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Abstract In most image retrieval systems, images in-

clude various high-level semantics, called tags or an-

notations. Virtually all the state-of-the-art image an-

notation methods that handle imbalanced labeling are

search-based techniques which are time-consuming. In

this paper, a novel coupled dictionary learning approach

is proposed to learn a limited number of visual pro-

totypes and their corresponding semantics simultane-

ously. This approach leads to a real-time image anno-

tation procedure. Another contribution of this paper is

that utilizes a marginalized loss function instead of the

squared loss function that is inappropriate for image

annotation with imbalanced labels. We have employed

a marginalized loss function in our method to lever-

age a simple and effective method of prototype updat-

ing. Meanwhile, we have introduced `1 regularization

on semantic prototypes to preserve the sparse and im-

balanced nature of labels in learned semantic proto-

types. Finally, comprehensive experimental results on

various datasets demonstrate the efficiency of the pro-
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posed method for image annotation tasks in terms of ac-

curacy and time. The reference implementation is pub-

licly available on github.
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1 Introduction

Image annotation deals with the problem in which each

instance is represented by a single example that is asso-

ciated with multiple labels. The main challenges of the

image annotation problem, which distinguishes it from

standard multi-label problems, are “class-imbalance”

(extreme variations in the frequency of different labels),

“incomplete-labeling” (many images are not annotated
with all the relevant labels of the vocabulary) [37], and

“diverse-labeling” (predicted labels must be qialified

representative of the image and diverse from each other,

to reduce redundancy) [35]. Since the early approaches

of image annotation (e.g., generative-based models [25])

did not consider these challenges, they have low perfor-

mance in the annotation task.

Similarity-based strategy [8, 37] is arguably the most

intuitive solution that annotates a given image based

on its nearest neighbors, which is an effective approach

for image annotation tasks concerning the aforemen-

tioned challenges. Considering the potential weakness

of this strategy, which ignores correlations between la-

bels, various approaches such as metric learning [1, 37]

and sparse multi-view multi-label learning [44] focused

on both the visual contents of images and their cor-

responding labels, simultaneously. Metric learning [37]

aims to learn an improved similarity measure to en-

hance the efficacy of nearest-neighbor based approaches.

However, it is a time-consuming task to compare a

ar
X

iv
:2

30
4.

06
90

7v
2 

 [
cs

.C
V

] 
 1

7 
A

pr
 2

02
3

https://github.com/hamid-amiri/MCDL-Image-Annotation


2 Roostaiyan et al.

Fig. 1 Abstract of data summarization using MCDL. Exam-
ple images have been taken from IAPRTC-12 dataset. There
are shared visual and semantic contents in these images that
can be summarized into three representatives.

query image with all images in the dataset and select

the most similar images for annotating a query image.

Making a lot of comparisons leads to an unefficient

query time in image annotation, so moving toward a

real-time image annotation system is a demanded issue

in the real-world applications.

On the other hand, in large scale datasets, there are

some images with similar information in their visual

contents and semantic labels. Figure 1 shows samples

from IAPRTC-12 dataset that are visually and seman-

tically similar. Therefore, it is essential to reduce the

redundancy of annotated datasets without missing the

original information in the labeled images. To reduce

redundancy of the dataset, achieve a real-time annota-

tion mechanism, and presrve the generalization of the

annotation method, we follow this strategy in which

labeled images could be replaced by a set of represen-

tatives, called prototypes in this paper. Figure 1 illus-

trates the idea of data summarization based on the

prototype learning. As this figure shows, the primary

purpose of the proposed method, called Marginalized

Coupled Dictionary Learning (MCDL), is to factorize

images and their corresponding labels as a weighted

sum of learned prototypes. To achieve this goal, MCDL

method learns visual (image) prototypes and their cor-

responding semantic (label) counterparts simultaneously.

In this paper, we have suggested a joint optimiza-

tion problem to minimize the reconstruction and hinge

losses w.r.t the visual and semantic dictionaries. The

discrimination term utilized in MCDL can be regarded

as a modification of `1−norm Support Vector Machine

[9, 47], which was first presented for feature selection

in high dimensional feature spaces. The number of pro-

totypes is usually greater than the number of positive

samples for each label, which can raise the issue of over-

fitting. MCDL utilizes `1 regularization to learn seman-

tic prototypes as sparse as possible. Another inspiration

to use `1 regularization is that label vectors are sparse

by nature, and each visual prototype could correspond

to a few labels.

In the literature, similar strategies have been suggested

for multi-label classification [19,32], and image anno-

tation [15] to incorporate label discrimination in the

dictionary learning stage. Most of these methods uti-

lize squared loss function [15,43] for both image and

label modalities, aiming to reduce coding residual w.r.t

training samples. When using the squared loss function

for tags that are naturally imbalanced with many zero

entries, label reconstructions are biased to zero (Fig-

ure 3-a) due to the symmetric property of the squared

loss function. This will decrease decision margin and

lead to less generalization for the annotation step. To

tackle these issues, we have suggested a marginalized

loss function with `1 regularization on semantic proto-

types. Taking advantage of the marginalized hinge loss

function and `1 regularization, MCDL could obtain la-

beled prototypes with admissible generalization in the

test stage. To sum up, the main contributions of this

paper are as follows:

– A coupled dictionary learning strategy is proposed

to factorize labeled images into visual prototypes

and their corresponding semantic vectors.

– MCDL employs the hinge loss for semantic modal-

ity, which imposes loss values just for false posi-

tives and false negatives. While conventional cou-

pled dictionary learning approaches, such as Dis-

criminative K-SVD (D-KSVD) [43], Label Consis-

tent K-SVD (LC-KSVD) [14], and Multi-label Dic-

tionary Learning (MLDL) [15], employ the squared

loss defined over binary labels (D-KSVD) or codes

(LC-KSVD and MLDL) for label discrimination which

impose unnecessary reconstruction loss for true pos-

itives and true negatives.

– Each visual prototype can be associated with a few

semantic tags. We employ `1 regularization to im-

pose this sparsity prior knowledge about semantic

prototypes. This avoids the overfitting originating

from high dimensional space, especially when a few

positive samples are available for a label.

The rest of this paper is organized as follows. In Section

3, the related works are reviewed. Section 2 introduces

the definitions and notations used in this paper. The

proposed MCDL method and details of the annotation
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Table 1 Symbols and notations used in this paper.

