
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2021) 18:2583–2599
https://doi.org/10.1007/s11554-021-01147-2

ORIGINAL RESEARCH PAPER

Automated CNN back‑propagation pipeline generation for FPGA
online training

A. Mazouz1 · C. P. Bridges1 

Received: 13 January 2021 / Accepted: 25 June 2021 / Published online: 23 July 2021
© The Author(s) 2021

Abstract
Training of convolutional neural networks (CNNs) on embedded platforms to support on-device learning has become
essential for the future deployment of CNNs on autonomous systems. In this work, we present an automated CNN training
pipeline compilation tool for Xilinx FPGAs. We automatically generate multiple hardware designs from high-level CNN
descriptions using a multi-objective optimization algorithm that explores the design space by exploiting CNN parallelism.
These designs that trade-off resources for throughput allow users to tailor implementations to their hardware and applica-
tions. The training pipeline is generated based on the backpropagation (BP) equations of convolution which highlight an
overlap in computation. We translate the overlap into hardware by reusing most of the forward pass (FP) pipeline reducing
the resources overhead. The implementation uses a streaming interface that lends itself well to data streams and live feeds
instead of static data reads from memory. Meaning, we do not use the standard array of processing elements (PEs) approach,
which is efficient for offline inference, instead we translate the architecture into a pipeline where data is streamed through
allowing for new samples to be read as they become available. We validate the results using the Zynq-7100 on three datasets
and varying size architectures against CPU and GPU implementations. GPUs consistently outperform FPGAs in training
times in batch processing scenarios, but in data stream scenarios, FPGA designs achieve a significant speedup compared
to GPU and CPU when enough resources are dedicated to the learning task. A 2.8×, 5.8×, and 3× speed up over GPU was
achieved on three architectures trained on MNIST, SVHN, and CIFAR-10 respectively.

Keywords  Convolutional neural networks · Automated hardware design · Online training · Continuous learning · FPGA
design

1  Introduction

Recent literature shows a clear demand for embedded
deep learning solutions for hardware-constrained designs
and novel compression techniques. CPUs and GPUs have
been prominent for executing CNNs on offline training set-
tings however, their energy efficiency and low throughput
have made them less attractive for embedded use. For their
power-efficient performance and highly parallelised flexible
architecture, FPGAs presented themselves as a viable option
for hard real-time computation of heavy, deep learning

applications [1]. Also, FPGAs allow designers to develop
modular IP cores allowing for easier prototyping with the
option to selectively deploy design areas at runtime without
risk to the overall application. This is crucial given the rapid
changes in CNN architectures. Until recently, most works
only investigated the hardware implementation of forward
pass CNNs as inference engines and accelerators, there is
plenty of research done to map the CNN forward pass unto
FPGAs for embedded inference [2–18], in contrast, there
is a clear lack of work in the areas of online deployment
and training on FPGAs. But with the recent breakthroughs
in the new field of Continuous Learning [19–23], online
training on embedded platforms has attracted more research.
In [20] the authors test continuous learning scenarios on
benchmark datasets, they investigate the required parameters
and conditions for continuous learning to be effective, their
main findings show that it is possible and effective if the
models account for the catastrophic forgetting problem by

 *	 A. Mazouz
	 a.mazouz@surrey.ac.uk

	 C. P. Bridges
	 c.p.bridges@surrey.ac.uk

1	 Surrey Space Centre, University of Surrey, Guildford,
Surrey, UK

http://orcid.org/0000-0003-0250-7529
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-021-01147-2&domain=pdf

2584	 Journal of Real-Time Image Processing (2021) 18:2583–2599

1 3

retaining previously learned information. In [23], the authors
proposed an adaptive hierarchical network structure com-
posed of CNNs that can grow to accommodate new classes
and tasks when new data becomes available. Similarly, in
[21], Yoon et al. propose an expandable architecture capable
of selective retraining when presented with new tasks and
data. The continuous learning research community is mainly
interested in scenarios [24] where datasets are unavailable
in the form of neatly organized fully tagged datasets, but in
an evolving application where new samples are made avail-
able at different times after the models are trained on the
main dataset. An example of this would be a self-driving
car trained on an object detection dataset receiving new data
samples during deployment. Space agents such as Satellites
and Rovers [25, 26] can benefit from such capabilities as
well, changes to the mission parameters or visual environ-
ment can necessitate online learning to remotely account for
these unexpected changes. Such new online data could be
vital for the system’s real-world performance as opposed to
the simulated offline performance benchmarked on an organ-
ized dataset. For these reasons, training on FPGA platforms
becomes even more appealing.

In this work, we identify the significant computational
overlap between the inference task and training task in
CNNs and translate it into a new FPGA pipeline. This allows
for the design of CNN hardware models capable of both
inference and online training whilst minimizing the resource
overhead. Despite the overlap, the training process of CNNs
is still computationally complicated and requires significant
changes to the data path of the hardware design, managing
the data from the forward pass, updating parameters, and
calculating gradients. Compared to inference, the training
phase involves a much higher number of operations (> 3×)
with increased mathematical complexity [27], and a back-
ward pass can take twice the time of a forward pass [28].
The training phase also involves high intermediate datasets,
necessitating high memory bandwidth, and large storage. We
acknowledge that GPUs have been the de-facto for training
tasks to meet immense computation requirements. How-
ever, compared to FPGAs, typical GPUs’ energy efficiency
is poor [1]. Nvidia’s Jetson family provides an alternative
low power approach with a focus on embedded AI operat-
ing at 5–30 W. However, the Jetson GPUs were designed as
low-power inference engines and not optimized for training
purposes like our proposed combined real-time training and
inference FPGA solution.

2 � Related work

In both academic and professional fields, GPUs are still the
platform of choice for CNN training, and companies such
as Facebook and Google maintain datacentres with GPU

clusters. Such clusters are employed for training on large
amounts of data and incur high costs due to the GPUs’ high-
power consumption rates and the energy overhead needed
for cooling, making them expensive to maintain operation-
ally. Google sought a solution in researching the possibil-
ity of using ASIC and FPGAs within their servers so the
workload of training and running deep learning models is
offloaded. This resulted in the successful design and wide-
scale deployment of the Tensor Processing Unit (TPU) [29]
for training and inference. Other companies such as Micro-
soft [30, 31] and Amazon’s “AWS EC2 F1” instance fol-
lowed suit in using FPGA clusters within their data centres
and servers for back-end training and inference at a lower
power cost—highlighting the trend for low-power solutions
utilising FPGAs. CNN training on FPGA platforms has
not been investigated thoroughly with only two exceptions
that focus on batch training which uses FPGA platforms as
replacements for GPUs clusters in offline training [28, 32].
In [27] Wenlai et al. presented F-CNN, the first CPU/FPGA
hybrid design for deploying and training CNN networks. The
CPU is used as a controller and the FPGA as an accelerator.
They employ an analytical model to generate a backpropaga-
tion model. Their implementation of CNN training involves
a direct translation of backpropagation equations for error
calculation and parameter updates. This requires the intro-
duction of significant resource overheads since it does not
fully consider the overlap in calculations within the forward
pass. In [32] Venkataramanaiah et al. extends work from
[28] and introduces a hardware CNN training RTL compiler.
Their work is purely FPGA and relies on static processing
element arrays for convolutional calculations. It uses pre-
optimized and precompiled Verilog CNN hardware modules,
but unlike [27] has no analytical model to inform the com-
pilation and provide design space exploration. Both works
do not present extensive experimental results and only cover
Ler-Net 5 [33] and custom architectures rather than mod-
ern CNNs as benchmarks. In addition, they deploy different
data representation schemes, 32-bit and 16-bit, respectively,
and use different development boards operating at differ-
ent frequencies which makes it challenging to compare the
implementations in terms of resource and latency overheads.

One area of research that remains unexplored is continu-
ous learning on embedded platforms, mainly FPGAs. This
requires on-board implementations of training algorithms
for CNN models which are flexible and allow users to eas-
ily explore the design space for suitable designs based on
the hardware and its applications. In our previous work [18]
we proposed an FPGA compiler for CNN inference, the
compiler generates FPGA pipelines from high-level CNN
input architectures, it generates a Simulink hardware model
which is validated then translated into RTL/VHDL. For
this research, we expand on the same compiler to include
an improved design space exploration step and a training

2585Journal of Real-Time Image Processing (2021) 18:2583–2599	

1 3

pipeline with the aim of reusing most of the original forward
pass pipeline resources.

The main contributions of this work are,

•	 Providing deep learning engineers with an automated
CNN compiler tool for FPGAs which supports inference
and online training.

•	 Using analytical equations to model the complied
design’s expected performance trade-space using a multi-
objective optimization genetic algorithm, allowing the
user to automate the design space exploration for trade-
offs in accuracy, latency, and resources.

