature extraction
by CNN which it makes easier for the developer to calibrate
the algorithm as it is for AdViSED.

In fact, in AdViSED the parameters such as Area,
Extent, Eccentricity etc. must be adjusted by hand and this
can presents a difficulty in some specific cases. The CNN
instead has the task to extract itself the characteristics and
no calibration is required if the training phase was success-
ful. Another important parameter is about the speed of the
algorithm in detecting the smoke, recognizing it as danger
element into the scene caught by the camera. Therefore, in
the Table 4 we compare the proposed techniques respect
to the state of the art algorithm [8, 20, 21] using the same
test video shown in Fig. 6. Such comparison consists of the
calculation of the delay, in terms of number of frames, to
necessary reveal the presence of smoke.

We achieve as good results as those in [8] for both video
n.1 and video n.2. Compared to the latter, we obtain a much
better result for video n.3, since our neural network seems
to be more robust to the noise generated from the metal

Table 2   Detection performance for two different dataset

Firesense [19] AdViSED [8]

Hit rate 1.0000 0.9049
Precision 0.8667 0.8636
Accuracy 0.9091 0.8438
F1 score 0.9286 0.8837
MCC 0.8210 0.6467
False positives 0.2221 0.2726
False negatives 0.0000 0.0951

Table 3   Detection Performance respect AdViSED algorithm

Our algorithm AdViSED [8]

Hit rate 0.9049 1.0000
Precision 0.8636 0.8890
Accuracy 0.8438 0.8500
F1 score 0.8837 0.8750
MCC 0.6467 0.7035

2091Journal of Real-Time Image Processing (2021) 18:2085–2095	

1 3

fence placed in front of the smoke. Note that, although our
algorithm is able to detect smoke in a few frames, it waits
for the time-threshold of 1.5 s already defined in Sect. 3.5
before triggering an alarm. However, this signal allows us
to be about × 15 faster than the EN50155-standardized tech-
niques, which rather have to react in a range of about 60 s. In
Fig. 7 we show the output of other test videos as example of
a final application of our algorithm. Such challenging data-
set contains indoors and outdoors scenes for custom antifire
application for Intelligent Transportation System and Smart
Cities. On top of Fig. 6 are depicted smoke scenes with fire
alarm activated and bounding boxes containing the detected
smoke. At the bottom of Fig. 6 are shown videos containing
moving objects, clouds and scenarios that could mislead the
algorithm. However, no bounding boxes have been drawn in
these cases and so the algorithm works properly. Indeed, the
alarm is generated when the red circle appears on the top left
of the image otherwise the circle displayed is green.

5 � Embedded system implementation

We developed a Python [22] implementation from an ini-
tial Matlab [23] code using Keras 2.3.0 [24], Numpy 1.18.0
[25], Scikit-image 0.17.2 [26] and openCV 4.3.0 [27]. Such
Python implementation has been carried out perhaps in
order to have no difference with respect to the initial Matlab
source code and in order to obtain the same metrics already
described in Sect. 4. We selected two development boards
for such implementation as they are ubiquitous low-cost
embedded platforms with reasonably low power consump-
tion. We selected an Nvidia Jetson Nano and a Raspberry Pi
3 (RPi 3) considering their ease of use and their popularity
on the market. As comparison we also performed a test on

a PC equipped with Intel Core i3-4170 CPU, 8GB DDR3
RAM and Windows 10 OS running the same algorithm.

5.1 � Nvidia Jetson nano

Jetson Nano is a powerful but compact embedded computer
with the low cost of approximately $100 [28]. The board is
equipped with a Quad-core ARM A57 at 1.43 GHz CPU, a
128-core Maxwell GPU, 4 GB 64-bit LPDDR4 25.6 GB/s of
RAM, and multiple port for connecting peripherals such as
4x USB 3.0, CSI (Camera Serial Interface) connectors etc.
We used as testing camera a Raspberry Pi Camera Module
V2 with 8M pixel. This camera can work with a camera
resolution of 1080p@30 frames per second and is connected
on the CSI port. The official operating system for the Jetson
Nano is called Linux4Tegra, which is actually a version of
Ubuntu 18.04 that’s designed to run on Nvidia’s hardware.

