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Abstract
Training of convolutional neural networks (CNNs) on embedded platforms to support on-device learning has become 
essential for the future deployment of CNNs on autonomous systems. In this work, we present an automated CNN training 
pipeline compilation tool for Xilinx FPGAs. We automatically generate multiple hardware designs from high-level CNN 
descriptions using a multi-objective optimization algorithm that explores the design space by exploiting CNN parallelism. 
These designs that trade-off resources for throughput allow users to tailor implementations to their hardware and applica-
tions. The training pipeline is generated based on the backpropagation (BP) equations of convolution which highlight an 
overlap in computation. We translate the overlap into hardware by reusing most of the forward pass (FP) pipeline reducing 
the resources overhead. The implementation uses a streaming interface that lends itself well to data streams and live feeds 
instead of static data reads from memory. Meaning, we do not use the standard array of processing elements (PEs) approach, 
which is efficient for offline inference, instead we translate the architecture into a pipeline where data is streamed through 
allowing for new samples to be read as they become available. We validate the results using the Zynq-7100 on three datasets 
and varying size architectures against CPU and GPU implementations. GPUs consistently outperform FPGAs in training 
times in batch processing scenarios, but in data stream scenarios, FPGA designs achieve a significant speedup compared 
to GPU and CPU when enough resources are dedicated to the learning task. A 2.8×, 5.8×, and 3× speed up over GPU was 
achieved on three architectures trained on MNIST, SVHN, and CIFAR-10 respectively.

Keywords  Convolutional neural networks · Automated hardware design · Online training · Continuous learning · FPGA 
design

1  Introduction

Recent literature shows a clear demand for embedded 
deep learning solutions for hardware-constrained designs 
and novel compression techniques. CPUs and GPUs have 
been prominent for executing CNNs on offline training set-
tings however, their energy efficiency and low throughput 
have made them less attractive for embedded use. For their 
power-efficient performance and highly parallelised flexible 
architecture, FPGAs presented themselves as a viable option 
for hard real-time computation of heavy, deep learning 

applications [1]. Also, FPGAs allow designers to develop 
modular IP cores allowing for easier prototyping with the 
option to selectively deploy design areas at runtime without 
risk to the overall application. This is crucial given the rapid 
changes in CNN architectures. Until recently, most works 
only investigated the hardware implementation of forward 
pass CNNs as inference engines and accelerators, there is 
plenty of research done to map the CNN forward pass unto 
FPGAs for embedded inference [2–18], in contrast, there 
is a clear lack of work in the areas of online deployment 
and training on FPGAs. But with the recent breakthroughs 
in the new field of Continuous Learning [19–23], online 
training on embedded platforms has attracted more research. 
In [20] the authors test continuous learning scenarios on 
benchmark datasets, they investigate the required parameters 
and conditions for continuous learning to be effective, their 
main findings show that it is possible and effective if the 
models account for the catastrophic forgetting problem by 
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retaining previously learned information. In [23], the authors 
proposed an adaptive hierarchical network structure com-
posed of CNNs that can grow to accommodate new classes 
and tasks when new data becomes available. Similarly, in 
[21], Yoon et al. propose an expandable architecture capable 
of selective retraining when presented with new tasks and 
data. The continuous learning research community is mainly 
interested in scenarios [24] where datasets are unavailable 
in the form of neatly organized fully tagged datasets, but in 
an evolving application where new samples are made avail-
able at different times after the models are trained on the 
main dataset. An example of this would be a self-driving 
car trained on an object detection dataset receiving new data 
samples during deployment. Space agents such as Satellites 
and Rovers [25, 26] can benefit from such capabilities as 
well, changes to the mission parameters or visual environ-
ment can necessitate online learning to remotely account for 
these unexpected changes. Such new online data could be 
vital for the system’s real-world performance as opposed to 
the simulated offline performance benchmarked on an organ-
ized dataset. For these reasons, training on FPGA platforms 
becomes even more appealing.

In this work, we identify the significant computational 
overlap between the inference task and training task in 
CNNs and translate it into a new FPGA pipeline. This allows 
for the design of CNN hardware models capable of both 
inference and online training whilst minimizing the resource 
overhead. Despite the overlap, the training process of CNNs 
is still computationally complicated and requires significant 
changes to the data path of the hardware design, managing 
the data from the forward pass, updating parameters, and 
calculating gradients. Compared to inference, the training 
phase involves a much higher number of operations (> 3×) 
with increased mathematical complexity [27], and a back-
ward pass can take twice the time of a forward pass [28]. 
The training phase also involves high intermediate datasets, 
necessitating high memory bandwidth, and large storage. We 
acknowledge that GPUs have been the de-facto for training 
tasks to meet immense computation requirements. How-
ever, compared to FPGAs, typical GPUs’ energy efficiency 
is poor [1]. Nvidia’s Jetson family provides an alternative 
low power approach with a focus on embedded AI operat-
ing at 5–30 W. However, the Jetson GPUs were designed as 
low-power inference engines and not optimized for training 
purposes like our proposed combined real-time training and 
inference FPGA solution.

2 � Related work

In both academic and professional fields, GPUs are still the 
platform of choice for CNN training, and companies such 
as Facebook and Google maintain datacentres with GPU 