This paper will cover the fundamentals of CNN back-
propagation and highlight the areas where they overlap with
the forward pass can be exploited in Sect. 2. Then in Sect. 3,
the proposed research will be presented, this includes the
hardware models of these functionalities with the analytical
equations for latency and resources. The section also covers
design space exploration using the multi-objective optimi-
zation algorithm. Section 4 will be dedicated to the experi-
ments and results, first, MOGA results will be presented
on three different datasets and four architectures. Finally,
the section will cover the implementation of the models
obtained from the previous sections on a Xilinx FPGA, a
breakdown of latency and resources results will be given
followed by discussion and comparison with related works.

3 � Mathematical basis for convolutional
backpropagation

3.1 � Convolution

A convolutional layer and a convolutional network, as a
whole, can be treated as a computational graph. Let us say
we have a gate f in a computational graph with inputs X
and Y which outputs Z. For a simple function F which
takes X and Y as inputs and outputs Z, local gradients can
be computed by differentiating Z with respect to X and
Y as ∂z/∂x and ∂z/∂y. For a convolutional forward pass, the
inputs process through the CNN layer, and at the output,
the loss is obtained using a loss function which quantifies
the error between the ground truth and the real output.
When we process the loss backward, layer across layer,
we obtain the gradient of the loss from the previous layer
as ∂L/∂z. For the loss to be propagated to the other gates,
we need to find ∂L/∂x and ∂L/∂y. Using the chain rule, we
can calculate ∂L/∂x and ∂L/∂y, which would propagate to
the other layers. Let us assume the function F is a convolu-
tional operation between input matrix X and a filter matrix
F. convolution between Input X and Filter F, gives us an
output matrix O. This process describe the convolutional

Forward Pass (FP) and the output matrix O will be for-
warded to the next layer as an input matrix X. For the
Backward Pass (BP) we find the loss gradient with respect
to the Output O from the next layer as ∂L/∂O.

As seen in Fig. 1, we can find the local gradi-
ents ∂O/∂X and ∂O/∂F with respect to Output O . Using chain
rule and the loss gradient from the previous layer ∂L/∂O, we
can calculate ∂L/∂X and ∂L/∂F. In the following subsections,
we briefly show the process of calculating both gradients to
help determine the critical overlapping elements.

3.1.1 � Finding filter local gradient ∂L/∂F

The first step is to calculate the local gradient ∂L/∂F which
will be used to update the new weight matr ix
Fnew = F + �

(
�L

�F

)
 with � being the learning rate, it is a

configurable hyperparameter used during training to affect
the amount the weights are updated, it has a small positive
value, often in the range between 0.0 and 1.0.

Thus, we calculate �L
�F

=
�L

�O
×

�O

�F
 where �L

�F
 is the gradient

to update Filter F, �L
�O

 is the loss gradient from the previous
layer, �O

�F
 is the local gradient.

To find the local gradient—∂O/∂F we must differentiate
Output Matrix O with respect to Filter matrix F. Matrix O
values are known from the FP:

Therefore, finding derivatives with respect to F gives
Eq. (1), for every element of F where M and N are the
dimensions of matrix O:

Expanding and substituting the values of ∂O/∂F with X
gives a set of equations which represent a convolutional
operation between input X and loss gradient ∂L/∂O as
shown in Fig. 2.

(1)�L

�Fi, j

=

M∑
K=1

N∑
L=1

�L

�OK, L

×
�OK, L

�Fi, j

.

Fig. 1   Function F during a backward pass to calculate input local gra-
dients

2586	 Journal of Real-Time Image Processing (2021) 18:2583–2599

1 3

3.1.2 � Finding previous layer local gradient ∂L/∂X

Finding the local gradient ∂O/∂X which will be backpropa-
gated to the previous layer is achieved using the Chain rule
as in Eq. (2): For every element of X where M and N are the
dimensions of matrix O:

Expanding Eq. (2) and substituting ∂O/∂X with F which
is equal to the derivative of O with respect to X gives a full
set of equations which show that ∂L/∂X can be represented
as a full convolution between a 180-degree rotated Filter F
and loss gradient ∂L/∂O as seen in Fig. 3. Full convolution
is different from regular or valid convolution where a filter
only scans elements within the feature map without going
outside (adding padding), full convolution applies filters
starting from the top-left element being centered, and pad-
ding is needed for the elements outside the feature map.

Equations (3) and (4) highlight an overlap in computa-
tion between the forward and backward pass, convolutional
computations are required for feature extraction and gradient
calculations. An efficient design should take advantage of this

(2)�L

�Xi , j

=

M∑
K=1

N∑
L=1

�L

�OK, L

×
�OK, L

�Xi, j

.

(3)
�L

�F
= Convolution

(
Input, Loss Gradient

�L

�O

)
,

(4)
�L

�X
= Full

Conv

(
180◦ weights, Loss Gradient

�L

�O

)
.

by reusing computational resources dedicated to the forward
pass during the backward pass, we describe this in more detail
in the following sections, we will also use dF and dX to refer
to �L

�F
 and �L

�X
 in the following sections.

3.2 � Pooling

No learning takes place on the pooling layers. The function
of the pooling layer is to progressively reduce the convolu-
tion spatial size and reduce the number of parameters and
computation in the network. This also controls overfitting by
reducing the feature space available during training. There
are two common types of pooling: average and maximum.

3.2.1 � Average pooling

During the FP, average pooling outputs the average of the
input elements using a scanning window where a K by K
window scans through the input matrix from the top left to
the bottom right. During the BP, the error ∂L/∂O is multi-
plied by 1

K2
 where K is the dimension of the scanning win-

dow, the result is assigned to the whole pooling block (all
units get the same value).

3.2.2 � Max pooling

During the FP, max-pooling outputs the maximum of the
input elements (winning element) using a scanning window.
The BP error is simply assigned to the “winning element”
because other units in the previous layer’s pooling blocks did
not contribute to the output, hence all the others are assigned
values of zero.

3.3 � Rectified linear unit activation (ReLU)

During the FP, the ReLU layer changes all negative elements
to zero while retaining the value of the positive elements.
No learning takes place and no spatial/depth information is
changed. During the BP, gradients of the positive elements
retain their value while the rest become zero.

3.4 � Fully connected

During the FP, the fully connected layer calculates the dot
product of the vectorized input X = [X1 X2 Xn] , the weight
matrix W, and bias vector B, as described in Eq. (5).

(5)
W =

⎛
⎜⎜⎝

W11 W12 W1n

W21 W22 W2n

Wk1 Wk2 Wkn

⎞⎟⎟⎠
B = [b1 b2 … bk]

Y = (W ⋅ X) + B.

Fig. 2   Demonstration of how ∂L/∂F = Convolution of input matrix X
and loss gradient ∂L/∂O 

Fig. 3   Demonstration of how full convolution generates the values of
∂L/∂X and can be used to represent ∂L/∂X 

2587Journal of Real-Time Image Processing (2021) 18:2583–2599	

1 3

Equation (6) and (7) describe the backward pass to calcu-
late local gradients dW and dX using the loss gradient from
the previous layer (softmax) and input and weight vectors
X and W:

3.5 � Softmax loss function

Softmax function takes an N-dimensional vector of real
numbers x from the fully connected layer and transforms it
into a vector of real number probabilities p , size k, in range
(0, 1) which add up to 1, as described in Eq. (8).

Cross entropy indicates the distance between what the
model believes the output distribution should be, and what
the distribution is. It is defined as Eq. (9)

Equation (10) describes the final derivative of the Cross-
entropy loss function with a softmax, with p being the output
vector and y being the ground truth target, this is the global
gradient for the Softmax layer which will be backpropagated
to the previous layers.

4 � Research proposal

4.1 � Automated hardware design generation

The model-based hardware design workflow shown in Fig. 4,
automatically generates target agnostic RTL for CNN archi-
tectures for series-networks and directed acyclic graphs. Our
tool first parses a pre-trained input graph provided by the
user for network information and parameters. This informa-
tion is used to initialize and generate PEs for the different
functionalities, these PEs are then fetched to populate the
design space creating a hardware model representation of
the input graph. This is achieved in Simulink, this hardware
model is explored using a Multi-Objective Genetic Algo-
rithm (MOGA) by taking advantage of the inter-layer par-
allelism in Conv layers and dedicating more or fewer PEs
for convolutional operations. Once the hardware model is

(6)�W = [dL1, dL2, dLk] X,

(7)�X = [dL1, dL2, dLk] W.

(8)pi =
exi∑K

k=1
exk

.

(9)F(y, p) = −
∑
i

yi log
(
pi
)
.

(10)
�L

�zi
= (pi − yi).

verified, RTL code is generated for the whole design. The
tool uses MATLAB scripts, Simulink environment, and
Vivado for a complete compilation of a pre-trained CNN.
The layers presented in Sect. 2 are supported by the com-
piler to be translated into hardware for FPGA use within a
streaming interface where data inputs are streamed through
the design pipeline with control signals. The control signal
is generated alongside the pixel stream to schedule and con-
trol the process, this signal specifies the beginning and end
of rows and columns plus the validity of each pixel using a
5-bit binary vector as seen in Fig. 5. The different layers are
converted into separate processing units, each unit contains
a number of Processing Elements (PEs) such as convolu-
tion, pooling, non-linearity, and fully connected operations.
The PEs for the FP are described first, then changes to the
design will be introduced to accommodate backpropagation
and learning.