N The number of training samples
M Dimensionality of feature vectors
T The number of labels (tags)

X ∈ RM×N Images matrix
Y ∈ RT×N Labels matrix

K Num of learned prototypes
N i+ Num of annotations for ith sample

N+
t Num of positive samples for tth tag

DI ∈ RM×K Visual dictionary
DL ∈ RT×K Semantic dictionary

DC ∈ R(M+T )×K Coupled dictionary
A ∈ RK×N Coefficients matrix

dCk ∈ R(M+T ) kth column of coupled dictionary
dIk ∈ R(M) kth column of visual dictionary
dLk ∈ R(T ) kth column of semantic dictionary

dLt ∈ R1×K tth row of semantic dictionary

strategy are described in Sections 4 and 5. Experimen-

tal settings and results are then presented in Section 6.

Finally, we conclude our work in Section 7.

2 Notations

Table 1 summarizes the notations used in this paper.

Suppose that there are N training samples illustrated

by X = {(x1, y1), . . . , (xN , yN )}, where the ith image

consists of two modalities: 1- the visual modality xi ∈
RM (M is the dimensionality of feature vector), 2- the

semantic modality yi ∈ {0, 1}T (T is the number of

distinct labels). A non-zero entry of yi means that the

given image has been annotated by the associated label.

The number of annotations for ith sample is denoted by

N i
+. The number of annotated samples with tth label

is also denoted by N+
t . Moreover, by concatenating dif-

ferent training vectors, we define X =
[
x1, . . . , xN

]
∈

RM×N and Y =
[
y1, . . . , yN

]
∈ RT×N , which respec-

tively denote image and label data matrices.

In our formulation, the coupled dictionary is depicted

by DC =
[
DI>,DL>

]>
∈ R(M+T )×K , where M �

K < N is the number of prototypes. This dictionary

is composed of two sub-dictionaries DI ∈ RM×K and

DL ∈ RT×K for visual and semantic modalities respec-

tively. The coefficients matrix is also shown by A =

[α1, ..., αN ] ∈ RK×N , where αi is the sparse represen-

tation of ith training sample. The kth column of DC

is also called a coupled prototype denoted as dCk . Each

coupled prototype consists of two sub-prototypes de-

picted by dIk and dLk for visual and label modalities. In

this paper, dLr,k denotes the rth row and kth column of

the semantic dictionary. To denote the rth row of this

matrix we have used dLr = DL
r,..

3 Literature Review

Due to the challenges discussed in the previous section,

many approaches for handling these challenges belong

to the search-based methods [4,14,35], by this assump-

tion that the more visual similarity between two im-

ages, the more common labels among them. In 2PKNN

[35,37], the authors proposed a two-pass version of the

k-nearest neighbor technique for image annotation. To

annotate an image, this method firstly retrieves the

most similar images for each label, then computes an

image-to-label similarity score, as well as utilizing a

metric learning strategy for improving the image-to-

image similarity measure.

Needing to compute the similarity of a query image

to all images in the dataset, search-based methods are

inherently time-consuming which emphasizes the im-

portance of introducing scalable methods. Regardless

of mete-data-based approaches [27, 31], different meth-

ods have been suggested for scalable image annotation,

which can be categorized into three main groups, in-

cluding prototype-based [28], dimensionality-reduction-

based [11, 21], and transform-based methods [15, 44].

The prototype-based approaches cluster samples and

then choose one or a few samples or their represen-

tatives in each cluster [28]. Dimensionality-reduction-

based approaches, such as product quantization [11]

and hashing [21], focus on encoding high-dimensional

feature spaces densely to achieve speed-up in search-

based methods as well as reducing the memory costs.

Our proposed approach belongs to the third group of

scalable methods, transform-based approaches [15], that

treat image annotation as a multi-label problem. In

these approaches, both visual and semantic modalities

are incorporated into the learning procedure for trans-

forming input data into another space with higher levels

of discrimination. One of the successful techniques in

this category is sparse representation whose objective

is to represent each pattern just using the linear com-

bination of a few numbers of prototypes. Traditional

sparse representation approaches can be considered as

unsupervised methods that either ignore label informa-

tion [23] or learn prototypes for each label separately.

In recent years, many researchers have focused on em-

bedding label information into the prototype learning

procedure, generally known as discriminative [19] or

coupled [30] dictionary learning, extensively applied for

multi-label classification problems [32,39].

Discriminative sparse models have many applications in

image classification, super-resolution [45], fault-diagnosis,

etc. class-specific and shared discriminative dictionary

learning (CASDDL) method [46] aims to classify the

steel sheets based on the Fisher discrimination method.
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They strive to extract the discriminative features for

each class separately (inter-class information), along

with a shared sub-dictionary which is common between

all the classes for extracting the intra-class informa-

tion. Li et al. [17] offered a weighted regularization

approach to tackle the noisy images. They separate

the coarse and fine structures of the noisy images by

discriminative sparse methods. Class-oriented discrim-

inative dictionary learning (CODLL) [20] is another

discriminative-based method that not only maximizes

the discrimination power of the dictionary atoms, but

also considers the discrimination of the coefficients. They

limited the atoms to make a group that describes a

specific class and simultaneously restricted the coef-

ficients to reconstruct data utilizing the class-related

group of atoms. Structured discriminant analysis dictio-

nary learning (SDADL) [5] aims to learn a structured

discriminant analysis dictionary. This structured dictio-

nary consists of class-specific sub-dictionaries. SDADL

also introduces a classification loss term to learn and an

optimal linear classifier. To continue, we introduce three

different sparse-based discriminative methods with more

details.

Motivated by the success of coupled dictionary learn-

ing for classification problems, similar techniques, such

as semantic label embedding dictionary (SLED) [2],

MLDL [15], and MSFS [44] have been employed for

annotation. SLED uses ||X −DA||2F + ||A||1 + Ω(A),

where ||X−DA||2F strives to transform the visual train-

ing data into a new space, describable with the mini-

mum atoms of matrix A. The sparsity condition is con-

trolled by the second term, i.e. ||A||1. Using this for-

mulation they extract the semantic similarities by the

Fisher criterion. Fisher, i.e. Ω(A), aims to maximize

the discrimination of each group of data, and simultane-

ously minimize the inter-group discrimination. MLDL

is an extended version that extracts both the visual and

semantic similarities in sparse space. This methos uti-

lizes ||P>X −DA||2F + ||Q −WA||2F + ||A||1 formula

which is somehow similar to our approach with some

differences. The second term, ||Q −WA||2F , is where

varies from our method. Here, the algorithm represents

the Q matrix containing the semantic information. In

fact, Q ∈ RN×K is a binary matrix (N the number

of train samples, and K the number of prototypes).

This matrix measures the semantical correspondence

of any prototype to the training data. The drawback

of Q is that it is a binary relation, so cannot repre-

sent the similarity rate of the data. It assigns 1 if the

prototype and the training sample share the same label

set, while it could be partially true for many couples.