5.2 � Raspberry Pi 3

Raspberry Pi is small, powerful, and low-cost embedded
device at about 30$ per unit. It is a perfect platform for appli-
cations like distributed and networked measuring notes in
smart city or intelligent transport systems scenarios. The
board is equipped with a Broadcom BCM2837, a System on

Table 4   Detection delay in number of frames vs state of the art

Video in
Fig. 6

Dura-
tion (in
frames)

Delay in smoke detection (in frames)

Yu [20] Toreyin
[21]

AdViSED
[8]

Our
Algo-
rithm

n. 1 900 86 98 9 11
n. 2 244 121 127 19 21
n. 3 630 118 132 120 39

Fig. 6   Video n.1, video n.2, video n.3 (from left to right)

Fig. 7   (Top) smoke video test with bounding boxes and smoke alarm
activated. (Bottom) neutral test video with smoke alarm not activated
as expected

2092	 Journal of Real-Time Image Processing (2021) 18:2085–2095

1 3

Chip (SoC) including a 1.2 GHz 64-bit quad-core ARM Cor-
tex-A53 processor, with a cache L2 of 512 KB and 1GB of
DDR2 RAM, Video Core IV GPU, 4 USB 2.0 ports, onboard
WiFi @2.4 GHz 802.11n, Bluetooth 4.1 Low Energy, 40
GPIO pins, and many other features [29]. It runs on Rasp-
bian OS, a Debian-based Linux distribution for download
[30].

5.3 � Test performance

We initially measured the average frame per seconds (fps)
for different platform using the same smoke video but chang-
ing the pixels resolution. In particular, we tested our algo-
rithm in two cases: 320 × 240 p and 640 × 480 p since those
are the most used for CCTV systems. We can easily observe
in Table 5 that the best performance is achieved on the Jet-
son Nano board reaching almost 55 fps on a camera resolu-
tion of 320 × 240 and about 18 fps by doubling the size of
the input image. This is mainly due to the Nvidia Maxwell
GPU integrated on Jetson Nano and therefore specialized in
highly parallel floating point computations especially those
dealing with neural network tensors. The Raspberry Pi 3
board reached almost 10 fps and 3 fps using the first and
the second camera resolution respectively. Our PC instead
obtains performance comparable to that of Raspberry Pi.
This can be explained because such PC machine does not
have a dedicated GPU for accelerating tensor operations,
therefore its performance is worse than that of the Jetson
Nano board. The Jetson Nano board has been used according
to the MAXN power profile with maximum consumption
to 10 W, so that the operating system can use the GPU as
required.

Performance on each board was also measured in terms of
resource usage such as CPU, GPU, Memory and operating
temperature. The measurements were carried out for both
embedded devices without any peripherals connected and
controlled using a static IP address and remote desktop. We
monitored 60 min (1 h), of which the first 30 min are in idle
state (only background task are running), and in the last 30
the application is running.

In Fig. 8 we reported the CPU usage for RPi 3 and Jetson
Nano boards, and the GPU usage for Jetson Nano. The CPU
is around 0–3% of usage for both board while there is a jump
to 28% of CPU for RPi 3 and 33% for Jetson Nano.

We witnessed more intensive use of the GPU at about
30 min, although it remains around 10% usage. This is
mainly due to the small size of the network and therefore
not computationally expensive. The memory usage, shown
in Fig. 9, increased instead from about 25–40% for RPi 3 and
70% on Jetson Nano board. As reported in [31], tempera-
ture can drastically impact the performance of the inference
system. We performed an experiment measuring the tem-
perature when the CPU is idle and when the application is
running. Thermal results are shown in Fig. 10. We obtained
better operating temperature results on the Jetson reaching
a maximum temperature of about 49 ◦C.

The RPi 3 instead reaches the maximum temperature of
69 ◦ C that is below the official operating temperature limit

Table 5   Performance in terms of frames per seconds tested on differ-
ent boards

GPP × 64 (fps) Jetson Nano (fps) Rasp-
berry Pi 3
(fps)

320 × 240 11.18 54.82 9.37
640 × 480 6.46 17.49 3.01

Fig. 8   CPU GPU usage vs execution time

Fig. 9   Memory usage vs execution time

2093Journal of Real-Time Image Processing (2021) 18:2085–2095	

1 3

of 85 ◦ C, and below the 82 ◦ C of thermal throttle. The meas-
urements are affected by an offset ambient temperature of
about 30 ◦ C. The RPi also does not have a heat sink compa-
rable to that of the Jetson, so it heats more easily. We meas-
ured also the power consumption in Watts for each board.
The total amount of power consumption for Raspberry Pi 3
is around 1.5 W in idle and 2.4 W while the application is
running. For the Jetson Nano we measured instead 2.7 W in
idle state and 7 W as average running the algorithm.