clusters. Such clusters are employed for training on large 
amounts of data and incur high costs due to the GPUs’ high-
power consumption rates and the energy overhead needed 
for cooling, making them expensive to maintain operation-
ally. Google sought a solution in researching the possibil-
ity of using ASIC and FPGAs within their servers so the 
workload of training and running deep learning models is 
offloaded. This resulted in the successful design and wide-
scale deployment of the Tensor Processing Unit (TPU) [29] 
for training and inference. Other companies such as Micro-
soft [30, 31] and Amazon’s “AWS EC2 F1” instance fol-
lowed suit in using FPGA clusters within their data centres 
and servers for back-end training and inference at a lower 
power cost—highlighting the trend for low-power solutions 
utilising FPGAs. CNN training on FPGA platforms has 
not been investigated thoroughly with only two exceptions 
that focus on batch training which uses FPGA platforms as 
replacements for GPUs clusters in offline training [28, 32]. 
In [27] Wenlai et al. presented F-CNN, the first CPU/FPGA 
hybrid design for deploying and training CNN networks. The 
CPU is used as a controller and the FPGA as an accelerator. 
They employ an analytical model to generate a backpropaga-
tion model. Their implementation of CNN training involves 
a direct translation of backpropagation equations for error 
calculation and parameter updates. This requires the intro-
duction of significant resource overheads since it does not 
fully consider the overlap in calculations within the forward 
pass. In [32] Venkataramanaiah et al. extends work from 
[28] and introduces a hardware CNN training RTL compiler. 
Their work is purely FPGA and relies on static processing 
element arrays for convolutional calculations. It uses pre-
optimized and precompiled Verilog CNN hardware modules, 
but unlike [27] has no analytical model to inform the com-
pilation and provide design space exploration. Both works 
do not present extensive experimental results and only cover 
Ler-Net 5 [33] and custom architectures rather than mod-
ern CNNs as benchmarks. In addition, they deploy different 
data representation schemes, 32-bit and 16-bit, respectively, 
and use different development boards operating at differ-
ent frequencies which makes it challenging to compare the 
implementations in terms of resource and latency overheads.

One area of research that remains unexplored is continu-
ous learning on embedded platforms, mainly FPGAs. This 
requires on-board implementations of training algorithms 
for CNN models which are flexible and allow users to eas-
ily explore the design space for suitable designs based on 
the hardware and its applications. In our previous work [18] 
we proposed an FPGA compiler for CNN inference, the 
compiler generates FPGA pipelines from high-level CNN 
input architectures, it generates a Simulink hardware model 
which is validated then translated into RTL/VHDL. For 
this research, we expand on the same compiler to include 
an improved design space exploration step and a training 
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pipeline with the aim of reusing most of the original forward 
pass pipeline resources.

The main contributions of this work are,

•	 Providing deep learning engineers with an automated 
CNN compiler tool for FPGAs which supports inference 
and online training.

•	 Using analytical equations to model the complied 
design’s expected performance trade-space using a multi-
objective optimization genetic algorithm, allowing the 
user to automate the design space exploration for trade-
offs in accuracy, latency, and resources.

This paper will cover the fundamentals of CNN back-
propagation and highlight the areas where they overlap with 
the forward pass can be exploited in Sect. 2. Then in Sect. 3, 
the proposed research will be presented, this includes the 
hardware models of these functionalities with the analytical 
equations for latency and resources. The section also covers 
design space exploration using the multi-objective optimi-
zation algorithm. Section 4 will be dedicated to the experi-
ments and results, first, MOGA results will be presented 
on three different datasets and four architectures. Finally, 
the section will cover the implementation of the models 
obtained from the previous sections on a Xilinx FPGA, a 
breakdown of latency and resources results will be given 
followed by discussion and comparison with related works.

3 � Mathematical basis for convolutional 
backpropagation

3.1 � Convolution

A convolutional layer and a convolutional network, as a 
whole, can be treated as a computational graph. Let us say 
we have a gate f in a computational graph with inputs X 
and Y which outputs Z. For a simple function F which 
takes X and Y as inputs and outputs Z, local gradients can 
be computed by differentiating Z with respect to X and 
Y as ∂z/∂x and ∂z/∂y. For a convolutional forward pass, the 
inputs process through the CNN layer, and at the output, 
the loss is obtained using a loss function which quantifies 
the error between the ground truth and the real output. 
When we process the loss backward, layer across layer, 
we obtain the gradient of the loss from the previous layer 
as ∂L/∂z. For the loss to be propagated to the other gates, 
we need to find ∂L/∂x and ∂L/∂y. Using the chain rule, we 
can calculate ∂L/∂x and ∂L/∂y, which would propagate to 
the other layers. Let us assume the function F is a convolu-
tional operation between input matrix X and a filter matrix 
F. convolution between Input X and Filter F, gives us an 
output matrix O. This process describe the convolutional 

Forward Pass (FP) and the output matrix O will be for-
warded to the next layer as an input matrix X. For the 
Backward Pass (BP) we find the loss gradient with respect 
to the Output O from the next layer as ∂L/∂O.

As seen in Fig.  1, we can find the local gradi-
ents ∂O/∂X and ∂O/∂F with respect to Output O . Using chain 
rule and the loss gradient from the previous layer ∂L/∂O, we 
can calculate ∂L/∂X and ∂L/∂F. In the following subsections, 
we briefly show the process of calculating both gradients to 
help determine the critical overlapping elements.

3.1.1 � Finding filter local gradient ∂L/∂F

The first step is to calculate the local gradient ∂L/∂F which 
will be used to update the new weight matr ix 
Fnew = F + �

(
�L

�F

)
 with � being the learning rate, it is a 

configurable hyperparameter used during training to affect 
the amount the weights are updated, it has a small positive 
value, often in the range between 0.0 and 1.0.

Thus, we calculate �L
�F

=
�L

�O
×

�O

�F
 where �L

�F
 is the gradient 

to update Filter F, �L
�O

 is the loss gradient from the previous 
layer, �O

�F
 is the local gradient.

To find the local gradient—∂O/∂F we must differentiate 
Output Matrix O with respect to Filter matrix F. Matrix O 
values are known from the FP:

Therefore, finding derivatives with respect to F gives 
Eq. (1), for every element of F where M and N are the 
dimensions of matrix O:

Expanding and substituting the values of ∂O/∂F with X 
gives a set of equations which represent a convolutional 
operation between input X  and loss gradient ∂L/∂O as 
shown in Fig. 2.

(1)�L

�Fi, j

=

M∑
K=1

N∑
L=1

�L

�OK, L

×
�OK, L

�Fi, j

.

Fig. 1   Function F during a backward pass to calculate input local gra-
dients
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3.1.2 � Finding previous layer local gradient ∂L/∂X

Finding the local gradient ∂O/∂X which will be backpropa-
gated to the previous layer is achieved using the Chain rule 
as in Eq. (2): For every element of X where M and N are the 
dimensions of matrix O:

Expanding Eq. (2) and substituting ∂O/∂X with F which 
is equal to the derivative of O with respect to X gives a full 
set of equations which show that ∂L/∂X can be represented 
as a full convolution between a 180-degree rotated Filter F 
and loss gradient ∂L/∂O as seen in Fig. 3. Full convolution 
is different from regular or valid convolution where a filter 
only scans elements within the feature map without going 
outside (adding padding), full convolution applies filters 
starting from the top-left element being centered, and pad-
ding is needed for the elements outside the feature map.