In our method, we learn the semantic similarity of any

prototype, while here it is prior knowledge. Moreover,

it uses F-norm which is not appropriate for the label

loss function and we utilized the hinge loss function

instead (we explain the reasons later). Besides, MSFS

concentrates on sparse coding for feature extraction by

||Y−VB||2F +Γ (V) + ||XW− V ||2F +Ω(W) + λ(W).

The initial term focuses on dictionary learning for se-

mantic representation, through minimizing the distance

of VB and Y, where B is the dictionary and V is

the coefficients matrix. Similar to MLDL it exploits

Frobenius-norm for semantic similarity extraction. One

more point, in the third term of the objective function

it finds a W matrix that its multiplication in X (train-

ing data) reconstructs V. In fact, MSFS through W

estimates the V coefficients that its multiplication in

B provides the estimated labels.

4 Marginalized Coupled Dictionary Learning

In this section, the proposed approach (MCDL) is dis-

cussed in detail. We present the objective function and

learning algorithm of MCDL in Sections 4.1 and 4.2

respectively. Then, two main steps of the learning al-

gorithm, including marginalized coupled sparse coding

4.3 and visual and semantic dictionary update 4.4 are

discussed.

4.1 Objective Function

In this section, we have presented the objective function

of the proposed method (MCDL) in detail. This method

aims to marginalize scores for positive and negative la-

bels. This means that the negative labels with small

reconstruction (less than a margin but not zero) do not

need to be penalized. Similarly, positive labels whose

reconstructions are above a certain margin will not be

penalized. Furthermore, to learn sparse semantic pro-

totypes associated with the visual prototypes, MCDL

imposes `1 regularization on the semantic dictionary.

Considering these objectives, the empirical cost func-

tion for MCDL has been suggested as below:

minimize
DI ,DL,A

N∑
i=1

(
N i

+

λ
‖ xi −DIαi ‖22 +

T∑
t=1

`(yit,d
L
t α

i)

)

+

T∑
t=1

β1‖ dLt ‖1 s.t ‖ αi ‖1 ≤ β0, α
i
k ≥ 0,

‖ dIk ‖2 ≤ 1, 0 ≤ dLt,k ≤ v, ∀i, t, k,
(1)

where the first term is the reconstruction term for vi-

sual vectors, the second term is the hinge loss func-
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Fig. 2 The squared hinge loss functions for positive and neg-
ative labels.

tion defined over label vectors and the last term is `1
regularization for the semantic dictionary. Note that

xi, i ∈ 1, ..., N is the ith training vector and yit ∈ {0, 1}
is the tth label of it. In the objective function of (1),

αi, i ∈ 1, ..., N is the shared representation (coupled)

over visual and semantic vectors, and β0 = 1 is `1
upper-bound for this representation. We suppose that

each visual feature vector is `2-normalized, and β0 = 1.

This will decrease the number of tuning parameters and

will increase the generalization of such representation.

Moreover, the number of positive labels for each sample

(N i
+) is employed as a regularizer between visual and

semantic terms for each training sample, as well as the

tuning parameter of λ.

In the optimization problem of (1), v is the upper bound

for semantic dictionary elements to avoid noisy proto-

types (discussed in Section 6.5). The estimation of yit,

denoted by dLt α
i, is achieved by multiplying sparse rep-

resentation into the tth row of the semantic dictionary.

The positiveness constraint is also imposed on the co-

efficients to increase the generalization of learned pro-

totypes. Additionally, the `1 regularization in the last

term aims to learn the most sparse semantic dictionary

with annotation power (the second term). Furthermore,

`(., .) : R × R → R is the squared hinge loss function

which is defined as below:

`(yit,d
L
t α

i) = [max (0, C− (2yit − 1)(dLt α
i − τ))]

2
, (2)

where τ is a constant threshold value and 2C is the de-

sired gap between score values for positive and negative

samples of a label. Figure 2 shows the loss function of

Equation (2). As can be seen, the loss will be zero for a

label if computed score satisfies the margin values. For

violated labels, the loss will be computed using squared

loss based on its distance to the equivalent margin.

4.2 Learning Algorithm

Algorithm 1 presents the procedure of the suggested op-

timization technique to solve the optimization problem

of (1). This algorithm consists of three main stages:

1) Data Normalization: in this stage, feature vectors

are normalized to have unit `2 − norm. This is useful

to trade-off between the visual and semantic modali-

ties (the first and second terms of Equation (1)) for

each sample using a regularizer (λ) and its labels counts

(N i
+). Such normalization can also result in more con-

sistent sparse coding in the train and test stage.

2) Initialization: this stage has two steps. In step 2.1,

visual prototypes are initialized by solving the first term

of (1), in which weights are ignored. In the first stage

of Step 2.2, the sparse representations of training sam-

ples are calculated over the visual dictionary obtained

by solving the optimization problem of the Equation

of Step 2.1 of Algorithm 1. In other words, visual pro-

totypes are `2-normalized, and the semantic dictionary

elements must be lower than or equal to v.

3) Optimization: The problem of Equation (1) is not

jointly convex w.r.t dictionaries (DI and DL) and sparse

coefficients A = [α1, ..., αN ]. However, it is convex w.r.t

each of these parameters set when the other one is fixed.

Thus, this optimization problem is decomposed into two

convex problems including sparse coding and dictio-

nary update. These two steps are applied alternatively

to solve the original problem (Step 3 of Algorithm 1).

These steps are discussed in the following sections.

4.3 Marginalized Coupled Sparse Coding

In this section, proposed Marginalized Coupled Sparse

Coding (MCSC) (Step 3.1 of Algorithm 1) is presented

to solve the sparse coding problem of Equation (1)

when the dictionaries are fixed (Section 4.3). Indeed,

MCSC is a fast method based on LARS (Least Angle

Regression) technique (also known as LARS-Lasso) [6,

23].

When the dictionaries (DI and DL) in the optimization

problem of Equation (1) are fixed, the problem can be

rewritten w.r.t each training sample (αi) individually

as below:

minimize
αi

f(αi) = ‖ xi −DIαi ‖22 +
λ

N i
+

T∑
t=1

ξit
2

s.t ‖ αi ‖1 ≤ β0, α
i
k ≥ 0,

ξit ≥ C− (2yit − 1)(dLt α
i − τ), ξit ≥ 0,

(3)

where ξit is the slack variable which measures margin

violation for tth label of the ith training data. According
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Algorithm 1: Marginalized Coupled Dictio-

nary Learning

Input : Set of training images X =
[
x1, . . . , xN

]
and their corresponding label vectors
Y =

[
y1, . . . , yN

]
.