The verification environment, seen in Fig. 6, is a co-sim-
ulation environment between the hardware Simulink model
and an HDL simulation tool, Vivado in our case. The tool

Fig. 4   Overall system diagram from CNN input to generated and ver-
ified HDL design

2588	 Journal of Real-Time Image Processing (2021) 18:2583–2599

1 3

compiles an HDL project and generates a Simulink co-sim-
ulation block. The block is used to communicate between
the Simulink environment and the HDL code. The client-
side Simulink environment allows the user to provide input
stimulus in the form of a MATLAB classification dataset
or test images. The server reads the dataset samples and
corresponding ground truth information, it generates a data
stream and a control signal from the images and feeds it
into the HDL code block. The HDL code block communi-
cates with the HDL simulation tool by sending this data and
reading its outputs. This is achieved using Tool Command
Language (TCL) scripts. The output data is sent back to
the Simulink environment where it can be displayed, saved,
visualized, and analysed.

Our implementation uses a streaming interface that lends
itself well to real-time data streams instead of static data
reads from memory. This means we do not use the standard
array of PEs approach, which is typically efficient for offline
inference setups. Instead, we translate the architecture into
a pipeline where data is streamed through allowing for new
samples to be read as they become available. The blocks
using this interface do not need a configuration option for
the exact image size or the size of the inactive regions. In
addition, if image parameters are changed, there will be no
need to update each block. Instead, an update to the image

parameters once at the serialization step is sufficient and
subsequent tuneable parameters for the other blocks such
as the size of the line buffers will be changed as a func-
tion of the new input data size by the compiler. Once these
parameters are fixed and a hardware model is generated,
it is not possible to modify them at runtime. By using a
streaming pixel interface with control signals, each block
or object starts computation on a new segment of pixels at
the start-of-line or start-of-frame signal. The computation
occurs whether the block or object receives the end signal
for the previous segment or not. The work on the automated
generation of the FP pipeline is described at length in our
previous publication [18]. To develop our new online sys-
tem, we revisit and update critical information for the sci-
entific community.

4.1.1 � Proposed convolutional layer design

The convolutional PE
(
CPE

)
 requires two main processing

blocks, a line buffer, and a Multiply and Accumulate (MAC)
block. The line buffer uses FIFOs to buffer the input feature
maps as they are streamed into the PE, then tap out the ele-
ments required for the currently active window, the active
window is always of the size K × K which is the size of the
applied filter. For instance, a 3 × 3 filter requires 9 elements
from different rows and is synchronized using a control sig-
nal. The MAC core simply receives the tapped-out elements,
multiplies them by their corresponding filter elements, and
accumulates them into an element of the output feature map
using an adder tree. The output feature map is streamed fur-
ther into the pipeline for subsequent processing as new ele-
ments become available each cycle [18]. Equations (11),
(12), and (13) show the resource modelling equations Where
K is the filter dimension, Nmult is the number of multipli-
ers,Nadd is the number of adders and Naddstages

 is the number
of stages needed in the adder tree. Equation (14) shows the
main latency modelling equation for the convolutional
pipeline.

(11)Nmult = K2,

(12)Max_Nadd_stages = log2(K
2) + 1,

(13)
Nadd =

[k2 − 1](
MaxNaddstages

Naddstages

) ,

Fig. 5   Control signal for a 3 × 3 window with 1-pixel padding interval
[17]

Fig. 6   Co-simulation and verification environment using Simulink as
a client and Vivado as server allowing for sending stimuli and visual-
izing responses

2589Journal of Real-Time Image Processing (2021) 18:2583–2599	

1 3

The variables for the latency modelling equation are:

•	 BP, FP: Back Porch and Front Porch values for vertical
blanking. The total of Back porch + Front porch must
be at least 2 times the largest filter size.

•	 FMiW FMiH : Feature Map width and height in pixels.
•	 Padding: Time needed to implement vertical and hori-

zontal padding on input data and move it to the output.
•	 TapOut : Time needed to move data from the line buffer

into registers which taps out relevant elements needed
for the multiplier, K Clk Cycles.

•	 MultiplyOut : Time needed to move data from Tap_out
registers to Multipliers, K Clk Cycles.

•	 Add - TreeOut : Time needed to move Multiply_out
results from registers to adder tree. Takes (Naddstages

×
Clk) + 2 delay Cycles to put intermediate data in regis-
ters.

•	 InDelay , OutDelay ∶ Time needed to move data into reg-
isters and give the system enough time for processing.
Set to 4 Clk each, InDelay is only needed for the first
layer, OutDelay is included for every convolutional PE.

•	 ReLU: Time needed to apply rectified linear unit on
elements, a conditional switch is used, it takes 1 clock
cycle per element.

For the backward pass, two more CPEs are required to
calculate dF and dX as described in Sect. 3.1 and Eq. (3)
and (4). These PEs require weights and input data from
the last forward pass, thus every training cycle requires
saving the input feature maps and last updated weights
for the FP CPE into an internal memory block. Weights
for the CPE are K2 elements saved as FixP = 16-bit
fixed point and thus require

[(
K2 × FixP

)
∕8

]
 Bytes of

memory. A Conv Layer with N Conv PEs, therefore,
requires N ×

[(
K2 × FixP

)
∕8

]
Bytes of internal mem-

ory to buffer in the weights for a fully parallelised con-
volutional layer. The feature maps require buffering
of N

[
(FMw × FMh × FixP)∕8

]
 Bytes while consider-

ing that feature map dimensions are spatially reduced
deeper in the network from pooling and convolution,
dimensionality is described by the following equation
FMw = ((FMw − K − P∕S) + 1 where P is padding and
S is stride. During backpropagation, weights and input

(14)CPE(T) = Clk ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎣

InDelay +
�
BP +

1

2

�
+

⎡
⎢⎢⎣

�
FMiW + BP + FP

�
×
�
FMiH

�
+FMiH

⎤
⎥⎥⎦

+Paddingt + TapOut
+MultiplyOut + AddTreeOut

+OutDelay

⎤
⎥⎥⎥⎥⎥⎥⎦

+ReLUT

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

feature maps are read by the dF and dX units requiring
additional registers to save the intermediate results and
two more CPEs to calculate new local gradients and update
the weights. The results are saved into BRAM. dF is used
to update the weights and the new weights are read again
next FP cycle, dX is read by the next layer. This process
needs to be synchronized so needed inputs are available
to be read and written from/to memory when needed. This
is achieved using a new scheduler and a memory-control
block added to each convolutional unit as needed. The
CPE used for the FP convolution can be reused during the
BP to perform the 2D convolution required to calculate
dF and update the weights. The same CPE can be adjusted
to calculate dX as well, if latency is not a priority. Other-
wise, parallelising dF and dX calculations would require
an additional CPE . Figure 7 shows a backpropagation unit,
input X from the previous FP is saved and read from the
memory block to be used in calculating the gradients, two
CPE are dedicated to calculating dF and dX. dX is calcu-
lated using the rotated F matrix and dY of the next layer,
dX is passed to the next layer as dY. dF from the current
cycle is used to update the weights F for the next FP using
learning rate α. The new weights F are used for the next
FP and the outputs are again saved in memory for the next
BP cycle. The generated Simulink hardware model with
the same process can be seen in Fig. 8 the inputs are a BP
enable signal, previous layer dL stream, learning factor,

Fig. 7   Backward pass diagram for the Convolutional Unit, T for the
FP cycle, T + 1 for backpropagation, T − 1 for the input data saved
from the previous cycle

2590	 Journal of Real-Time Image Processing (2021) 18:2583–2599

1 3

input frame and a control signal, outputting an output
frame, dX, and dF plus a control signal.

Our new workflow gives the option of generating designs
that implement a Forward Pass CNN pipeline alone or add-
ing the CNN training pipeline. Hardware resources required
for each can be estimated from the generated generic PEs
and layer parameters (Eqs. 11–14), the estimations allow
the tool to generate multiple designs based on resource
limitations and user input. Block Ram (BRAM) tiles are
currently assumed to be RAMB36E1 which can be used
as RAMB18E1 and FIFO18E1 [34] when needed. DSP
is assumed to be (18 × 25 MACCs) Zynq-7000 generation
architecture [34].

4.1.1.1  Resource estimation for convolutional units and C
PEs

for FP:  The FPGA hardware representation of the FP pipe-
line of the convolutional PEs uses these estimations in addi-
tion to the equations described earlier to create an analytical
model:

•	 DSP Slices: K2 DSP slices are mapped to each unique
Conv PE, the mapping maximises performance by dedi-
cating a multiplier for each coefficient of the Conv unit
filter.

•	 LUT slices: an upward of ~ 800 LUT slices are dedicated
to each generic Conv unit, these are used as shift registers
for the Line Buffer, and as logic and Muxes. ~ 300 of
which are used for the Line Buffer.