Equations (3) and (4) highlight an overlap in computa-
tion between the forward and backward pass, convolutional 
computations are required for feature extraction and gradient 
calculations. An efficient design should take advantage of this 

(2)�L

�Xi , j

=

M∑
K=1

N∑
L=1

�L

�OK, L

×
�OK, L

�Xi, j

.

(3)
�L

�F
= Convolution

(
Input, Loss Gradient

�L

�O

)
,

(4)
�L

�X
= Full

Conv

(
180◦ weights, Loss Gradient

�L

�O

)
.

by reusing computational resources dedicated to the forward 
pass during the backward pass, we describe this in more detail 
in the following sections, we will also use dF and dX to refer 
to �L

�F
 and �L

�X
 in the following sections.

3.2 � Pooling

No learning takes place on the pooling layers. The function 
of the pooling layer is to progressively reduce the convolu-
tion spatial size and reduce the number of parameters and 
computation in the network. This also controls overfitting by 
reducing the feature space available during training. There 
are two common types of pooling: average and maximum.

3.2.1 � Average pooling

During the FP, average pooling outputs the average of the 
input elements using a scanning window where a K by K 
window scans through the input matrix from the top left to 
the bottom right. During the BP, the error ∂L/∂O is multi-
plied by  1

K2
 where K is the dimension of the scanning win-

dow, the result is assigned to the whole pooling block (all 
units get the same value).

3.2.2 � Max pooling

During the FP, max-pooling outputs the maximum of the 
input elements (winning element) using a scanning window. 
The BP error is simply assigned to the “winning element” 
because other units in the previous layer’s pooling blocks did 
not contribute to the output, hence all the others are assigned 
values of zero.

3.3 � Rectified linear unit activation (ReLU)

During the FP, the ReLU layer changes all negative elements 
to zero while retaining the value of the positive elements. 
No learning takes place and no spatial/depth information is 
changed. During the BP, gradients of the positive elements 
retain their value while the rest become zero.

3.4 � Fully connected

During the FP, the fully connected layer calculates the dot 
product of the vectorized input X = [X1 X2 Xn] , the weight 
matrix W, and bias vector B, as described in Eq. (5).

(5)
W =

⎛
⎜⎜⎝

W11 W12 W1n

W21 W22 W2n

Wk1 Wk2 Wkn

⎞⎟⎟⎠
B = [b1 b2 … bk]

Y = (W ⋅ X) + B.

Fig. 2   Demonstration of how ∂L/∂F = Convolution of input matrix X 
and loss gradient ∂L/∂O 

Fig. 3   Demonstration of how full convolution generates the values of 
∂L/∂X and can be used to represent ∂L/∂X 
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Equation (6) and (7) describe the backward pass to calcu-
late local gradients dW and dX using the loss gradient from 
the previous layer (softmax) and input and weight vectors 
X and W:

3.5 � Softmax loss function

Softmax function takes an N-dimensional vector of real 
numbers x from the fully connected layer and transforms it 
into a vector of real number probabilities p , size k, in range 
(0, 1) which add up to 1, as described in Eq. (8).

Cross entropy indicates the distance between what the 
model believes the output distribution should be, and what 
the distribution is. It is defined as Eq. (9)

Equation (10) describes the final derivative of the Cross-
entropy loss function with a softmax, with p being the output 
vector and y being the ground truth target, this is the global 
gradient for the Softmax layer which will be backpropagated 
to the previous layers.

4 � Research proposal

4.1 � Automated hardware design generation

The model-based hardware design workflow shown in Fig. 4, 
automatically generates target agnostic RTL for CNN archi-
tectures for series-networks and directed acyclic graphs. Our 
tool first parses a pre-trained input graph provided by the 
user for network information and parameters. This informa-
tion is used to initialize and generate PEs for the different 
functionalities, these PEs are then fetched to populate the 
design space creating a hardware model representation of 
the input graph. This is achieved in Simulink, this hardware 
model is explored using a Multi-Objective Genetic Algo-
rithm (MOGA) by taking advantage of the inter-layer par-
allelism in Conv layers and dedicating more or fewer PEs 
for convolutional operations. Once the hardware model is 

(6)�W = [dL1, dL2, dLk] X,

(7)�X = [dL1, dL2, dLk] W.

(8)pi =
exi∑K

k=1
exk

.

(9)F(y, p) = −
∑
i

yi log
(
pi
)
.

(10)
�L

�zi
= (pi − yi).

verified, RTL code is generated for the whole design. The 
tool uses MATLAB scripts, Simulink environment, and 
Vivado for a complete compilation of a pre-trained CNN. 
The layers presented in Sect. 2 are supported by the com-
piler to be translated into hardware for FPGA use within a 
streaming interface where data inputs are streamed through 
the design pipeline with control signals. The control signal 
is generated alongside the pixel stream to schedule and con-
trol the process, this signal specifies the beginning and end 
of rows and columns plus the validity of each pixel using a 
5-bit binary vector as seen in Fig. 5. The different layers are 
converted into separate processing units, each unit contains 
a number of Processing Elements (PEs) such as convolu-
tion, pooling, non-linearity, and fully connected operations. 
The PEs for the FP are described first, then changes to the 
design will be introduced to accommodate backpropagation 
and learning. 

The verification environment, seen in Fig. 6, is a co-sim-
ulation environment between the hardware Simulink model 
and an HDL simulation tool, Vivado in our case. The tool 

Fig. 4   Overall system diagram from CNN input to generated and ver-
ified HDL design
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compiles an HDL project and generates a Simulink co-sim-
ulation block. The block is used to communicate between 
the Simulink environment and the HDL code. The client-
side Simulink environment allows the user to provide input 
stimulus in the form of a MATLAB classification dataset 
or test images. The server reads the dataset samples and 
corresponding ground truth information, it generates a data 
stream and a control signal from the images and feeds it 
into the HDL code block. The HDL code block communi-
cates with the HDL simulation tool by sending this data and 
reading its outputs. This is achieved using Tool Command 
Language (TCL) scripts. The output data is sent back to 
the Simulink environment where it can be displayed, saved, 
visualized, and analysed.