Discriminative regularization λ.
The number of prototypes K.
The number of repeats R.

Output: Learned prototypes DI and DL.

All necessary notations have been introduced in
Section 2.

1. Data Normalization

– xi ← xi

||xi||2
, ∀i ∈ {1, . . . , n}.

2. Initialization

2.1. Visual Dictionary Initialization
– Initialize DI by K using k-means clustering .
– Solve below optimization problem by alternate

updating of A and DI :
minimize

DI ,A

∑N
i=1 ‖ xi −DIαi ‖22

s.t‖ αi ‖1 ≤ β0, αik ≥ 0, ‖ dIk ‖2 ≤ 1, ∀i, k.
2.2. Semantic Dictionary Initialization

– Calculate the sparse representations
A = [α1, ..., αN ] based on the visual dictionary.

– dLk ← min(v,
∑N
i=1

αi
k
yi∑N

i=1
(αi

k
)2

), ∀k ∈ {1, . . . ,K}.

3. Optimization
Solve Equation (7) by alternate updating of A and
DC while the other is assumed to be fixed:
for r ← 1 to R do

3.1. Update representations A = [α1, ..., αN ] using
proposed MCSC technique (∀i ∈ {1, . . . , N}):
for s← 1 to S do

– Calculate ỹit[s− 1] as an estimate for
label scores using (6).

– Update α̂it[s] by solving (7).

αi ← α̂it[S].
3.2. Update each column of DI and DL using

Algorithm (2).

to the constraints in Equation (3), we have:

ξit = max (0, C− (2yit − 1)(dLt α
i − τ)). (4)

The problem of Equation (3), which is equivalent to the

first and second terms of Equation (1), is a constrained

quadratic optimization problem that can be solved us-

ing quadratic programming techniques. It is noticeable

that this problem must be solved for all training sam-

ples in each iteration of the whole optimization that

is time-consuming. This motivates us to investigate a

simpler and faster iterative coupled sparse coding based

on the LARS, called MCSC, to obtain an approximate

solution for the problem of Equation (3). Lasso is an ef-

fective and fast method to solve traditional sparse cod-

ing problems. To describe MCSC, suppose that α̂i[s−1]

is the sparse coefficient vector obtained at the previous

iteration of MCSC, one can provide a new approximate

(α̂i[s]) by solving (see Lemma 1 in A):

α̂i[s] , argmin
αi

g(αi) = ‖ xi −DIαi ‖22

+
λ

N i
+

T∑
t=1

(ỹit[s− 1]− dLt α
i)

2

s.t ‖ α ‖1 ≤ β0, α
i
k ≥ 0,

(5)

where ỹit[s− 1] (t ∈ {1 . . . , T}) is defined based on cur-

rent approximate of sparse coefficients (α̂i[s−1]) and its

corresponding label penalties (ξ̂it[s− 1],∀t ∈ {1 . . . , T})
as below:

ỹit[s− 1] =

{
dLt α̂

i[s− 1], if ξ̂it[s− 1] = 0,

τ + (2yit − 1)C if ξ̂it[s− 1] > 0.
(6)

The optimization problem of (5) can be reformulated

as:

argmin
αi

∥∥∥∥∥
[

xi√
λ
N i+

ỹit[s− 1]

]
−

[
DI√
λ
N i+

DL

]
αi

∥∥∥∥∥
2

2

s.t ‖ αi ‖1 ≤ 1, αik ≥ 0,

(7)

which is equivalent to a sparse coding problem with pos-

itiveness constraint on the coefficients vector. This opti-

mization problem can be solved effectively using LARS.

Step 3.1 of Algorithm 1 summarizes MCSC algorithm

presented to solve Equation (3). In each iteration of

MCSC, the optimization problem of (7) is solved using

LARS based on the current estimate for sparse coeffi-

cients provided at the previous iteration. In this paper,

we have repeated this step four times (S = 4). Initial

approximate is obtained by supposing that ξ̂it[0] > 0 for

all labels in Equation (6). We have presented Lemma 1

in A to prove the convergence of the MCSC algorithm.

4.4 Dictionary Update

Consider solving the optimization problem of (1) when

the sparse coefficients (A = [α1, ..., αN ]) are fixed. In

this case, this problem is equivalent to optimize visual

and semantic dictionaries separately. We have utilized

a randomized coordinate descent algorithm based on

warm restart (current parameters) to update proto-

types (columns) of both dictionaries in a random se-

quence, summarized in Algorithm 2. In this section,

we have presented the proposed methods to solve these

two disjoint dictionary learning problems to optimize

semantic and visual prototypes.
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Algorithm 2: Dictionary Update

Input : Set of normalized training images
X =

[
x1, . . . , xN

]
and their corresponding

label vectors Y =
[
y1, . . . , yN

]
.

Current learned prototypes DI and DL.
Regularization parameter β1 for l1−norm.
Sparse representations A = [α1, ..., αN ].

Output: Updated DI and DL.

Visual and Semantic Dictionary Update
for j ∈ {1, . . . ,K} at random do

– Update kth Visual Prototype:

– zik = xi − (DIαi − dIkαik), ∀i ∈ {1, . . . , N}.

– d̂Ik ←
∑N
i=1
N i

+
αi
k
zi
k∑N

i=1
N i

+
(αi

k
)2
, ∀k ∈ {1, . . . ,K}.

– dIk ←
d̂I
k

||d̂I
k
||

2

.

– Update kth Semantic Prototype:
for t← 1 to T do

– qik = DLt α
i − dLt,kα

i
k, ∀i ∈ {1, . . . , N}.

– Update dLt,k by solving (11)

4.4.1 Visual Dictionary Update

When keeping the sparse coefficients fixed, the opti-

mization problem of (1) w.r.t visual dictionary is equiv-

alent to solve the below problem:

minimize
DI

N∑
i=1

N i
+‖ xi −DIαi ‖22 s.t ‖ dIk ‖2 ≤ 1. (8)

This objective function is indeed a weighted form of

the traditional dictionary learning problem. One of the

most used approaches to solve this problem is the block

coordinate descent approach, in which prototypes are

optimized individually while keeping the others fixed

[23,39]. Taking the gradient of (8) w.r.t dIk and setting

it equal to zero, we have:

d̂Ik ←
∑N
i=1N i

+α
i
kz
i
k∑N

i=1N i
+(αik)

2 , (9)

where zik = xi − (DIαi − dIkαik) is residual of the ith

input vector w.r.t other prototypes, and d̂Ik is the op-

timum of (8) without considering its constraint. This

can be shown that solving constrained optimization (8)

w.r.t to the kth prototype (column) of the visual dic-

tionary (i.e., dIk), when the other prototypes hold fixed,

is equivalent to solve unconstrained one, followed by an

`2 − norm normalization. It is worth mentioning that

N i
+ (the number of positive labels for ith sample) acts as

weights in updating visual prototypes. This means that

samples with more labels will have a greater impact on

the optimized visual prototypes because they are prob-

ably annotated with complete labels. In the marginal-

ized sparse coding problem of (5), these weights play

the role of normalizer to make a balance between vi-

sual and semantic loss functions.