•	 Block RAM: at FixP = 16-bit fixed-point representation,
2 18 k BRAMs are dedicated to each Conv unit for the
line Buffer FIFO.

•	 BRAMlinebuffer = Ceiling
(
FMSize × K ×

FixP

18Kb

)
.

4.1.1.2  Resource estimation for convolutional units and C
PEs

for BP  The FPGA hardware representation of the BP pipe-
line of the convolutional PEs uses these estimations:

•	 DSP Slices:
(
K2 × 2

)
+ 1 DSP slices are mapped to each

unique Conv unit, K2 to dX CPE , K2 to dF CPE , and one
for the scheduler to update the weights by multiplying the
gradient by the learning rate.

•	 LUT slices: An upward of ~ 2200 LUT slices are dedi-
cated to each generic Conv unit, these are used as shift
registers for the Line Buffer, logic, and Muxes. ~ 800
for the two dX and dF PEs, ~ 800 for the scheduler and
memory control.

•	 Block RAM: At FixP = 16-bit fixed-point representation,
5 18 k BRAMs are dedicated to each Conv unit, 2 for
the dX line-buffer, 2 for the dF line-buffer, and 1 for the
memory controller using a FIFO to save intermediate
feature maps of size 32 × 32 or less.

BRAMMemory =
(
FMHeight × FMwidth ×

FixP

18Kb

)
,

Fig. 8   Generated hardware model for a convolutional unit in simulink

2591Journal of Real-Time Image Processing (2021) 18:2583–2599	

1 3

4.1.2 � Proposed pooling layer design

For our work, we consider both Maximum and average pool-
ing implementations:

4.1.2.1  Average pooling  A stripped-down version of the
CLPE is used for average pooling, the same memory control,
and kernel core structure is used to apply weights that result
in averaged values of the scanning windows, no registers
are needed to save the kernel coefficients and no weights
and biases are read from memory. For the BP, the same line
buffer FIFOs are used to tap a zero mask for every element
from dX and add the value of that element to the zero mask.

4.1.2.2  Maximum pooling  Maximum pooling uses the
same Memory control structure but replaces the MAC
core with a comparator tree. For the Backward pass, there
is no gradient with respect to non-maximum values. Thus,
the gradient dX from the next layer is passed back to only
the winning element (maximum element). All other neu-
rons get zero gradients. To implement, this the same line
buffers are used to store elements from dX, the input X
feature map elements from the FP are saved into on-chip
memory FIFO18E1 or FIFO36E1 alongside their indices.
These elements are used to upsample the input feature
map using demultiplexers.

4.1.3 � Proposed fully connected layer design

The fully connected PE ( FCPE ) is implemented as paral-
lelized MAC units. These units multiply the feature-map
elements streamed in from the last layer and multiply them
by their corresponding weights and accumulates them into
an output register. This is done for each FC output head.
The process can be further parallelized to alleviate the
processing bottleneck of streamed data by using multiple
FCPEs in parallel to process the data channels from the last
layer concurrently. Equation (15–17) show the resource
modelling equations while Eq. (18) shows the latency
modelling equation.

BRAMlinebuffer =
(
FMSize × K ×

FixP

18Kb

)
.

(15)Nmult = FCout × N,

(16)Nadd =
[[
FCout × N

]
+
(
FCout × Nadd

)]
,

(17)Nreg = FCout × P,

where FCout is the number of output heads in the FC layer.
N is the number of FCPE dedicated for every output head.
Nadd is the number of adders needed for the adder tree. Nreg
is the number of registers needed to accumulate the outputs
of the different PEs.

P is the Parallelism-coefficient, a new term equal to
the ratio between the number of input data channels over
the number of FCPEs . So ChD∕FCPE equals to 1 when the
number of FCPE is equal to the number of input data chan-
nels, fully paralyzing the computation at the expense of
chip resources.

For the BP, the FP PEs can also be reused for the MAC
calculations to calculate dF and dX which require matrix
multiplications, dX calculations are parallelized to improve
throughput and thus require additional resources. Also, a
scheduler and a memory control block are required to both
synchronize the process and save intermediate results from
the forward pass. Figure 9 shows how the FC PEs are used
to both calculate the FP output FC_Out which are saved
in memory for the BP, the gradients dF used to update the
weights, and dX which is backpropagated to the next layer.

4.1.3.1  Resource estimation for fully connected units
and FCPEs for FP  The generated hardware model uses
generic PEs for the FP pipelines, this allows us to estimate
the resources needed for the generated pipeline.

•	 DSP Slices: 1 DSP slice is mapped to every FC unit
dedicated to multiplying and accumulating weights
assigned to the unit with incoming feature map ele-
ments.

•	 LUT slices: An upward of ~ 20 slices are dedicated to
every FC PE as logic.

(18)

FCPE (T)

= Clk ×
[(
FMiW + BP + FP

)
×
(
FMiH − 1

)
+ FMiH

]
× P,

Fig. 9   Backward pass diagram for the Fully Connected Unit

2592	 Journal of Real-Time Image Processing (2021) 18:2583–2599

1 3

•	 Block RAM: No BRAM is required for the FC units
and PEs.

4.1.3.2  Resource estimation for fully connected units
and FCPEs for BP  The FPGA hardware representation of
the BP pipeline of the fully connected PEs follows the fol-
lowing estimations.

•	 DSP Slices: 1 DSP slices is mapped to every FC unit ded-
icated to multiplying and accumulating weights assigned
to the unit with incoming feature map elements. For an
FC layer with FCOut output heads, FCOut DSP slices are
required, an additional FCOut is needed to calculate dX
assuming the FP slices are reused to calculate dF.

•	 LUT slices: An upward of ~ 400 is dedicated to every
FC head as logic. 10 LUT Slices for dX, ~ 200 for dF,
and ~ 100 for the memory control and scheduler. An
upward of ~ 20 is dedicated to every FC PE as logic.

•	 Block RAM: One 18 K BRAM tile is required to save
one feature map vector of 32 × 32 (one data channel) at
16 bits.

4.1.4 � Proposed softmax and loss function design

Softmax is optional to include, it is implemented using
MathWorks’s Native Floating Point library [35] and requires
80 DSP slices, 20 K LUT slices, and no BRAM.

4.1.5 � Scheduler

The new scheduler is implemented as an automated block
using Simulink. It uses conditional switches to route input
data streams between the FP and BP pipelines. The stream-
ing architecture allows for variable stream sizes as the data
is always accompanied by a control signal. The MAC Core
size however is fixed and presents a challenge since the BP
path convolutions would have different size Conv opera-
tion “filters”. This is circumvented by buffering the results
and reusing the existing MAC core as needed. It is possible
to compile the MAC core to support BP convolutions and
reduce the latency of that stage. For our experiments, we use
MAC cores that only support the original FP size. A BP_En
signal acts as the main synchronizing signal for switching
between the two modes. This signal enables the data reshap-
ing, rotating the F(t − 1) weight matrix, buffering the dL
gradients for the MAC operations, and updating the weight
and bias matrices with the new gradients. The scheduler

BRAMMemory =

(
FMHeight × FMwidth ×

FPrep

18Kb

)
.

block receives a BP_En signal, learning rate variable, dL,
dF, and dX plus their control signals when needed.

4.2 � Automated design generation using MOGA

When all processing elements are generated from the high-
level architecture data (number of layers, network graph,
layer-specific parameters), they are used to populate a design
space. The process to generate a design space for an archi-
tecture requires three steps:

Parse an input architecture for parameters and connec-
tions in MATLAB.
Programmatically generate generic PEs based on the data
in MATLAB/Simulink.
Use the PEs, the latency, resources estimation equations,
and the architecture data to model, explore and generate
a design space.

Each architecture has a high-level description which
will include the number of layers, the connections between
them, and PEs initialized using filter size, stride, and pad-
ding parameters. The high-level description also allows for
optionally including the SoftMax layer and training pipeline
or just implementing an inference pipeline. Lastly, the FPGA
board’s working frequency and resources in terms of availa-
ble DSP slices, BRAM, and logic are considered. The design
space exploration process is treated as a multi-objective opti-
mization problem. Our goal is to find different configurations
of the high-level architecture using intra-layer parallelism.
Multi-objective optimization involves minimizing multiple
objective functions subject to a set of constraints, for our
case; the latency and FPGA resources. The constraints will
depend on the architecture and user input. Figure 10 shows
how the convolutional PEs are mapped to the pipeline, pool-
ing and non-linearity follow each layer but are not included
in the figure and the number of FC PEs can be adjusted
to parallelize the FC operations. PEs are dedicated to each
active data channel streaming a feature map from the previ-
ous layer. The number of active PEs tasked with applying
the layer’s filter is adjusted to reduce the resource overhead.
For instance, a direct mapping means every filter will have

Fig. 10   Design-Space generations using (L0 + L1 + L2) × 4 CPEs

2593Journal of Real-Time Image Processing (2021) 18:2583–2599	

1 3

a dedicated PE, to trade-off latency and resources the num-
ber of dedicated PEs is changed. This number of dedicated
PEs is what we aim to optimize, this is done by exploring
the design space. Our optimization algorithm of choice is
a genetic multi-objective optimization algorithm [36]. We
provide the algorithm with the latency estimation equations
per layer and PE, the resource estimation equations per PE,
the number of convolutional layers, the number of filters per
layer, the size of the filters, and the number of DSP slices
available on the chip. The optimization goal is to minimize
the number of PEs needed to implement an architecture
while minimizing latency.