As final comparison we benchmarked our algorithm
respect to the state of the arts object detection artificial neu-
ral network, comparing their inference performance and the
total memory size in MB or KB. Such benchmarks are par-
tially available from [32] and shown in Table 6.

The purpose of this comparison is to show how an
already pre-built network can have much lower perfor-
mance than a custom built one. Clearly these bench-
marks are obtained without making a new training on a
specific dataset containing smoke images but we would
expect the same outputs. The best results are obtained by
our algorithm both in terms of processing speed and in

terms of total amount of memory space occupied. The
SSD Mobilenet-V2 [33] network reaches around 40 fps
on Jetson Nano and about 1 fps on RPi 3 with about 18
MB of memory occupied on disk. Both the Tiny YOLO
V3 [34] and SSD Resnet18 [35] occupy more than 44MB
of disk memory and have poor results on RPi 3. The Tiny
YOLO V3 barely reaches 1 fps while Resnet18 did not run
(DNR) on RPi3. Note that DNR results occurred due to
limited memory capacity, unsupported network layers, or
hardware/software limitations.

In conclusion, the Nvidia Jetson Nano can be considered
as the final platform for the implementation of a full stack
IoT antifire application. In fact, while the Raspberry Pi 3
costs about half as much as its competitor, and gets better
result in power consumption, at the same time Jetson gets
the best results in processing and elaboration in real time.
Although power consumption is slightly higher than in RPI
3, it is reasonable to consider it low and suitable for the
applications already mentioned.

6 � Conclusions

This paper proposed a hybrid technique of smoke detection
consisting of both traditional Image Processing and Artificial
Intelligence methods. The goal is the development of an
object detection algorithm specialized in locating the smoke
blobs within a video stream to prevent fire accident.

During the processing, our algorithm selects the regions
of interest based on the smoke features while the CNN is
used to classify them. The CNN was designed to be light-
weight in order to save memory space, and fast in order to
accelerate the inference step.

We validated our system on different datasets obtaining
good metrics in terms of accuracy and inference time. The
results suggest that the system presented in this paper is suit-
able for the future development of smart IoT devices based
on Raspberry Pi or Nvidia Jetson Nano. In particular, on
the Nvidia Jetson Nano the system can operate at 55 fps at
a resolution of 320 × 240 pixels and be included easily in
common CCTV cameras.

The proposed solution can be employed in various anti-
fire applications as it achieves low-latency detection when
compared to traditional ceiling-mounted smoke detectors.

Acknowledgements  This work is partially supported by the H2020
European Processor Initiative project n. 826647 and by the Diparti-
mento di Eccellenza Crosslab Project by MIUR.

Funding  Open access funding provided by Università di Pisa within
the CRUI-CARE Agreement.

Declaration 

Fig. 10   Operating temperature vs execution time

Table 6   Comparison of different state of the art object detection net-
works

Jetson Nano (fps) Rasp-
berry Pi 3
(fps)

Weights

Proposed [320 × 240] 54.82 9.37 126 KB
Tiny YOLO V3 [416 ×

416]
25 0.5 44.9 MB

SSD Mobilenet-V2 [300
× 300]

39 1.0 17.9 MB

SSD Resnet18 [300 × 300] 18 DNR 47.0 MB

2094	 Journal of Real-Time Image Processing (2021) 18:2085–2095

1 3

Conflict of interest  The authors declare that they have no conflict of
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Hall, J.: The total cost of fire in the united states. National Fire
Protection Association, vol. 01 (2014)

	 2.	 Gagliardi, A., Saponara, S.: Distributed Video Antifire Surveil-
lance System Based on IoT Embedded Computing Nodes, vol.
03, pp. 405–411. Springer, Berlin (2019)

	 3.	 LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature
521(05), 436–444 (2015)

	 4.	 Saponara, S., Pilato, L., Fanucci, L.: Early video smoke detec-
tion system to improve fire protection in rolling stocks. In:
Kehtarnavaz, N., Carlsohn, M.F. (eds.) Real-Time Image and
Video Processing 2014, vol. 9139, pp. 14 – 22. International
Society for Optics and Photonics, SPIE (2014)

	 5.	 Çelik, T., Özkaramanli, H., Demirel, H.: Fire and smoke detec-
tion without sensors: image processing based approach. In: 2007
15th European Signal Processing Conference, pp. 1794–1798
(2007)