4.4.2 Semantic Dictionary Update

If the sparse coefficients are given, the optimization

problem of (1) w.r.t the semantic dictionary turns into

T independent convex problems (one per each label) as

below:

minimize
dLt

N∑
i=1

(ξit)
2

+ β1‖ dLt ‖1 s.t 0 ≤ dLt,k ≤ v,∀k,

ξit ≥ C− (2yit − 1)(dLt α
i − τ), ξit ≥ 0,∀i.

(10)

This problem can be seen as a modification of support

vector machine with `1 − norm regularization, where

hinge loss is replaced with squared hinge loss. In the

proposed semantic dictionary learning approach, `1 −
norm regularization can act as a prototype selection

for each label, meaning that just a small number of

prototypes can be representative for each label. The

relation between threshold (τ), margin (C), and se-

mantic elements upper bound (v) are discussed in the

next section. The problem of (10) is a quadratic opti-

mization problem that can be solved using quadratic

programming approaches, though it needs high com-

putational time and memory. Since this optimization

problem should be solved in each iteration of the dic-

tionary learning for all labels, we have proposed a sim-

ple and fast approach based on block coordinate de-

scent. Each of these T convex problems of (10) ad-

mits separable constraints (`1 − norm) in the updated

blocks (dLt,k,∀k ∈ {1, . . . ,K}). So, the convergence of

the proposed coordinate descent based method is guar-

anteed [40]. To optimize dLt,k which is kth element (col-

umn) of semantic dictionary for tth label (row) using

block coordinate descent when the other variables are

fixed, we should solve:

minimize
d̂Lt,k

∑
i∈{i|αik 6=0}

(ξit)
2

+ β1|d̂Lt,k|+ ρ ‖ d̂Lt,k − dLt,k ‖
2

2

s.t 0 ≤ d̂Lt,k ≤ v,

ξit = max (0, C− (2yit − 1)(d̂Lt,kα
i
k + qLt − τ)).

(11)

where qik = DL
t α

i − dLt,kα
i
k is the score (regression) of

tth tag of ith label vector using other semantic proto-

types and d̂Lt,k is the new estimate for dLt,k.

The cost function of (11) is a single variable optimiza-

tion problem, which can be solved effectively even using

a parallel linear search for all tags simultaneously. Since
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Fig. 3 The distribution of scores (scaled for visualization
purpose) for positive and negative labels generated (a) using
squared loss function and (b) using MCDL with hinge loss.
This result has been provided using IAPRTC-12 dataset and
4000 prototypes.

the optimization problem of (10) is a convex optimiza-

tion problem with separable regularization, convergence

of the proposed coordinate descent method is guaran-

teed.

Figure 3 illustrates the distribution of scores (for test

samples) based on the squared loss function versus the

marginalized MCDL approach. As Figure 3-a shows,

scores distribution of the positive labels gets biased to

zero when the squared loss function is employed. Figure

3-b illustrates the impact of hinge loss on the distribu-

tion of scores, where there are less interaction between

scores of negative and positive samples.

4.5 Discussion and Parameters Setting

In the previous sections, we suggested a joint optimiza-

tion problem to learn visual and semantic dictionaries

in a coupled manner. The objective function of (10)

can be regarded as a modification of `1 − norm Sup-

port Vector Machine [9, 47] which was first presented

for feature selection in high dimensional feature spaces.

In fact, each row of the semantic dictionary is indeed

a regression vector over sparse coefficients to predict

the associated labels (refer to [14]). The number of

prototypes is usually greater than the number of pos-

itive samples for each label, which can raise the issue

of overfitting. MCDL utilizes `1 regularization to learn

semantic prototypes as sparse as possible. Another in-

spiration to use `1 regularization is that label vectors

are sparse by nature, and each visual prototype could

correspond to a few labels. Moreover, we are interested

in non-negative semantic prototypes and sparse coef-

ficients for the same reasons. This constraint has been

extensively applied in non-negative matrix factorization

techniques [23,26] for a wide range of applications and

can produce more localized features.

As mentioned in Section 4.1, ŷit = dLt α
i ∈ R (Figure

2) is the score value of tth label for the ith training

data. Due to the constraints of (1) on sparse coeffi-

cients (‖ α ‖1 ≤ 1) and semantic dictionary elements

(0 ≤ dLt,k ≤ v,∀t, k), the upper bound value for scores is

0 ≤ ŷit ≤ v,∀i, t. Suppose that v = 1 and τ = C = 0.5.

In this case, to obtain zero hinge loss for a positive la-

bel, all used prototypes in sparse representation should

be exactly 1 for this label, which is impossible in prac-

tice. In other words, chosen values for threshold and

margin values impact on appropriate value of v. On the

contrary, greater values of v can lead to noisy proto-

types which can be controlled using tuning parameter

of β1 to some extent. Therefore, in this paper, we have

set C ∈ {0.25, 0.5}, where τ = 0.25 + C
2 , and v = 5.

Another point is that upper bound for squared hinge

loss in the first term of Equation (10) is N+
t (τ + C)

2

(when dLt = ~0). The second term of this equation guar-

antees that increasing the value of a semantic dictio-

nary element will be equivalent to decreasing hinge loss

at a meaningful level. So, the `1 − norm of semantic

dictionary rows remains correlated with the number of

positive samples for the associated label.

Finally, for tuning of discriminative and `1 regulariza-

tions, we have selected: λ = 1
T η

2, where η ∈ {0.1, 0.25,

0.5, 1, 2, 5, 10}) and β1 ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3,

0.4, 0.5, 0.75, 1} respectively. Best parameters are cho-

sen by validation technique for each dictionary size. The

maximum number of iterations for Step 3 of Algorithm

1 is 15. To speed up, just two iterations are applied in

the validation step.

5 Annotation Strategy

Figure 4 shows the annotation strategy of a query ex-

ample. In the first step, the shared sparse representa-

tion (which is denoted by α ∈ RK) is obtained for the

query image, which means x̂ = DIα, s.t ||α||1 ≤ 1,

where x is the normalized visual modality. Then, the

scoring vector, which shows the similarity of a given

image to different labels, is computed as DLα ∈ RT .