We provide the algorithm with three input arguments, a
fitness function, an input vector whose size is equal to the
number of variables to be optimized in the problem, and
bounding constraints. The output returned by the MOGA
is the points on the Pareto front, and the objective function
values at the found Pareto front. For each iteration, the popu-
lation in the current generation is the number of samples the
MOGA picks for optimization returning a fitness score for
each variable, these scores inform the sampling of the next
generation’s population. With a large population size, the
genetic algorithm searches the solution space more thor-
oughly, thereby reducing the chance that the algorithm does
not find a global minimum. However, a large population size
also causes the algorithm to run more slowly, for our tests,
we use higher population sizes for the deeper networks. The
number of variables in the optimization is set to the number
of convolutional layers, with an input vector P of size n ele-
ments constrained by a lower bound of 1 and an upper bound
of ub. where ub is the number of convolutional filters in that
layer. The optimization objectives are described by y, a vec-
tor of size four, where latency, DSP, LUT slices, and BRAM
are optimized. DSP objective optimization is described by
Eqs. (19) and (20). k is a vector of size n where each element
is the dimension of the filters per layer (3 × 3 for example).
L is a vector of size n, it holds the values of the maximum
PEs needed to fully parallelize computations as calculated
in Eq. (19). L(i) therefore holds the number of PEs required
for layer i in the current configuration. For instance, if the
number of input channels to L(2) is P(1) = 3, and P(2) is
randomly set by the optimizer to 3 then L(2) is 9, meaning
9 PEs are required for the fully parallelized computations
in that layer.

5 � Experiments and results

5.1 � MOGA results

The architectures used for all experiments in this section and
Sects. 5.2 and 5.3 are listed in Tables 1 and 2. Four custom
architectures with differing depths and number of operations
are used to simulate possible implementations of different
complexity and computational load. For instance, a custom
network of the shape a1 − a2 − a3 − a4 represents a network
with four convolutional layers with a filter each layer, these
layers are each followed by non-linearity ReLU, a pooling
layer (average pooling was used for all the architectures in

(19)
L(i) = P(i) × P(i − 1)

With (1 ≤ P(i) ≤ ub(i)),

(20)
Y(DSP) = [L(1) × k(1)2 + L(2) × k(2)2 …

+ L(n)) × k(n)2] ≤
(
DSPmax∕k2

)
.

Table 1   Architectures used for validation

Dataset Architecture Parameters Operations

MNIST [33] 8-8 155.16 K 2.86 M
MNIST 8-16-32 333.72 K 6.79 M
SVHN [37] 8-16-32-64 639.58 K 32.2 M
CIFAR-10 [38] 8-16-32-64-64 676 K 83 M

Table 2   Datasets used for training and validation

Dataset Type Size Classes Train/Test

MNIST Grayscale 28 × 28 10 50 K/10 K
SVHN RGB 32 × 32 10 50 K/10 K
CIFAR-10 RGB 32 × 32 10 75 K/25 K

Fig. 11   Multi-Objective Optimization of Resources against Latency
on MNIST 8-8, MNIST 8-16-32, SVHN 8-16-32-64 and on CIFAR-
10 8-16-32-64-64, with Population Sizes 100, 250,600 and 800
respectively

2594	 Journal of Real-Time Image Processing (2021) 18:2583–2599

1 3

this work), and finally a fully connected softmax output
layer.

Y(DSP), Y(LUT), and Y(BRAM) use the resource esti-
mation data from the previous section and the latency
equations Eqs. (14) and (18) to model the active configu-
ration’s latency estimation. This is based on the number
of CPEs used per convolution layer and the number of
FCPEs mapped to parallelize the FC layer. We use DSP
slices as an optimizable objective alone with latency in the
examples below because we have noticed that DSP slices
estimation is the most accurate, unlike LUT slices and
BRAM. This is because DSP slices are easier to predict
as they are directly mapped for multiplications which can
be estimated with high accuracy. When DSP slices are
used for optimizing resources against latency, the other
metrics consistently satisfy the constraints and conditions
set by the user as well. Figure 11 shows the MOGA results,
a clear trade-off between latency and DSP slices can be
seen in all architectures. For MNIST 8-8, the optimizer
found fewer configurations bounded between a minimal
mapping and a direct mapping which is possible for such
a small architecture, unlike the other three which were all
constrained by the maximum number of DSP slices avail-
able on the Zynq-7100 which is 2020 slices.

5.2 � FPGA experimental setup

In Sects. 5.2 and 5.3, we aim to perform place and route
implementations to assess performance metrics of the
proposed pipelines, latency and resources will be used to
explore the performance trade-offs between the different
designs, also to estimate the resources overhead of includ-
ing the learning pipeline. Multiple designs are generated
for each architecture using the MOGA, these designs will
provide a trade-off between throughput and resources by
reducing the number of active data channels per layer. Four
designs for each architecture will be used for the experi-
mental setup. Training is achieved using stochastic gradient
descent. We specify a mini-batch size (Bs) which sets the
size of the subset batch we use for training from all avail-
able data for an iteration. We update weights after passing
the data samples in each mini-batch, meaning the gradients
are calculated once for each mini-batch. We stream the mini-
batch through the network one sample at a time, this does
not affect the final training results. We choose to do this
for two reasons. First, streaming mini-batch samples lends
its self well to our main design objective which is generat-
ing CNN inference and online training designs, continues
learning inherently necessitates small sample size process-
ing for training due to the limited availability of new data,
this stands in contrast to having access to a full dataset
off-chip and reading a mini-batch to train offline. Second,
smaller mini-batch sample sizes, starting from one, allow Ta

bl
e 

3  
R

es
ul

ts
 o

n
A

rc
hi

te
ct

ur
e-

8-
8,

 M
N

IS
T,

 F
 =

 20
0

M
H

z,
 tr

ai
ni

ng
 ti

m
es

 fo
r F

PG
A

, G
PU

 a
nd

 C
PU

, E
po

ch
s =

 10
, B

s =
 32

 a
nd

 B
s =

 1

D
es

ig
n

sp
ac

e
PE

s
In

fe
re

nc
e

la
te

nc
y

(m
s)

Re
po

rte
d

re
so

ur
ce

s-
in

fe
re

nc
e

Re
po

rte
d

re
so

ur
ce

s-
le

ar
ni

ng
Tr

ai
ni

ng
 ti

m
e

D
SP

 sl
ic

es
LU

T
sl

ic
es

B
R

A
M

D
SP

 sl
ic

es
LU

T
sl

ic
es

B
R

A
M

FP
G

A
G

PU
C

PU

B
S3

2
(s

)
B

S1
 (m

s)

72
0.

00
5

72
8

36
%

88
.6

 K
31

%
80

10
%

15
28

75
%

14
6.

2
K

52
%

36
8

47
%

3.
25

0.
04

(B
S3

2)
 3

0
s

(B
S3

2)
 4

8
s

20
0.

03
1

22
0

11
%

32
.6

 K
12

%
28

4%
46

0
23

%
48

.6
 K

17
%

11
0

14
%

11
.6

0.
15

6
0.

11
2

74
3.

6%
13

.2
 K

5%
14

2%
15

4
8%

18
 K

7%
40

5%
33

.6
0.

45
(B

S1
) 6

.7
 m

s
(B

S1
) 9

 m
s

2
0.

36
8

28
1.

3%
6.

2
K

3%
10

1%
58

3%
7.

8
K

3%
24

3%
82

.8
1.

10

2595Journal of Real-Time Image Processing (2021) 18:2583–2599	

1 3

Ta
bl

e 
4  

R
es

ul
ts

 o
n

A
rc

hi
te

ct
ur

e-
8-

16
-3

2,
 M

N
IS

T,
 F

 =
 20

0
M

H
z,

 tr
ai

ni
ng

 ti
m

es
 fo

r F
PG

A
, G

PU
 a

nd
 C

PU
, E

po
ch

s =
 30

, B
s =

 32
 a

nd
 B

s =
 1

D
es

ig
n

sp
ac

e
PE

s
In

fe
re

nc
e

la
te

nc
y

(m
s)

Re
po

rte
d

re
so

ur
ce

s-
in

fe
re

nc
e

Re
po

rte
d

re
so

ur
ce

s-
le

ar
ni

ng
Tr

ai
ni

ng
 ti

m
e

D
SP

 sl
ic

es
LU

T
sl

ic
es

B
R

A
M

D
SP

 sl
ic

es
LU

T
sl

ic
es

B
R

A
M

FP
G

A
G

PU
C

PU

B
S3

2
(s

)
B

S1
 (m

s)

16
4

0.
05

15
56

77
%

19
4

k
72

%
18

6
24

%
31

66
15

6%
37

6
k

13
6%

83
6

55
%

33
1.