Our implementation uses a streaming interface that lends 
itself well to real-time data streams instead of static data 
reads from memory. This means we do not use the standard 
array of PEs approach, which is typically efficient for offline 
inference setups. Instead, we translate the architecture into 
a pipeline where data is streamed through allowing for new 
samples to be read as they become available. The blocks 
using this interface do not need a configuration option for 
the exact image size or the size of the inactive regions. In 
addition, if image parameters are changed, there will be no 
need to update each block. Instead, an update to the image 

parameters once at the serialization step is sufficient and 
subsequent tuneable parameters for the other blocks such 
as the size of the line buffers will be changed as a func-
tion of the new input data size by the compiler. Once these 
parameters are fixed and a hardware model is generated, 
it is not possible to modify them at runtime. By using a 
streaming pixel interface with control signals, each block 
or object starts computation on a new segment of pixels at 
the start-of-line or start-of-frame signal. The computation 
occurs whether the block or object receives the end signal 
for the previous segment or not. The work on the automated 
generation of the FP pipeline is described at length in our 
previous publication [18]. To develop our new online sys-
tem, we revisit and update critical information for the sci-
entific community.

4.1.1 � Proposed convolutional layer design

The convolutional PE 
(
CPE

)
 requires two main processing 

blocks, a line buffer, and a Multiply and Accumulate (MAC) 
block. The line buffer uses FIFOs to buffer the input feature 
maps as they are streamed into the PE, then tap out the ele-
ments required for the currently active window, the active 
window is always of the size K × K which is the size of the 
applied filter. For instance, a 3 × 3 filter requires 9 elements 
from different rows and is synchronized using a control sig-
nal. The MAC core simply receives the tapped-out elements, 
multiplies them by their corresponding filter elements, and 
accumulates them into an element of the output feature map 
using an adder tree. The output feature map is streamed fur-
ther into the pipeline for subsequent processing as new ele-
ments become available each cycle [18]. Equations (11), 
(12), and (13) show the resource modelling equations Where 
K is the filter dimension, Nmult is the number of multipli-
ers,Nadd is the number of adders and Naddstages

 is the number 
of stages needed in the adder tree. Equation (14) shows the 
main latency modelling equation for the convolutional 
pipeline.

(11)Nmult = K2,

(12)Max_Nadd_stages = log2( K
2) + 1,

(13)
Nadd =

[k2 − 1](
MaxNaddstages

Naddstages

) ,

Fig. 5   Control signal for a 3 × 3 window with 1-pixel padding interval 
[17]

Fig. 6   Co-simulation and verification environment using Simulink as 
a client and Vivado as server allowing for sending stimuli and visual-
izing responses
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The variables for the latency modelling equation are:

•	 BP, FP: Back Porch and Front Porch values for vertical 
blanking. The total of Back porch + Front porch must 
be at least 2 times the largest filter size.

•	 FMiW FMiH : Feature Map width and height in pixels.
•	 Padding: Time needed to implement vertical and hori-

zontal padding on input data and move it to the output.
•	 TapOut : Time needed to move data from the line buffer 

into registers which taps out relevant elements needed 
for the multiplier, K Clk Cycles.

•	 MultiplyOut : Time needed to move data from Tap_out 
registers to Multipliers, K Clk Cycles.

•	 Add - TreeOut : Time needed to move Multiply_out 
results from registers to adder tree. Takes (Naddstages

× 
Clk) + 2 delay Cycles to put intermediate data in regis-
ters.

•	 InDelay , OutDelay ∶ Time needed to move data into reg-
isters and give the system enough time for processing. 
Set to 4 Clk each, InDelay is only needed for the first 
layer, OutDelay is included for every convolutional PE.

•	 ReLU: Time needed to apply rectified linear unit on 
elements, a conditional switch is used, it takes 1 clock 
cycle per element.

For the backward pass, two more CPEs are required to 
calculate dF and dX as described in Sect. 3.1 and Eq. (3) 
and (4). These PEs require weights and input data from 
the last forward pass, thus every training cycle requires 
saving the input feature maps and last updated weights 
for the FP CPE into an internal memory block. Weights 
for the CPE are K2 elements saved as FixP = 16-bit 
fixed point and thus require 

[(
K2 × FixP

)
∕8

]
 Bytes of 

memory. A Conv Layer with N Conv PEs, therefore, 
requires N ×

[(
K2 × FixP

)
∕8

]
Bytes of internal mem-

ory to buffer in the weights for a fully parallelised con-
volutional layer. The feature maps require buffering 
of N

[
(FMw × FMh × FixP)∕8

]
 Bytes while consider-

ing that feature map dimensions are spatially reduced 
deeper in the network from pooling and convolution, 
dimensionality is described by the following equation 
FMw = ((FMw − K − P∕S) + 1 where P is padding and 
S is stride. During backpropagation, weights and input 

(14)CPE(T) = Clk ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎣

InDelay +
�
BP +

1

2

�
+

⎡
⎢⎢⎣

�
FMiW + BP + FP

�
×
�
FMiH

�
+FMiH

⎤
⎥⎥⎦

+Paddingt + TapOut
+MultiplyOut + AddTreeOut

+OutDelay

⎤
⎥⎥⎥⎥⎥⎥⎦

+ReLUT

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

feature maps are read by the dF and dX units requiring 
additional registers to save the intermediate results and 
two more CPEs to calculate new local gradients and update 
the weights. The results are saved into BRAM. dF is used 
to update the weights and the new weights are read again 
next FP cycle, dX is read by the next layer. This process 
needs to be synchronized so needed inputs are available 
to be read and written from/to memory when needed. This 
is achieved using a new scheduler and a memory-control 
block added to each convolutional unit as needed. The 
CPE used for the FP convolution can be reused during the 
BP to perform the 2D convolution required to calculate 
dF and update the weights. The same CPE can be adjusted 
to calculate dX as well, if latency is not a priority. Other-
wise, parallelising dF and dX calculations would require 
an additional CPE . Figure 7 shows a backpropagation unit, 
input X from the previous FP is saved and read from the 
memory block to be used in calculating the gradients, two 
CPE are dedicated to calculating dF and dX. dX is calcu-
lated using the rotated F matrix and dY of the next layer, 
dX is passed to the next layer as dY. dF from the current 
cycle is used to update the weights F for the next FP using 
learning rate α. The new weights F are used for the next 
FP and the outputs are again saved in memory for the next 
BP cycle. The generated Simulink hardware model with 
the same process can be seen in Fig. 8 the inputs are a BP 
enable signal, previous layer dL stream, learning factor, 

Fig. 7   Backward pass diagram for the Convolutional Unit, T for the 
FP cycle, T + 1 for backpropagation, T − 1 for the input data saved 
from the previous cycle
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input frame and a control signal, outputting an output 
frame, dX, and dF plus a control signal.