Finally, we will have ŷt = sign(dLt α− τoptimal), where

ŷt is the prediction for tth label and τoptimal is the op-

timal threshold for labels prediction. This threshold is

computed based on the best F1 measure on training

samples for each dataset.

6 Experimental Results

Datasets. To assess the performance of the proposed

method two popular image annotation datasets, IAPRTC-
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Fig. 4 The annotation strategy for a query image. The image
is annotated with labels that their reconstructions (scores)
over semantic dictionary are greater than a given threshold.

Table 2 The number of images (total, train, and test sets)
and tags for the datasets.

Datasets Image Train Test Tags

IAPRTC-12 19627 17665 1962 291
ESP-GAME 20770 18689 2081 268
FLICKR-60K 59083 41359 17724 295
FLICKR-125K 124840 87388 37452 568

12 [7] and ESP-GAME [38] are used. Moreover, we

utilize another dataset containing one million images

from Flickr platform1, which could be considered as

a more challenging and qualified real-world dataset for

this task. We extracted two different subsets from Flickr,

called FLICKR-60K and FLICKR-125K, using the fol-

lowing procedure. Similar to [13], FLICKR-60K was ob-

tained by listing 295 tags which occurred in at least

500 images in the first 100,000 images of the original

dataset. We have also removed images with less than

two tags, resulting in a dataset with 59083 images.

FLICKR-125K was obtained from the first 200,000 im-

ages in a way similar to FLICKR-60K. We then split

them into train and test sets with a 70-30 ratio. Gen-

eral statistical information of all datasets has been pre-

sented in Table 2.

Features. We have employed CNN models that are

trained through ImageNet dataset for object recogni-

tion, including VggNet [29], ResNet [10], DenseNet

[12], and EfficientNet [33] which result in the feature

vectors by the dimensionality of 4048, 2048, 2208, and

2560 respectively. To extract these feature vectors, the

output of the layer before the last layer is utilized.

Random or regular cropping is a common scheme for

data augmentation in both training and testing stages

[10,12,16]. In the training stage, random cropping is

widely used to maintain desired image size depending

1 https://www.flickr.com

Fig. 5 The scheme employed to divide an input image before
feature extraction using deep models. Five extracted regions
have been shown.

on the network configuration [10,12,16]. As a result,

cropping techniques such as regular [16] or multi-scale

cropping [10] are used in the testing stage to consider

all spatial information and prevent downsampling or

center cropping to provide network input size. Experi-

ments provided in [12] show that the 10-crop strategy

(first presented by Krizhevsky et al. [16]) outperforms

single-crop at test time.

In the standard 10-crop technique, five patches of the

same size (the four corners and the center) are extracted

as well as their horizontal flips, which results in ten

crops. Finally, the predictions of the network are av-

eraged over ten crops in the test stage. We follow the

same strategy and obtain five crops (flipping is ignored)

for feature extraction of each training and test image.

To segment an input image, we crop the central part of

the image included in 2
3 of the whole area, as well as

four crops from the corners with the width of 2
3 and the

height of 1
3 (see Figure 5). Each segment is then passed

to the network and all five extracted feature vectors are

averaged to make the final feature vector. Finally, simi-

lar to [41], we apply PCA to reduce the dimensionality

of the feature vectors to 200.

6.2 Analysis of the Dictionary Size

Figures 6 and 7 illustrate the impact of dictionary size

on precision, recall, and F1 measures for the proposed

MCDL algorithm applied to three different datasets.

Starting from the lowest dictionary size for IAPRTC-

12, which is a small value of 100, F1 measure for all

three features has an admissible value of over 30 per-

cent. This indicates that the learned prototypes using

MCDL are comprehensive candidates for training im-

ages. As we will discuss in the next section, this effec-

tiveness originates from the marginalized loss function

and `1 − norm. Although the increased dictionary size

for IAPRTC-12 has improved the annotation measures,

the increase rate is slower by exceeding the dictionary
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Fig. 6 Precision, Recall, and F1 for IAPRTC-12 and ESP-
GAME w.r.t the different number of prototypes. On each
diagram, the x-axis shows the number of prototypes (in kilo)
and the y-axis demonstrates the measures (in percent).

size of 3000. The best results are achieved through the

dictionary size of 4000 in IAPRTC-12 dataset. For ESP-

GAME also the trend is almost incremental. However,

the best results are in the dictionary size of 4000. The

overall initial F1 for FLICKR-60K is around 20 per-

cent and the best dictionary size for all feature types

is 12000, except for EfficientNet-B7 which is a=8000.

By increasing the dictionary size to above 12000 and

8000, the F1 measure has decreased for this dataset. A

plausible reason for such decreases in F1 measure is the

overfitting phenomenon for semantic dictionary, which

is common when the number of parameters is increased,

and in our case, the can be biased to For FLICKR-

125K, F1 has gradually increased before reaching the

best value of around 16000 and 20000 prototypes. As

it can be seen, EfficientNet-B7 has poor results versus

other networks. Experimentally, if a network provides

features which is more linear separable, MCDL can per-

form better.

Figures 6 and 7 show that MCDL can achieve ad-

missible results with a small number of prototypes. The

best dictionary size is about 4000 for IAPRTC-12 and
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Fig. 7 Precision, Recall, and F1 for FLICKR-60K and
FLICKR-125K w.r.t the different number of prototypes. On
each diagram, the x-axis shows the number of prototypes (in
kilo) and the y-axis demonstrates the measures (in percent).

ESP-GAME, and 12000, and 20000 for two FLICKR-

60K and 125K. These dictionary sizes are around 20

percent of the training data size, indicating the effi-

ciency of our approach for summarizing large datasets
to a limited number of prototypes.

6.3 Analysis of The Objective Function

In this section, the effectiveness of different stages of

the proposed method is assessed. As the first base-

line, we have eliminated coupled learning in MCDL

by examining unsupervised dictionary learning called

UDL. In this baseline, visual dictionary is first learned

the same as Step 2.1 of Algorithm 1. Then, semantic

labels of learned prototypes are obtained using Step

2.2 of Algorithm 1. Furthermore, to study the impor-

tance of marginalized loss function and `1 regularization

in MCDL, we have examined another baseline, named

Coupled Dictionary Learning (CDL), where hinge loss

has been replaced with squared loss function and `1 reg-

ularization is omitted.