46
(B

S3
2)

 9
6

s
(B

S3
2)

 1
21

 s
10

4
0.

11
2

10
96

54
%

13
2

k
47

%
15

6
20

%
20

20
10

0%
26

3
k

95
%

53
6

35
%

65
2.

88
50

0.
42

5
48

5
24

%
65

 k
24

%
50

7%
95

8
48

%
96

 k
35

%
21

8
15

%
29

6
13

.2
(B

S1
) 8

.3
 m

s
(B

S1
) 1

2.
6

m
s

11
1.

06
17

8
8.

8%
27

 k
10

%
16

2%
28

9
14

%
26

 k
10

%
59

4%
57

2
25

.4

Ta
bl

e 
5  

R
es

ul
ts

 o
n

A
rc

hi
te

ct
ur

e-
8-

16
-3

2-
64

, S
V

H
N

, F
 =

 20
0

M
H

z,
 tr

ai
ni

ng
 ti

m
es

 fo
r F

PG
A

, G
PU

 a
nd

 C
PU

, E
po

ch
s =

 40
, B

s =
 32

 a
nd

 B
s =

 1

D
es

ig
n

sp
ac

e
PE

s
In

fe
re

nc
e

la
te

nc
y

(m
s)

Re
po

rte
d

re
so

ur
ce

s-
in

fe
re

nc
e

Re
po

rte
d

re
so

ur
ce

s-
le

ar
ni

ng
Tr

ai
ni

ng
 ti

m
e

D
SP

 sl
ic

es
LU

T
sl

ic
es

B
R

A
M

D
SP

 sl
ic

es
LU

T
sl

ic
es

B
R

A
M

FP
G

A
G

PU
C

PU

B
S3

2
(m

)
B

S1
 (m

s)

17
0

0.
91

2
19

20
95

%
24

2
k

81
%

21
3

27
%

35
50

17
5%

38
0

k
13

8%
86

6
57

%
32

.4
4

1.
63

(B
S3

2)
 1

5.
m

(B
S3

2)
 7

5
m

88
1.

23
83

2
41

%
11

4
k

41
%

13
2

17
%

18
40

91
%

23
5

k
85

%
54

4
36

%
43

.5
6

2.
56

43
2.

56
48

5
24

%
72

 k
26

%
55

7%
97

7
48

%
98

 k
36

%
21

3
14

%
90

.6
4.

61
(B

S1
) 1

5
m

s
(B

S1
) 5

5
m

s
4

36
46

2.
8%

9
k

3%
8

1%
96

5%
9

k
3%

21
2%

12
75

82
.1

2596	 Journal of Real-Time Image Processing (2021) 18:2583–2599

1 3

for successfully training on smaller designs which only use
on-chip memory and can require less than 2% of the chip’s
DSP slices as our results will show in Sect. 5.3, smaller
input sample sizes allow for on-board training with limited
resources. Larger sample sizes can be used depending on a
design’s requirements but for our experiments, all sample
sizes were set to one to simulate a continuous learning sce-
nario where the design is deployed on an embedded setting
and new data is available in smaller samples for fine-tuning
an already-trained network. Training a model from scratch
using an offline dataset is not the objective of our work, for
such scenarios discrete GPU setups remain to be more suit-
able. It is worth noting that the new data made available is
of known classes, continuous learning of new classes is not
possible using our setup since it would require an online
change to the architecture’s output layers, this is possible
using the FPGA’s online reconfiguration capabilities but
not supported in this work. Tables 3, 4, 5, 6 show different
implementations of the designs generated from the archi-
tectures listed in Table 1 trained on the datasets in Table 2.
The generated designs can support FP inference alone or
include backpropagation. Multiple designs with differing
resource requirements and throughput performance were
used for each architecture to highlight the different design
options a user can pick from based on hardware limitations
and task-specific performance and objectives. All simula-
tions and implementations were carried out on the Xilinx
Zynq-7100 board. The post place and route implementations
of the designs highlight the overhead of including backprop-
agation support in the designs. The overhead is consistent
with the resource estimation details given in the previous
section. Additional DSP slices are mapped to account for the
additional parallelized processing needed to calculate local
gradients and update weights. Additional BRAM blocks are
dedicated to buffer intermediate data from the FP required
for BP calculations and additional LUT slices are needed
for the local schedulers and the overall new BP glue logic.
Input data is sent to the testbench using the Vivado/Simulink
co-simulation environment described in Sect. 4.1. The archi-
tectures were trained on a single GeForce GTX 1050 Ti GPU
and an i7-6700 3.40 GHz × 8 CPU, the hyperparameters
used for each training session were replicated for the FPGA
training, the results are reported in Tables 3, 4, 5, 6. GPUs
performance is optimal on batches because of the GPU’s
built-in parallelizing capabilities. A different approach to
comparing the performance based on our practical objectives
is one-sample latency simulating data streams. Accuracies
achieved using these hyperparameters specified in Tables 3,
4, 5, 6 were 96.2, 99.6, 88.93, and 76.37% for MNIST-8-8,
MNIST 8-16-32, SVHN 8-16-32-64, and CIFAR 8-16-32-
64-64 respectively.

Ta
bl

e 
6  

R
es

ul
ts

 o
n

A
rc

hi
te

ct
ur

e-
8-

16
-3

2-
64

-6
4,

 C
IF

A
R-

10
, F

 =
 20

0
M

H
z,

 tr
ai

ni
ng

 ti
m

es
 fo

r F
PG

A
, G

PU
 a

nd
 C

PU
, E

po
ch

s =
 60

, B
s =

 32
 a

nd
 B

s =
 1

D
es

ig
n

sp
ac

e
PE

s
In

fe
re

nc
e

la
te

nc
y

(m
s)

Re
po

rte
d

re
so

ur
ce

s-
in

fe
re

nc
e

Re
po

rte
d

re
so

ur
ce

s-
le

ar
ni

ng
Tr

ai
ni

ng
 ti

m
e

D
SP

 sl
ic

es
LU

T
sl

ic
es

B
R

A
M

D
SP

 sl
ic

es
LU

T
sl

ic
es

B
R

A
M

FP
G

A
G

PU
C

PU

B
S3

2
(m

)
B

S1
 (m

s)

10
7

3.
36

10
62

53
%

12
1

k
45

%
12

4
16

%
20

00
98

%
23

8
k

86
%

54
3

36
%

16
8

4.
61

(B
S3

2)
 5

6.
1

m
(B

S3
2)

 1
71

 m
68

5.
16

71
0

35
%

83
 k

30
%

85
11

%
13

72
68

%
15

2
k

55
%

34
4

23
%

25
6

10
.2

8
39

10
.1

60
6

30
%

67
 k

24
%

74
9%

80
1

40
%

87
 k

31
%

19
8

13
%

51
8

20
.4

6
(B

S1
) 3

4
m

s
(B

S1
) 1

09
 m

s
22

12
22

4
11

%
31

 k
11

%
28

3%
38

2
19

%
41

 k
14

%
92

6%
61

7
24

.4
4

2597Journal of Real-Time Image Processing (2021) 18:2583–2599	

1 3

5.3 � FPGA experimental results and analysis

All tables show the resources of the different designs for FP
and BP highlighting the overhead of including a training
pipeline into the design which pushes some implementations
beyond the available on-chip resources (seen highlighted
in red) in Tables 4 and 5. These designs were included to
highlight the overhead and the possibility of implementation
when a larger board is available, the latency results included
however are estimations from pre place-and-route simula-
tions. The different designs generated based on the number
of dedicated PEs also highlight a clear trade-off between
latency and resources, for instance, in Table 3 designs-1 and
4 show an 200× speed up for 9× more DSP slices allowing
the user to tailor the design process to their specific applica-
tion. In Training times, the GPU consistently performs better
than the FPGA except for design-1 and 2 in Tables 3 and 4,
this is because the FPGA is processing data as a stream one
sample at a time while the GPU is built to process batches
in parallel. A more accurate comparison can be seen in
the stream-mode simulation on the GPU, it shows that the
FPGA consistently outperforms the GPU on single-sample
scenarios like online continuous learning. Latency results
highlighted in green indicate that the FPGA outperformed
the GPU for that specific design configuration and dataset,
orange indicates the opposite. The results highlight FPGA
platforms as strong candidates for future online learning
applications, the per-sample latency, and energy overhead
consistently outperform GPUs in online training scenarios
with limited input data rates. Table 7 shows comparisons
with related works, there is a clear lack of research in the
area of online training of CNNs on FPGA, to the best of our
knowledge [27] and [30] are the only works that have imple-
mented training architectures on FPGAs. In [27] and [30]
Stratix-V and Startix-10 boards were used with 150 MHz
and 240 MHz frequencies, 32-bit and 16-bit data representa-
tions with 1963 and 5760 DSP usage to implement LeNet-5
MNIST and CIFAR-10 custom architecture respectively.
Our training pipeline allows for new data to be processed
as early as it becomes available while previous samples are
still being processed, however the results we reported were
for single samples, meaning the resources for the already
processed areas of the pipeline become idle. When data is
provided as early as an area of the pipeline becomes idle, we
achieved an effective improvement in latencies upward of 4×
times for deeper architectures. It is also worth mentioning

that [30] used 5760 DSP slices at 240 MHz against our 2020
DSP slices at 200 MHz.