Our new workflow gives the option of generating designs 
that implement a Forward Pass CNN pipeline alone or add-
ing the CNN training pipeline. Hardware resources required 
for each can be estimated from the generated generic PEs 
and layer parameters (Eqs. 11–14), the estimations allow 
the tool to generate multiple designs based on resource 
limitations and user input. Block Ram (BRAM) tiles are 
currently assumed to be RAMB36E1 which can be used 
as RAMB18E1 and FIFO18E1 [34] when needed. DSP 
is assumed to be (18 × 25 MACCs) Zynq-7000 generation 
architecture [34].

4.1.1.1  Resource estimation for convolutional units and C
PEs

 
for FP:  The FPGA hardware representation of the FP pipe-
line of the convolutional PEs uses these estimations in addi-
tion to the equations described earlier to create an analytical 
model:

•	 DSP Slices: K2 DSP slices are mapped to each unique 
Conv PE, the mapping maximises performance by dedi-
cating a multiplier for each coefficient of the Conv unit 
filter.

•	 LUT slices: an upward of ~ 800 LUT slices are dedicated 
to each generic Conv unit, these are used as shift registers 
for the Line Buffer, and as logic and Muxes. ~ 300 of 
which are used for the Line Buffer.

•	 Block RAM: at FixP = 16-bit fixed-point representation, 
2 18 k BRAMs are dedicated to each Conv unit for the 
line Buffer FIFO.

•	 BRAMlinebuffer = Ceiling
(
FMSize × K ×

FixP

18Kb

)
.

4.1.1.2  Resource estimation for convolutional units and C
PEs

 
for BP  The FPGA hardware representation of the BP pipe-
line of the convolutional PEs uses these estimations:

•	 DSP Slices: 
(
K2 × 2

)
+ 1 DSP slices are mapped to each 

unique Conv unit, K2 to dX CPE , K2 to dF CPE , and one 
for the scheduler to update the weights by multiplying the 
gradient by the learning rate.

•	 LUT slices: An upward of ~ 2200 LUT slices are dedi-
cated to each generic Conv unit, these are used as shift 
registers for the Line Buffer, logic, and Muxes. ~ 800 
for the two dX and dF PEs, ~ 800 for the scheduler and 
memory control.

•	 Block RAM: At FixP = 16-bit fixed-point representation, 
5 18 k BRAMs are dedicated to each Conv unit, 2 for 
the dX line-buffer, 2 for the dF line-buffer, and 1 for the 
memory controller using a FIFO to save intermediate 
feature maps of size 32 × 32 or less.

BRAMMemory =
(
FMHeight × FMwidth ×

FixP

18Kb

)
,

Fig. 8   Generated hardware model for a convolutional unit in simulink
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4.1.2 � Proposed pooling layer design

For our work, we consider both Maximum and average pool-
ing implementations:

4.1.2.1  Average pooling  A stripped-down version of the 
CLPE is used for average pooling, the same memory control, 
and kernel core structure is used to apply weights that result 
in averaged values of the scanning windows, no registers 
are needed to save the kernel coefficients and no weights 
and biases are read from memory. For the BP, the same line 
buffer FIFOs are used to tap a zero mask for every element 
from dX and add the value of that element to the zero mask.

4.1.2.2  Maximum pooling  Maximum pooling uses the 
same Memory control structure but replaces the MAC 
core with a comparator tree. For the Backward pass, there 
is no gradient with respect to non-maximum values. Thus, 
the gradient dX from the next layer is passed back to only 
the winning element (maximum element). All other neu-
rons get zero gradients. To implement, this the same line 
buffers are used to store elements from dX, the input X 
feature map elements from the FP are saved into on-chip 
memory FIFO18E1 or FIFO36E1 alongside their indices. 
These elements are used to upsample the input feature 
map using demultiplexers.

4.1.3 � Proposed fully connected layer design

The fully connected PE ( FCPE ) is implemented as paral-
lelized MAC units. These units multiply the feature-map 
elements streamed in from the last layer and multiply them 
by their corresponding weights and accumulates them into 
an output register. This is done for each FC output head. 
The process can be further parallelized to alleviate the 
processing bottleneck of streamed data by using multiple 
FCPEs in parallel to process the data channels from the last 
layer concurrently. Equation (15–17) show the resource 
modelling equations while Eq.  (18) shows the latency 
modelling equation.

BRAMlinebuffer =
(
FMSize × K ×

FixP

18Kb

)
.

(15)Nmult = FCout × N,

(16)Nadd =
[[
FCout × N

]
+
(
FCout × Nadd

)]
,

(17)Nreg = FCout × P,

where FCout is the number of output heads in the FC layer. 
N is the number of FCPE dedicated for every output head. 
Nadd is the number of adders needed for the adder tree. Nreg 
is the number of registers needed to accumulate the outputs 
of the different PEs.

P is the Parallelism-coefficient, a new term equal to 
the ratio between the number of input data channels over 
the number of FCPEs . So ChD∕FCPE equals to 1 when the 
number of FCPE is equal to the number of input data chan-
nels, fully paralyzing the computation at the expense of 
chip resources.

For the BP, the FP PEs can also be reused for the MAC 
calculations to calculate dF and dX which require matrix 
multiplications, dX calculations are parallelized to improve 
throughput and thus require additional resources. Also, a 
scheduler and a memory control block are required to both 
synchronize the process and save intermediate results from 
the forward pass. Figure 9 shows how the FC PEs are used 
to both calculate the FP output FC_Out which are saved 
in memory for the BP, the gradients dF used to update the 
weights, and dX which is backpropagated to the next layer.