	 6.	 Rafiee, A., Dianat, R., Jamshidi, M., Tavakoli, R., Abbaspour,
S.: Fire and smoke detection using wavelet analysis and disor-
der characteristics. In: In 2011 3rd International Conference
on Computer Research and Development, vol. 3, pp. 262–265.
IEEE (2011)

	 7.	 Vijayalakshmi, S.R., Muruganand, S.: Smoke detection in video
images using background subtraction method for early fire alarm
system. In: 2017 2nd International Conference on Communica-
tion and Electronics Systems (ICCES), pp. 167–171 (2017)

	 8.	 Gagliardi, A., Saponara, S.: Advised: Advanced video smoke
detection for real-time measurements in antifire indoor and out-
door systems. Energies 13(8) (2020). https://​www.​mdpi.​com/​
1996-​1073/​13/8/​2098#​cite

	 9.	 Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classifica-
tion with deep convolutional neural networks. Neural Inf Pro-
cess Syst 25, 01 (2012)

	10.	 Wu, S., Zhang, L.: Using popular object detection methods
for real time forest fire detection. In: 2018 11th International
Symposium on Computational Intelligence and Design (ISCID),
vol. 01, pp. 280–284. IEEE (2018)

	11.	 Sharma, J., Granmo, O.-C., Goodwin, M., Fidje, J.T.: Deep
convolutional neural networks for fire detection in images. In:
International Conference on Engineering Applications of Neural
Networks, pp. 183–193. Springer (2017)

	12.	 Lestari, D.P., Kosasih, R., Handhika, T., Murni, Sari, I., Fahrurozi,
A.: Fire hotspots detection system on cctv videos using you only
look once (yolo) method and tiny yolo model for high buildings
evacuation. In: 2019 2nd International Conference of Computer
and Informatics Engineering (IC2IE), pp. 87–92. IEEE (2019)

	13.	 Shen, D., Chen, X., Nguyen, M., Yan, W.Q.: Flame detection
using deep learning. In: 2018 4th International Conference on
Control, Automation and Robotics (ICCAR), pp. 416–420. IEEE
(2018)

	14.	 Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only
look once: unified, real-time object detection. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 779–788 (2016)

	15.	 Ridder, C., Munkelt, O., Kirchner, H.: Adaptive background
estimation and foreground detection using kalman-filtering. In:
Proceedings of international conference on recent advances in
mechatronics, pp. 193–199. Citeseer (1995)

	16.	 Yuan, F., Shi, J., Xia, X., Fang, Y., Fang, Z., Mei, T.: High-order
local ternary patterns with locality preserving projection for
smoke detection and image classification. Inf. Sci. 372, 225–240
(2016)

	17.	 European standard applies to all electronic equipment for
control, regulation, protection, diagnostic, energy supply, etc.
installed on rail vehicles. https://​shop.​bsigr​oup.​com/​Produ​ctDet​
ail/?​pid=​00000​00000​30282​634. Accessed 14 July 2020

	18.	 Tao, C., Zhang, J., Wang, P.: Smoke detection based on deep
convolutional neural networks. In: 2016 International Confer-
ence on Industrial Informatics-Computing Technology, Intel-
ligent Technology, Industrial Information Integration (ICIICII),
pp. 150–153. IEEE (2016)

	19.	 Dimitropoulos, K., Barmpoutis, P., Grammalidis, N.: Spatio-tem-
poral flame modeling and dynamic texture analysis for automatic
video-based fire detection. IEEE Trans. Circuits Syst. Video Tech-
nol. 25(2), 339–351 (2015)

	20.	 Yu, C., Mei, Z., Zhang, X.: A real-time video fire flame and smoke
detection algorithm. Procedia Eng. 62, 891–898 (2013)

	21.	 Toreyin, B.U., Dedeoglu, Y., Cetin, A.E.: Contour based smoke
detection in video using wavelets. In: 2006 14th European Signal
Processing Conference, pp. 1–5. IEEE (2006)

	22.	 Python programming language. https://​www.​python.​org/.
Accessed 14 July 2020.

	23.	 The MathWorks Inc..: Matlab 9.7.0.1190202 (r2019b) (2018)
	24.	 F. Chollet et al.: Keras. https://​keras.​io (2015). Accessed 14 July

2020.
	25.	 van der Walt, S., Colbert, S.C., Varoquaux, G.: The numpy array:

a structure for efficient numerical computation. Comput. Sci. Eng.
13(2), 22–30 (2011)

	26.	 van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne,
F., Warner, J.D., Yager, N., Gouillart, E., Yu, T.A.: Scikit-image:
image processing in python. PeerJ 2, e453 (2014)

	27.	 Bradski, G.: The opencv library (2020). https://​opencv.​org/.
Accessed 16 Mar 2020

	28.	 Jetson nano developer kit. https://​devel​oper.​nvidia.​com/​embed​ded/​
jetson-​nano-​devel​oper-​kit. Accessed 14 July 2020.