Results in Figure 8 are provided based on the best dic-

tionary size mentioned in the previous section. It illus-
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Fig. 8 F1 measure for CDL and UDL versus the proposed
MCDL.

trates that CDL method (supervised version of UDL)

has better performance with significant differences in

large-scale datasets. It is noticeable that the marginal-

ized hinge loss used in MCDL method has raised the

generalization of the prototypes significantly. Moreover,

CDL method uses squared loss function instead of the

marginalized loss function suggested in the MCDL. Al-

though least square loss function is appropriate for vi-

sual modality, it yields to biased prototypes for imbal-

anced zero-one labels, as it can be investigated from

Figure 3. As figure shows, most of the scores are con-

centrated around zero (labels are considered 0 and 5).

6.4 Scalability Analysis and Comparison

This section focuses on scalability analysis based on

two important criteria, including performance and run-

time. We have considered one of the most popular and

state-of-the-art similarity-based approaches, 2PKNN,

as the main baseline method. To reach a fair compari-

son, we have used the same feature vectors mentioned

in the previous sections for both 2PKNN and our ap-

proach.

Feature Analysis

Table 3 reveals that in IAPRTC-12 dataset, MCDL con-

siderably outperforms the baseline method, 2PKNN, in

all three feature types. The improvement is about 9.8

percent for feature type of DenseNet-161. For the sec-

Table 3 F1 comparison between MCDL and 2PKNN (in per-
cent).

DATASET FEATURE 2PKNN MCDL

IAPRTC-12
DenseNet-161 37.1 46.9
ResNet-101 37.3 45.8
VggNet-16 37.6 45.0

EfficientNet-B7 38.0 40.2

ESP-GAME
DenseNet-161 37.9 42.0
ResNet-101 37.0 40.9
VggNet-16 36.4 39.2

EfficientNet-B7 36.4 38.2

FLICKR-60K
DenseNet-161 28.9 29.1
ResNet-101 28.5 28.4
VggNet-16 26.4 28.9

EfficientNet-B7 20.5 23.0

FLICKR-125K
DenseNet-161 27.1 25.9
ResNet-101 25.5 25.6
VggNet-16 23.2 24.4

EfficientNet-B7 18.5 22.4

ond dataset, ESP-GAME, the results have also been im-

proved through MCDL and the most considerable im-

provement is 4.1 percent. On the other hand, in FLICKR-

60K, the most egregious progress is related to VggNet-

16, where it reaches to 29 percent in MCDL from 26

percent in 2PKNN. Finally, the results for 125K version

of FLICKR are improved in ResNet-101 and VggNet-

16. The reason for the better performance of MCDL on

IAPRTC-12 and ESP-GAME rather than two FLICKR

datasets is that there is considerable redundancy in the

former datasets, as can be investigated from Figure 6

and 7. Indeed, when we retrieve a fixed number of simi-

lar images to annotate a query image, the retrieved im-

ages may be highly correlated in their visual contents

and semantic labels. However, MCDL tries to recon-

struct query images based on various prototypes and

thus the redundancy will be reduced.

Annotation Time

Table 4 compares the annotation time of MCDL against

the baseline. The experiments are conducted on a PC

with an Intel (R) Core (TM) i7-6700 HQ 3.1 GHz CPU,

and 16G RAM, in MATLAB environment. Furthermore,

the annotation time is averaged over all the test im-

ages. While 2PKNN needs a tremendous number of peer

to peer comparisons for finding the most similar im-

ages per each label, MCDL needs a tiny proportion of

2PKNN time to annotate an input image. For IAPRTC-

12 and ESP-GAME with roughly 20000 images, label-

ing a new image takes over 25 milliseconds using the

2PKNN method. This measure is sharply declined by

MCDL to under 1.5 milliseconds. To sum up, the infor-

mation presented in Tables 3 and 4 implies that not only

the scalability is acquired, but also the performance of



12 Roostaiyan et al.

Table 4 The average annotation time (in millisecond) for in-
put images in MCDL compared to 2PKNN, using DenseNet-
161 feature vector. The third column shows the percentage of
the reduction in annotation time using MCDL method.

2PKNN MCDL Reduction

IAPRTC-12 27.5 1.5 94.5%
ESP-GAME 25.4 1.2 95.2%

FLICKR-60K 57 1.8 96.8%
FLICKR-125K 390 10 97.4%

MCDL is improved.

Performance Analysis

To compare the performance of our approach against

the other methods, we provide Table 5. It is necessary to

mention that there are three reports for 2PKNN in this

table. The first, 2PKNN (SD), is its performance on tra-

ditional standard features. The second utilizes the same

features with a metric learning algorithm. In 2PKNN

(CNN), we fed it our CNN-based features to make a

fair comparison by our approach. The initial impres-

sion of this table is that CNN-based features could pro-

vide better performances in comparison with the stan-

dard features (i.e., color, histogram, shape, sift, etc.).

A meticulous glance at the precision and recall values

reveals that there is a considerable variance between

them in almost all the methods. Fortunately, this is

not true in our method. The reason is that, against the

others, MCDL assigns different number of labels to any

input sample based on its scores. The other methods

take a fixed number of labels for annotation, which is

mainly less than the required. Therefore while the pre-

cision improves, the recall does not. This fact originates

from the increase of the number of false-negatives. The

reason for a good trade-off between precision and recall

in MCDL is that our technique utilizes a marginalized

approach on scores. Table 5 demonstrates that in both

datasets, IAPRTC-12 and ESP-GAME, the proposed

MCDL method could achieve the highest F1 scores, 47

percent for IAPRTC-12 and 42 percent for ESP-GAME.

Looking at the precision values of Table 5 depicts that

among the standard-feature-based methods MLDL and

ML-based 2PKNN can provide better results than our

method. This is also true for 2PKNN with CNN fea-

tures. On the other hand, the recall value for MCDL

is significantly higher than all the methods, and this

is the reason that our method could pick the best F1

score.

One more point, in Table 6 we compare our approach

and baseline method on FLICKR-60K and FLICKR-

125K datasets where it is obvious that those F1 scores

are significantly close to each other. The importance

of this subject is clarified when we note that our ap-

Table 5 Precision, Recall, and F1 comparison of different
methods on IAPRTC-12 and ESP-GAME datasets (in per-
cent) using Dense-161 feature .