4.1.3.1  Resource estimation for  fully connected units 
and  FCPEs for  FP  The generated hardware model uses 
generic PEs for the FP pipelines, this allows us to estimate 
the resources needed for the generated pipeline.

•	 DSP Slices: 1 DSP slice is mapped to every FC unit 
dedicated to multiplying and accumulating weights 
assigned to the unit with incoming feature map ele-
ments.

•	 LUT slices: An upward of ~ 20 slices are dedicated to 
every FC PE as logic.

(18)

FCPE (T)

= Clk ×
[(
FMiW + BP + FP

)
×
(
FMiH − 1

)
+ FMiH

]
× P,

Fig. 9   Backward pass diagram for the Fully Connected Unit
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•	 Block RAM: No BRAM is required for the FC units 
and PEs.

4.1.3.2  Resource estimation for  fully connected units 
and  FCPEs for  BP  The FPGA hardware representation of 
the BP pipeline of the fully connected PEs follows the fol-
lowing estimations.

•	 DSP Slices: 1 DSP slices is mapped to every FC unit ded-
icated to multiplying and accumulating weights assigned 
to the unit with incoming feature map elements. For an 
FC layer with FCOut output heads, FCOut DSP slices are 
required, an additional FCOut is needed to calculate dX 
assuming the FP slices are reused to calculate dF.

•	 LUT slices: An upward of ~ 400 is dedicated to every 
FC head as logic. 10 LUT Slices for dX, ~ 200 for dF, 
and ~ 100 for the memory control and scheduler. An 
upward of ~ 20 is dedicated to every FC PE as logic.

•	 Block RAM: One 18 K BRAM tile is required to save 
one feature map vector of 32 × 32 (one data channel) at 
16 bits.

4.1.4 � Proposed softmax and loss function design

Softmax is optional to include, it is implemented using 
MathWorks’s Native Floating Point library [35] and requires 
80 DSP slices, 20 K LUT slices, and no BRAM.

4.1.5 � Scheduler

The new scheduler is implemented as an automated block 
using Simulink. It uses conditional switches to route input 
data streams between the FP and BP pipelines. The stream-
ing architecture allows for variable stream sizes as the data 
is always accompanied by a control signal. The MAC Core 
size however is fixed and presents a challenge since the BP 
path convolutions would have different size Conv opera-
tion “filters”. This is circumvented by buffering the results 
and reusing the existing MAC core as needed. It is possible 
to compile the MAC core to support BP convolutions and 
reduce the latency of that stage. For our experiments, we use 
MAC cores that only support the original FP size. A BP_En 
signal acts as the main synchronizing signal for switching 
between the two modes. This signal enables the data reshap-
ing, rotating the F(t − 1) weight matrix, buffering the dL 
gradients for the MAC operations, and updating the weight 
and bias matrices with the new gradients. The scheduler 

BRAMMemory =

(
FMHeight × FMwidth ×

FPrep

18Kb

)
.

block receives a BP_En signal, learning rate variable, dL, 
dF, and dX plus their control signals when needed.

4.2 � Automated design generation using MOGA

When all processing elements are generated from the high-
level architecture data (number of layers, network graph, 
layer-specific parameters), they are used to populate a design 
space. The process to generate a design space for an archi-
tecture requires three steps:

Parse an input architecture for parameters and connec-
tions in MATLAB.
Programmatically generate generic PEs based on the data 
in MATLAB/Simulink.
Use the PEs, the latency, resources estimation equations, 
and the architecture data to model, explore and generate 
a design space.

Each architecture has a high-level description which 
will include the number of layers, the connections between 
them, and PEs initialized using filter size, stride, and pad-
ding parameters. The high-level description also allows for 
optionally including the SoftMax layer and training pipeline 
or just implementing an inference pipeline. Lastly, the FPGA 
board’s working frequency and resources in terms of availa-
ble DSP slices, BRAM, and logic are considered. The design 
space exploration process is treated as a multi-objective opti-
mization problem. Our goal is to find different configurations 
of the high-level architecture using intra-layer parallelism. 
Multi-objective optimization involves minimizing multiple 
objective functions subject to a set of constraints, for our 
case; the latency and FPGA resources. The constraints will 
depend on the architecture and user input. Figure 10 shows 
how the convolutional PEs are mapped to the pipeline, pool-
ing and non-linearity follow each layer but are not included 
in the figure and the number of FC PEs can be adjusted 
to parallelize the FC operations. PEs are dedicated to each 
active data channel streaming a feature map from the previ-
ous layer. The number of active PEs tasked with applying 
the layer’s filter is adjusted to reduce the resource overhead. 
For instance, a direct mapping means every filter will have 

Fig. 10   Design-Space generations using (L0 + L1 + L2) × 4 CPEs
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a dedicated PE, to trade-off latency and resources the num-
ber of dedicated PEs is changed. This number of dedicated 
PEs is what we aim to optimize, this is done by exploring 
the design space. Our optimization algorithm of choice is 
a genetic multi-objective optimization algorithm [36]. We 
provide the algorithm with the latency estimation equations 
per layer and PE, the resource estimation equations per PE, 
the number of convolutional layers, the number of filters per 
layer, the size of the filters, and the number of DSP slices 
available on the chip. The optimization goal is to minimize 
the number of PEs needed to implement an architecture 
while minimizing latency.

We provide the algorithm with three input arguments, a 
fitness function, an input vector whose size is equal to the 
number of variables to be optimized in the problem, and 
bounding constraints. The output returned by the MOGA 
is the points on the Pareto front, and the objective function 
values at the found Pareto front. For each iteration, the popu-
lation in the current generation is the number of samples the 
MOGA picks for optimization returning a fitness score for 
each variable, these scores inform the sampling of the next 
generation’s population. With a large population size, the 
genetic algorithm searches the solution space more thor-
oughly, thereby reducing the chance that the algorithm does 
not find a global minimum. However, a large population size 
also causes the algorithm to run more slowly, for our tests, 
we use higher population sizes for the deeper networks. The 
number of variables in the optimization is set to the number 
of convolutional layers, with an input vector P of size n ele-
ments constrained by a lower bound of 1 and an upper bound 
of ub. where ub is the number of convolutional filters in that 
layer. The optimization objectives are described by y, a vec-
tor of size four, where latency, DSP, LUT slices, and BRAM 
are optimized. DSP objective optimization is described by 
Eqs. (19) and (20). k is a vector of size n where each element 
is the dimension of the filters per layer (3 × 3 for example). 
L is a vector of size n, it holds the values of the maximum 
PEs needed to fully parallelize computations as calculated 
in Eq. (19). L(i) therefore holds the number of PEs required 
for layer i in the current configuration. For instance, if the 
number of input channels to L(2) is P(1) = 3, and P(2) is 
randomly set by the optimizer to 3 then L(2) is 9, meaning 
9 PEs are required for the fully parallelized computations 
in that layer.