6 � Conclusion

In this work, we have presented a fully automated design
backpropagation pipeline for CNNs with a focus on online
training. The pipeline uses a streaming interface and a mod-
ular design approach, generic PEs are generated and used to
populate a design space based on the user’s specific require-
ments including the option to compile a training pipeline.
We explore the design space using a multi-objective genetic
algorithm and an analytical model of the network’s latency
and estimated resources, these allow for optimizing the
hardware model by exploiting CNN’s intralayer parallelism.
Latency trade-offs of 95× for MNIST, 71× for CIFAR-10,
and 18× for SVHN were achieved. Trade-offs in resource
utilization in terms of DSP Slices were 44× for MNIST, 52×
for SVHN, and 24× for CIFAR-10. The training pipeline
is generated based on an overlap in computation between
the forward and backward passes. We translate the overlap
into hardware by reusing most of the forward pass pipeline
reducing the resources overhead. The design also minimizes
the need for off-chip memory by utilizing BRAM to buffer
in parameters and intermediate feature maps when needed,
feature maps are streamed during the FP. We minimize data
movement by placing BRAM memory near PEs, this can
be used to buffer in data when external memory is required
for larger designs which was not covered in this work as we
only used small to medium scale architectures. The results
show that the FPGA implementations of these architectures
outperform their GPU and CPU counterparts in most online
learning scenarios where samples are streamed at a limited
rate, A 2.8×, 5.8×, and 3× speed up over GPU was achieved
on three deeper architectures trained on MNIST, SVHN,
and CIFAR-10 respectively. Using batch processing, GPUs
consistently outperform FPGA for larger designs. Our main
objective in developing these tools is to support the onboard
deployment of deep learning models for both inference and
online learning. This tool can provide deep learning engi-
neers with an easy and accessible design cycle. There is a
difficult challenge in scaling these tools efficiently to account
for the rapid progress in modern CNNs, both in terms of
the shape and size of new architectures. Future works in
the field of on-board learning should tackle the limitations

Table 7   Online training
comparisons with related works

FPGA GPU (1050 Ti) CPU (i7)

This Work (ms) [28] (ms) [32] (ms) BS1 (ms) BS32 (ms) BS1 (ms) BS32 (ms)

CIFAR-10 4.61 NA 1.96 15 1.11 55 3.42
MNIST 2.88 53 NA 8.3 0.4 12.6 0.64

2598	 Journal of Real-Time Image Processing (2021) 18:2583–2599

1 3

of this work and the ones that preceded it, this includes the
support for deeper architectures, and the different layers that
are present in modern CNNs, automating the design and
implementation of external memory protocols is, therefore,
necessary as well.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Fowers, J., Brown, G., Cooke, P., Stitt, G.: A performance and
energy comparison of FPGAs, GPUs, and multicores for sliding-
window applications. In: Paper presented at the Proceedings of the
ACM/SIGDA international symposium on Field Programmable
Gate Arrays, Monterey, California, USA

	 2.	 Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., Cong, J.: Opti-
mizing FPGA-based Accelerator Design for Deep Convolutional
Neural Networks. In: Proceedings of the 2015 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays,
Monterey, California, USA, 22 Feb 2015, pp. 161–170. ACM,
2689060

	 3.	 Qiu, J., Wang, J., Yao, S., Guo, K., Li, B., Zhou, E., Yu, J., Tang,
T., Xu, N., Song, S., Wang, Y., Yang, H.: Going deeper with
embedded FPGA platform for convolutional neural network. In:
Paper presented at the Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays,
Monterey, California, USA

	 4.	 Gan, F., Zuyi, H., Song, C., Feng, W.: Energy-efficient and high-
throughput FPGA-based accelerator for Convolutional Neural
Networks. In: 2016 13th IEEE International Conference on
Solid-State and Integrated Circuit Technology (ICSICT), 25–28
Oct. 2016, pp. 624–626 (2016)

	 5.	 Venieris, S.I., Bouganis, C.: fpgaConvNet: a framework for
mapping convolutional neural networks on FPGAs. In: 2016
IEEE 24th Annual International Symposium on Field-Program-
mable Custom Computing Machines (FCCM), 1–3 May 2016,
pp. 40–47 (2016)

	 6.	 Wang, Y., Xu, J., Han, Y., Li, H., Li, X.: DeepBurning: auto-
matic generation of FPGAbased learning accelerators for the
neural network family, in: Design Automation Conference
(DAC) (2016)

	 7.	 Zhiqiang, L., Yong, D., Jingfei, J., Jinwei, X.: Automatic code
generation of convolutional neural networks in FPGA imple-
mentation. In: 2016 International Conference on Field-Program-
mable Technology (FPT), 7–9 Dec. 2016, pp. 61–68 (2016)

	 8.	 Hwang, W.J., Jhang, Y.J., Tai, T.M.: An efficient FPGA-based
architecture for convolutional neural networks. In: 2017 40th
International Conference on Telecommunications and Signal

Processing (TSP), Barcelona, Spain, 5 July 2017, pp. 582–588.
IEEE (2017)

	 9.	 Hao, Y., Quigley, S.: The implementation of a deep recurrent
neural network language model on a xilinx fpga. arXiv preprint
arXiv:​1710.​10296 (2017)

	10.	 Kaiyuan Guo, S.Z., Jincheng, Y., Yu, W., Huazhong, Y.: [DL]
A survey of FPGA-based neural network inference accelerators.
ACM Trans Reconfig TechnolSyst 12, 1 (2019)

	11.	 Wu, R., Guo, X., Du, J., Li, J.: Accelerating neural network
inference on FPGA-based platforms—A survey. Electron
10,1025 (2021). https://​doi.​org/​10.​3390/​elect​ronic​s1009​1025

	12.	 Guo, K., Sui, L., Qiu, J., Yu, J., Wang, J., Yao, S., Han, S.,
Wang, Y., Yang, H.: Angel-eye: a complete design flow for map-
ping CNN onto embedded FPGA. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 37(1), 35–47 (2018). https://​doi.​org/​
10.​1109/​TCAD.​2017.​27050​69

	13.	 Abdelouahab, K., Pelcat, M., Serot, J., Berry, F.: Accelerating
CNN inference on FPGAs: a survey. arXiv preprint arXiv:​1806.​
01683 (2018).

	14.	 Solovyev, R.A., Kalinin, A.A., Kustov, A.G., Telpukhov, D.V.,
Ruhlov, V.S.: FPGA implementation of convolutional neural
networks with fixed-point calculations. 2018. [Online]. Avail-
able: arXiv preprint arXiv:​1808.​09945

	15.	 Venieris, S.I., Kouris, A., Bouganis, C.-S.: Toolflows for map-
ping convolutional neural networks on FPGAs: a survey and
future directions. ACM Comput. Surv. 51(3), Article 56 (2018).
https://​doi.​org/​10.​1145/​31863​32

	16.	 Rivera-Acosta, M., Ortega-Cisneros, S., Rivera, J.: Automatic
tool for fast generation of custom convolutional neural networks
accelerators for FPGA. Electronics 8(6), 641 (2019)

	17.	 Mazouz, A., Bridges, C.P.: Adaptive hardware reconfiguration
for performance tradeoffs in CNNs. In: 2019 NASA/ESA Con-
ference on Adaptive Hardware and Systems (AHS), 22–24 July
2019, pp. 33–40 (2019)

	18.	 Mazouz, A., Bridges, C.P.: Automated offline design-space
exploration and online design reconfiguration for CNNs. In:
2020 IEEE Conference on Evolving and Adaptive Intelligent
Systems (EAIS), 27–29 May 2020, pp. 1–9 (2020)

	19.	 Hayes, T.L., Kanan, C.: Lifelong machine learning with deep
streaming linear discriminant analysis. In CVPR-W (2020)

	20.	 Käding, C., Rodner, E., Freytag, A., Denzler, J.: Fine-tuning
deep neural networks in continuous learning scenarios. In: Chen
C.-S., Lu J., Ma K.-K. (eds.) Computer Vision—ACCV 2016
Workshops, Cham, 2017, pp. 588–605. Springer International
Publishing (2017)

	21.	 Yoon, J., Yang, E., Lee, J., Hwang, S.J.: Lifelong learning with
dynamically expandable networks, in ICLR (2018)

	22.	 Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Con-
tinual lifelong learning with neural networks: a review. Neural
Netw. 113, 54–71 (2019). https://​doi.​org/​10.​1016/j.​neunet.​2019.​
01.​012