	29.	 Raspberry pi foundation. https://​www.​raspb​errypi.​org/. Accessed
14 July 2020.

	30.	 Rpi camera module v.1.3. https://​www.​raspb​errypi.​org/​docum​
entat​ion/​hardw​are/​camera/. Accessed 14 July 2020.

	31.	 Benoit-Cattin, T., Velasco-Montero, D., Fernández-Berni, J.:
Impact of thermal throttling on long-term visual inference in a
CPU-based edge device. Electronics 9(12), 2106 (2020)

	32.	 Jetson nano: Deep learning inference benchmarks. https://​devel​
oper.​nvidia.​com/​embed​ded/​jetson-​nano-​dl-​infer​ence-​bench​marks.
Accessed 07 Sept 2020.

	33.	 Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.:
Mobilenetv2: Inverted residuals and linear bottlenecks. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4510–4520 (2018)

	34.	 Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In:
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 7263–7271 (2017)

http://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/1996-1073/13/8/2098#cite
https://www.mdpi.com/1996-1073/13/8/2098#cite
https://shop.bsigroup.com/ProductDetail/?pid=000000000030282634
https://shop.bsigroup.com/ProductDetail/?pid=000000000030282634
https://www.python.org/
https://keras.io
https://opencv.org/
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://www.raspberrypi.org/
https://www.raspberrypi.org/documentation/hardware/camera/
https://www.raspberrypi.org/documentation/hardware/camera/
https://developer.nvidia.com/embedded/jetson-nano-dl-inference-benchmarks
https://developer.nvidia.com/embedded/jetson-nano-dl-inference-benchmarks

2095Journal of Real-Time Image Processing (2021) 18:2085–2095	

1 3

	35.	 He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for
image recognition. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 770–778 (2016)

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Alessio Gagliardi  received in 2018 the M.Sc. in Robotics and Auto-
mation Engineering at University of Pisa, Italy. The master thesis
concerned the modelling and analysis of the V2x 802.11p protocol
by developing simulation software to study the reliability of vehicles
communication in different operating scenarios.He worked in 2016
for Texas Instrument as Application and Support Engineer in Freising,
Germany. He is currently pursuing a PhD degree at the Department of
Information Engineering focusing his research on Image Processing,
Artificial Intelligence, and Embedded Systems for Automotive and
Industrial Applications.

Francesco de Gioia  received in 2018 the M.Sc. in Embedded Com-
puting Systems with a thesis on software development for RISC-V
architecture. He worked for 1 year at IngeniArs, a spin-off company

of University of Pisa as firmware developer for custom IP. In 2018
he enrolled in the Ph.D. program at University of Pisa. His current
research activities involve the development of custom firmware and
Linux drivers; and the design of AI and Machine Learning systems
for embedded devices.

Sergio Saponara  received the master’s (cum laude) and the Ph.D.
degrees in electronic engineering from the University of Pisa, Pisa,
Italy. He was a Marie Curie Fellow at IMEC, B, Leuven, Belgium. He
is currently a Full Professor of Electronics with the University of Pisa.
He is currently the Director of the Summer School “Enabling Technol-
ogies for IoT” and the CTO of Ingeniars srl, Pisa. He has co-authored
about 300 scientific papers and holds 17 patents. Dr. Saponara is the
AE of Canadian Journal of Electrical and Computer Engineering,IEEE
Consumer Electronics Magazine, Springer Journal of Real-Time Image
Processing,and IET Electronics Letters. He has been a Technical Pro-
gram Committee member of more than 100 international IEEE and
SPIE conferences.

	A real-time video smoke detection algorithm based on Kalman filter and CNN
	Abstract
	1 Introduction
	2 State of art video-based firesmoke detectors
	3 Algorithm description
	3.1 Motion detection
	3.2 Color segmentation and BW labeling
	3.3 Bounding boxes extraction
	3.4 Convolutional neural network
	3.5 Alarm generator

	4 Experimental results
	5 Embedded system implementation
	5.1 Nvidia Jetson nano
	5.2 Raspberry Pi 3
	5.3 Test performance

	6 Conclusions
	Acknowledgements
	References