5 � Experiments and results

5.1 � MOGA results

The architectures used for all experiments in this section and 
Sects. 5.2 and 5.3 are listed in Tables 1 and 2. Four custom 
architectures with differing depths and number of operations 
are used to simulate possible implementations of different 
complexity and computational load. For instance, a custom 
network of the shape a1 − a2 − a3 − a4 represents a network 
with four convolutional layers with a filter each layer, these 
layers are each followed by non-linearity ReLU, a pooling 
layer (average pooling was used for all the architectures in 

(19)
L(i) = P(i) × P(i − 1)

With (1 ≤ P(i) ≤ ub(i)),

(20)
Y(DSP) = [L(1) × k(1)2 + L(2) × k(2)2 …

+ L(n)) × k(n)2] ≤
(
DSPmax∕k2

)
.

Table 1   Architectures used for validation

Dataset Architecture Parameters Operations

MNIST [33] 8-8 155.16 K 2.86 M
MNIST 8-16-32 333.72 K 6.79 M
SVHN [37] 8-16-32-64 639.58 K 32.2 M
CIFAR-10 [38] 8-16-32-64-64 676 K 83 M

Table 2   Datasets used for training and validation

Dataset Type Size Classes Train/Test

MNIST Grayscale 28 × 28 10 50 K/10 K
SVHN RGB 32 × 32 10 50 K/10 K
CIFAR-10 RGB 32 × 32 10 75 K/25 K

Fig. 11   Multi-Objective Optimization of Resources against Latency 
on MNIST 8-8, MNIST 8-16-32, SVHN 8-16-32-64 and on CIFAR-
10 8-16-32-64-64, with Population Sizes 100, 250,600 and 800 
respectively
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this work), and finally a fully connected softmax output 
layer.

Y(DSP), Y(LUT), and Y(BRAM) use the resource esti-
mation data from the previous section and the latency 
equations Eqs. (14) and (18) to model the active configu-
ration’s latency estimation. This is based on the number 
of CPEs used per convolution layer and the number of 
FCPEs mapped to parallelize the FC layer. We use DSP 
slices as an optimizable objective alone with latency in the 
examples below because we have noticed that DSP slices 
estimation is the most accurate, unlike LUT slices and 
BRAM. This is because DSP slices are easier to predict 
as they are directly mapped for multiplications which can 
be estimated with high accuracy. When DSP slices are 
used for optimizing resources against latency, the other 
metrics consistently satisfy the constraints and conditions 
set by the user as well. Figure 11 shows the MOGA results, 
a clear trade-off between latency and DSP slices can be 
seen in all architectures. For MNIST 8-8, the optimizer 
found fewer configurations bounded between a minimal 
mapping and a direct mapping which is possible for such 
a small architecture, unlike the other three which were all 
constrained by the maximum number of DSP slices avail-
able on the Zynq-7100 which is 2020 slices.

5.2 � FPGA experimental setup

In Sects. 5.2 and 5.3, we aim to perform place and route 
implementations to assess performance metrics of the 
proposed pipelines, latency and resources will be used to 
explore the performance trade-offs between the different 
designs, also to estimate the resources overhead of includ-
ing the learning pipeline. Multiple designs are generated 
for each architecture using the MOGA, these designs will 
provide a trade-off between throughput and resources by 
reducing the number of active data channels per layer. Four 
designs for each architecture will be used for the experi-
mental setup. Training is achieved using stochastic gradient 
descent. We specify a mini-batch size (Bs) which sets the 
size of the subset batch we use for training from all avail-
able data for an iteration. We update weights after passing 
the data samples in each mini-batch, meaning the gradients 
are calculated once for each mini-batch. We stream the mini-
batch through the network one sample at a time, this does 
not affect the final training results. We choose to do this 
for two reasons. First, streaming mini-batch samples lends 
its self well to our main design objective which is generat-
ing CNN inference and online training designs, continues 
learning inherently necessitates small sample size process-
ing for training due to the limited availability of new data, 
this stands in contrast to having access to a full dataset 
off-chip and reading a mini-batch to train offline. Second, 
smaller mini-batch sample sizes, starting from one, allow Ta
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for successfully training on smaller designs which only use 
on-chip memory and can require less than 2% of the chip’s 
DSP slices as our results will show in Sect. 5.3, smaller 
input sample sizes allow for on-board training with limited 
resources. Larger sample sizes can be used depending on a 
design’s requirements but for our experiments, all sample 
sizes were set to one to simulate a continuous learning sce-
nario where the design is deployed on an embedded setting 
and new data is available in smaller samples for fine-tuning 
an already-trained network. Training a model from scratch 
using an offline dataset is not the objective of our work, for 
such scenarios discrete GPU setups remain to be more suit-
able. It is worth noting that the new data made available is 
of known classes, continuous learning of new classes is not 
possible using our setup since it would require an online 
change to the architecture’s output layers, this is possible 
using the FPGA’s online reconfiguration capabilities but 
not supported in this work. Tables 3, 4, 5, 6 show different 
implementations of the designs generated from the archi-
tectures listed in Table 1 trained on the datasets in Table 2. 
The generated designs can support FP inference alone or 
include backpropagation. Multiple designs with differing 
resource requirements and throughput performance were 
used for each architecture to highlight the different design 
options a user can pick from based on hardware limitations 
and task-specific performance and objectives. All simula-
tions and implementations were carried out on the Xilinx 
Zynq-7100 board. The post place and route implementations 
of the designs highlight the overhead of including backprop-
agation support in the designs. The overhead is consistent 
with the resource estimation details given in the previous 
section. Additional DSP slices are mapped to account for the 
additional parallelized processing needed to calculate local 
gradients and update weights. Additional BRAM blocks are 
dedicated to buffer intermediate data from the FP required 
for BP calculations and additional LUT slices are needed 
for the local schedulers and the overall new BP glue logic. 
Input data is sent to the testbench using the Vivado/Simulink 
co-simulation environment described in Sect. 4.1. The archi-
tectures were trained on a single GeForce GTX 1050 Ti GPU 
and an i7-6700 3.40 GHz × 8 CPU, the hyperparameters 
used for each training session were replicated for the FPGA 
training, the results are reported in Tables 3, 4, 5, 6. GPUs 
performance is optimal on batches because of the GPU’s 
built-in parallelizing capabilities. A different approach to 
comparing the performance based on our practical objectives 
is one-sample latency simulating data streams. Accuracies 
achieved using these hyperparameters specified in Tables 3, 
4, 5, 6 were 96.2, 99.6, 88.93, and 76.37% for MNIST-8-8, 
MNIST 8-16-32, SVHN 8-16-32-64, and CIFAR 8-16-32-
64-64 respectively.
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5.3 � FPGA experimental results and analysis