	23.	 Roy, D., Panda, P., Roy, K.: Tree-CNN: a deep convolutional neu-
ral network for lifelong learning. ArXiv abs/1802.05800 (2018)

	24.	 Posewsky, T., Ziener, D.: Throughput optimizations for fpga-
based deep neural network inference. Microprocess Microsyst.
60:151–161 (2018)

	25.	 Stimpson, A.J., Tucker, M.B., Ono, M., Steffy, A., Cummings,
M.L.: Modeling risk perception for mars rover supervisory con-
trol: before and after wheel damage. In: Aerospace Conference,
2017 IEEE, Montana. USA, Mar 4 2017, pp. 1–8. IEEE (2017)

	26.	 Mazouz, A., Bridges, C.P.: Multi-sensory CNN models for close
proximity satellite operations. In: 2019 IEEE Aerospace Confer-
ence, 2–9 March 2019, pp. 1–7 (2019)

	27.	 Choi, S., Sim, J., Kang, M., Kim, L.-S.: TrainWare: a memory
optimized weight update architecture for on-device convolutional
neural network training. In: Paper presented at the Proceedings

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1710.10296
https://doi.org/10.3390/electronics10091025
https://doi.org/10.1109/TCAD.2017.2705069
https://doi.org/10.1109/TCAD.2017.2705069
http://arxiv.org/abs/1806.01683
http://arxiv.org/abs/1806.01683
http://arxiv.org/abs/1806.01683
https://doi.org/10.1145/3186332
https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.1016/j.neunet.2019.01.012

2599Journal of Real-Time Image Processing (2021) 18:2583–2599	

1 3

of the International Symposium on Low Power Electronics and
Design, Seattle, WA, USA

	28.	 Wenlai, Z., Haohuan, F., Luk, W., Teng, Y., Shaojun, W., Bo, F.,
Yuchun, M., Guangwen, Y.: F-CNN: an FPGA-based framework
for training convolutional neural networks. In: 2016 IEEE 27th
International Conference on Application-specific Systems, Archi-
tectures and Processors (ASAP), London, England, 6 July 2016,
pp. 107–114. IEEE (2016)

	29.	 Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G.,
Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers, A., Boyle,
R., Cantin, P.-l., Chao, C., Clark, C., Coriell, J., Daley, M., Dau,
M., Dean, J., Gelb, B., Ghaemmaghami, T.V., Gottipati, R., Gul-
land, W., Hagmann, R., Ho, C.R., Hogberg, D., Hu, J., Hundt, R.,
Hurt, D., Ibarz, J., Jaffey, A., Jaworski, A., Kaplan, A., Khaitan,
H., Killebrew, D., Koch, A., Kumar, N., Lacy, S., Laudon, J.,
Law, J., Le, D., Leary, C., Liu, Z., Lucke, K., Lundin, A., MacK-
ean, G., Maggiore, A., Mahony, M., Miller, K., Nagarajan, R.,
Narayanaswami, R., Ni, R., Nix, K., Norrie, T., Omernick, M.,
Penukonda, N., Phelps, A., Ross, J., Ross, M., Salek, A., Samadi-
ani, E., Severn, C., Sizikov, G., Snelham, M., Souter, J., Steinberg,
D., Swing, A., Tan, M., Thorson, G., Tian, B., Toma, H., Tuttle,
E., Vasudevan, V., Walter, R., Wang, W., Wilcox, E., Yoon, D.H.:
In-datacenter performance analysis of a tensor processing unit.
In: Paper presented at the Proceedings of the 44th Annual Inter-
national Symposium on Computer Architecture, Toronto, ON,
Canada

	30.	 Hao, Y., Quigley, S.: The implementation of a deep recurrent neu-
ral network language model on a xilinx fpga. arXiv preprint arXiv:​
1710.​10296 (2017).

	31.	 Caulfield, A.M., Chung, E.S., Putnam, A., Angepat, H., Fowers,
J., Haselman, M., Heil, S., Humphrey, M., Kaur, P., Kim, J.-Y.,
Lo, D., Massengill, T., Ovtcharov, K., Papamichael, M., Woods,
L., Lanka, S., Chiou, D., Burger, D.: A cloud-scale acceleration
architecture. In: Paper presented at the The 49th Annual IEEE/
ACM International Symposium on Microarchitecture, Taipei,
Taiwan

	32.	 Venkataramanaiah, S.K., Ma, Y., Yin, S., Nurvithadhi, E., Dasu,
A., Cao, Y., Seo, J.: Automatic compiler based FPGA accelerator
for CNN training. In: 2019 29th International Conference on Field
Programmable Logic and Applications (FPL), 8–12 Sept. 2019,
pp. 166–172 (2019)

	33.	 LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based
learning applied to document recognition. Proc. IEEE 86(11),
2278–2324 (1998)

	34.	 Xilinx: Zynq-7000 Soc Data Sheet: Overview. In. Xilinx (2018).
https://​www.​xilinx.​com/​suppo​rt/​docum​entat​ion/​data_​sheets/​
ds190-​Zynq-​7000-​Overv​iew.​pdf

	35.	 Mathworks: Generate Target-Independent HDL Code with Native
Floating-Point. https://​uk.​mathw​orks.​com/​help/​hdlco​der/​ug/​gener​
ate-​target-​indep​endent-​hdl-​code-​with-​native-​float​ing-​point-​libra​
ries.​html (2015). Accessed 04 Aug 2020

	36.	 Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization
using genetic algorithms: a tutorial. Reliab. Eng. Syst. Saf. 91(9),
992–1007 (2006). https://​doi.​org/​10.​1016/j.​ress.​2005.​11.​018

	37.	 Krizhevsky, A.: Learning Multiple Layers of Features from Tiny
Images. University of Toronto, Toronto (2012)

	38.	 Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.:
Reading Digits in Natural Images with Unsupervised Feature
Learning. NIPS (2011).

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

A. Mazouz  received a B.S. from the Institute of Electrical and Elec-
tronic Engineering at the University of Boumerdes, Algeria in 2014.
An MSc in Power Engineering from the same institute in 2016. 2nd
year Ph.D. student at the Surrey Space Centre (SSC), member of the
On-Board Data Handling group researching runtime adaptive deep
learning for embedded systems.

C. P. Bridges  received the B.Eng. degree from the University of Green-
wich, London, U.K., in 2005, and the Ph.D. degree from the University
of Surrey, Guildford, U.K., in 2009, both in electronic engineering.
In 2013, he designed, built, and still operates the U.K.’s first Cube-
Sat (STRaND-1) with Surrey Satellite Technology (SSTL) and now
contributes toward computing hardware and software with SSTL, on
ESA’s ESEO mission and also the NASA-JPL/CalTech AAReST mis-
sion. He currently leads the On-Board Data Handling (OBDH) research
group within Surrey Space Centre, University Of Surrey. His research
interests include software-defined radios, real-time embedded systems,
agent computing, Java processing, multicore processing in FPGAs,
and astrodynamic computing methods in many spaceflight payloads.

http://arxiv.org/abs/1710.10296
http://arxiv.org/abs/1710.10296
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://uk.mathworks.com/help/hdlcoder/ug/generate-target-independent-hdl-code-with-native-floating-point-libraries.html
https://uk.mathworks.com/help/hdlcoder/ug/generate-target-independent-hdl-code-with-native-floating-point-libraries.html
https://uk.mathworks.com/help/hdlcoder/ug/generate-target-independent-hdl-code-with-native-floating-point-libraries.html
https://doi.org/10.1016/j.ress.2005.11.018

	Automated CNN back-propagation pipeline generation for FPGA online training
	Abstract
	1 Introduction
	2 Related work
	3 Mathematical basis for convolutional backpropagation
	3.1 Convolution
	3.1.1 Finding filter local gradient ∂L∂F
	3.1.2 Finding previous layer local gradient ∂L∂X

	3.2 Pooling
	3.2.1 Average pooling
	3.2.2 Max pooling

	3.3 Rectified linear unit activation (ReLU)
	3.4 Fully connected
	3.5 Softmax loss function

	4 Research proposal
	4.1 Automated hardware design generation
	4.1.1 Proposed convolutional layer design
	4.1.1.1 Resource estimation for convolutional units and for FP:
	4.1.1.2 Resource estimation for convolutional units and for BP

	4.1.2 Proposed pooling layer design
	4.1.2.1 Average pooling
	4.1.2.2 Maximum pooling

	4.1.3 Proposed fully connected layer design
	4.1.3.1 Resource estimation for fully connected units and FCPEs for FP
	4.1.3.2 Resource estimation for fully connected units and FCPEs for BP

	4.1.4 Proposed softmax and loss function design
	4.1.5 Scheduler

	4.2 Automated design generation using MOGA

	5 Experiments and results
	5.1 MOGA results
	5.2 FPGA experimental setup
	5.3 FPGA experimental results and analysis

	6 Conclusion
	References