All tables show the resources of the different designs for FP 
and BP highlighting the overhead of including a training 
pipeline into the design which pushes some implementations 
beyond the available on-chip resources (seen highlighted 
in red) in Tables 4 and 5. These designs were included to 
highlight the overhead and the possibility of implementation 
when a larger board is available, the latency results included 
however are estimations from pre place-and-route simula-
tions. The different designs generated based on the number 
of dedicated PEs also highlight a clear trade-off between 
latency and resources, for instance, in Table 3 designs-1 and 
4 show an 200× speed up for 9× more DSP slices allowing 
the user to tailor the design process to their specific applica-
tion. In Training times, the GPU consistently performs better 
than the FPGA except for design-1 and 2 in Tables 3 and 4, 
this is because the FPGA is processing data as a stream one 
sample at a time while the GPU is built to process batches 
in parallel. A more accurate comparison can be seen in 
the stream-mode simulation on the GPU, it shows that the 
FPGA consistently outperforms the GPU on single-sample 
scenarios like online continuous learning. Latency results 
highlighted in green indicate that the FPGA outperformed 
the GPU for that specific design configuration and dataset, 
orange indicates the opposite. The results highlight FPGA 
platforms as strong candidates for future online learning 
applications, the per-sample latency, and energy overhead 
consistently outperform GPUs in online training scenarios 
with limited input data rates. Table 7 shows comparisons 
with related works, there is a clear lack of research in the 
area of online training of CNNs on FPGA, to the best of our 
knowledge [27] and [30] are the only works that have imple-
mented training architectures on FPGAs. In [27] and [30] 
Stratix-V and Startix-10 boards were used with 150 MHz 
and 240 MHz frequencies, 32-bit and 16-bit data representa-
tions with 1963 and 5760 DSP usage to implement LeNet-5 
MNIST and CIFAR-10 custom architecture respectively. 
Our training pipeline allows for new data to be processed 
as early as it becomes available while previous samples are 
still being processed, however the results we reported were 
for single samples, meaning the resources for the already 
processed areas of the pipeline become idle. When data is 
provided as early as an area of the pipeline becomes idle, we 
achieved an effective improvement in latencies upward of 4× 
times for deeper architectures. It is also worth mentioning 

that [30] used 5760 DSP slices at 240 MHz against our 2020 
DSP slices at 200 MHz.

6 � Conclusion

In this work, we have presented a fully automated design 
backpropagation pipeline for CNNs with a focus on online 
training. The pipeline uses a streaming interface and a mod-
ular design approach, generic PEs are generated and used to 
populate a design space based on the user’s specific require-
ments including the option to compile a training pipeline. 
We explore the design space using a multi-objective genetic 
algorithm and an analytical model of the network’s latency 
and estimated resources, these allow for optimizing the 
hardware model by exploiting CNN’s intralayer parallelism. 
Latency trade-offs of 95× for MNIST, 71× for CIFAR-10, 
and 18× for SVHN were achieved. Trade-offs in resource 
utilization in terms of DSP Slices were 44× for MNIST, 52× 
for SVHN, and 24× for CIFAR-10. The training pipeline 
is generated based on an overlap in computation between 
the forward and backward passes. We translate the overlap 
into hardware by reusing most of the forward pass pipeline 
reducing the resources overhead. The design also minimizes 
the need for off-chip memory by utilizing BRAM to buffer 
in parameters and intermediate feature maps when needed, 
feature maps are streamed during the FP. We minimize data 
movement by placing BRAM memory near PEs, this can 
be used to buffer in data when external memory is required 
for larger designs which was not covered in this work as we 
only used small to medium scale architectures. The results 
show that the FPGA implementations of these architectures 
outperform their GPU and CPU counterparts in most online 
learning scenarios where samples are streamed at a limited 
rate, A 2.8×, 5.8×, and 3× speed up over GPU was achieved 
on three deeper architectures trained on MNIST, SVHN, 
and CIFAR-10 respectively. Using batch processing, GPUs 
consistently outperform FPGA for larger designs. Our main 
objective in developing these tools is to support the onboard 
deployment of deep learning models for both inference and 
online learning. This tool can provide deep learning engi-
neers with an easy and accessible design cycle. There is a 
difficult challenge in scaling these tools efficiently to account 
for the rapid progress in modern CNNs, both in terms of 
the shape and size of new architectures. Future works in 
the field of on-board learning should tackle the limitations 

Table 7   Online training 
comparisons with related works

FPGA GPU (1050 Ti) CPU (i7)

This Work (ms) [28] (ms) [32] (ms) BS1 (ms) BS32 (ms) BS1 (ms) BS32 (ms)

CIFAR-10 4.61 NA 1.96 15 1.11 55 3.42
MNIST 2.88 53 NA 8.3 0.4 12.6 0.64
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of this work and the ones that preceded it, this includes the 
support for deeper architectures, and the different layers that 
are present in modern CNNs, automating the design and 
implementation of external memory protocols is, therefore, 
necessary as well.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
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