Method
IAPRTC-12 ESP-GAME
P R F1 P R F1

S
ta

n
d

a
rd

F
ea

tu
re

ML [8] 48 25 33 49 20 28
σML [8] 46 35 40 39 27 32

Fast Tag [3] 47 26 34 46 22 30
KSVM-VT [36] 47 29 36 33 32 33

MLDL [15] 56 40 47 56 31 40
2PKNN (SD) [37] 49 32 39 51 23 32
2PKNN (ML) [37] 54 37 44 53 27 36
Mvg-NMF [26] 47 40 43 41 33 37

C
N

N
F

ea
tu

re

MVSAE [42] 43 38 40 47 28 34
CCA-KNN [24] 45 38 41 46 36 41
RPLRF [18] 48 29 36 43 27 34
AHL [34] 47 35 40 46 23 31
SEM [22] 41 39 40 38 42 40
VLAD [4] 46 33 38 44 33 38

2PKNN (CNN) 51 29 37 50 31 38
MCDL 49 45 47 46 39 42

Table 6 Precision, Recall and F1 comparison of different
methods on FLICKR-60K and FLICKR-125K datasets (in
percent) using Dense-161 feature.

Method Dataset Pre Rec F1

2PKNN
FLICKR-60K 34 25 29
FLICKR-125K 32 24 27

MCDL
FLICKR-60K 28 30 29
FLICKR-125K 24 28 26

proach reaches this F1 score by replacing all training

images with a few prototypes (20000 prototypes in-

stead of 124840 images of FLICKR-125K). This prop-

erty leads to a considerable reduction in the annotation

time, as presented in Table 4.

Computational Complexity

In the matter of computational complexity, our method

outperforms the baseline, 2PKNN. To begin with, we

first apply a dimensionality reduction on each input vi-

sual vector to convert it to a low-dimension vector of

size M . 2PKNN includes the distance computation of

the input image with all training samples which have

the time complexity of O(N ×M), followed by finding

the K1 most similar training images [35] for each la-

bel with time complexity of O(N ×N × T ). Note that

if linear algorithms are used to find first K1 nearest

neighbors instead of calling sort in the original algo-

rithm of 2PKNN, it will be of O(N ×K1× T )). There-
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fore, the total time complexity of 2PKNN is O(N ×M
+N ×N × T ) .

On the other hand, our method needs to solve a sparse

coding using Lasso [6] in the annotation stage. First,

we need to compute the gram matrix DI>DI over the

leaned dictionary, which can be pre-computed [23] be-

forehand and so does not impact the time complexity

of MCDL. Then in the annotation stage, DI>x needs

to be computed for a given input image with the time

complexity of O(K ×M). Then, a Cholesky-based al-

gorithm with O(K ×M2) [6] should be done to find

the coefficient over DI . Thus, the overall complexity of

the MCDL approach in the annotate step is O(K ×M
+K ×M2). Since the number of prototypes is much less

than the number of training samples, the time complex-

ity of 2PKNN is higher than MCDL.

Precision-Recall Curves

Figure 9 depicts Precision-Recall curves for our method

against 2PKNN method, on four datasets. To obtain

these results, we have changed the decision threshold

(τoptimal) and the number of assigned labels in the an-

notation step of MCDL and 2PKNN, respectively. The

intial threshold for MCDL is 1 and the initial num-

ber of the labels for 2PKNN is also 1. So, the pre-

cision and recall do not start from one and zero. By

increasing the recall, i.e. increasing the positive labels,

the precision goes through an upward trend (especially

for IAPRTC-12 and ESP-GAME datasets). Then, it

reaches a peak, before dropping to its minimum, where

all the labels are considered positive. It stems from

the fact that in contrast to the binary classification

problems, in image annotation the precision and re-

call are computed over all the labels. Two noticable

points can be concluded from the Figure 9. The initial

impression is that the area under the precision-recall

curve (AUCPR) of MCDL is larger than 2PKNN on

IAPRTC-12 and ESP-GAME datasets, and almost sim-

ilar on the Flickr datasets. The reason is that in MCDL,

we marginalize the scores, therefore by increasing the

recall the number of false positives drop, which results

in higher precision for MCDL versus 2PKNN. The sec-

ond impression is that the optimum point of all the

datasets occur for the MCDL approach which shows

the superiority of this method.

6.5 Discussion

There are some reasons that our work can outperform

other existing methods. The first reason originates from

prototype learning. Each prototype is a well-defined de-

scription of a set of visual features to summarize all
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Fig. 9 Precision-Recall Curve for MCDL versus 2PKNN.

features of a dataset. By learning these prototypes, an

input image could be well-reconstructed using the min-

imum prototypes. The second reason is learning seman-

tic features. For any visual prototype, its correspond-

ing semantic part determines the association degree of

any label to that specific visual prototype. The next

property of our approach is controlling the weight of

each visual feature in prototype learning. In fact, the

more labels for a visual feature (image in dataset), the

less impact on the prototypes. This stems from the fact

that an image with more labels consists of less details

about its labels. The fourth is about hinge loss function

and its marginalized penalty. In contrast to the mean

squared error loss function, it ignores the penalties out

of two upper and lower bounds for positive and nega-

tive labels, respectively. Therefore, the associated labels

do not impact the loss value. Lastly, L-1 regularization

imposes a constraint on the semantic sparsity, which re-

sults in allocating the least and most related labels to

the prototypes. All these features together would result

in finding the most informative prototypes equipped

with the most related labels.

7 Conclusion and Future Work

There is a considerable redundancy in the visual and

semantic contents of large-scale image datasets. MCDL

provides an efficient strategy to summarize large datasets

into a fewer number of prototypes with admissible accu-

racy. Experimental results show the superiority of the
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proposed method in image annotation tasks. we can

reach a 90% reduction in the annotation time while the

performance is maintained or even improved in com-

parison to the search-based method. MCDL method

provides these benefits: Firstly, it utilizes a two-step

optimization algorithm for solving a non-convex objec-

tive function which yields informative prototypes. Sec-

ondly, a marginalized loss over labels’ scores is utilized

to increase the generalization of the learned prototypes.

Finally, the other annotation methods could leverage

the prototypes extracted by MCDL. For future work,

it is worth mentioning that visual features can be pro-

jected into a low-dimensionality space by embedding

a transformation matrix in the optimization process,

as suggested in [15]. The instances with the same la-

bels could have more consistent sparse representation

through learning such a transformation matrix.

A Lemma 1. Convergence of Equation (5).

To prove the convergence of the update rule suggested in
Equation (5), it can be shown easily that f(αi∗) ≤ g(α̂i[s]) ≤
f(α̂i[s− 1]), where αi∗ is the optimum of Equation (3). First
of all, w have (notice that (2yit − 1) ∈ {−1, 1}):

g(α̂i[s− 1]) = ‖ xi −DI α̂i[s− 1] ‖22

+
λ

N i+

T∑
t=1

(ỹit[s− 1]− dLt α̂
i[s− 1])

2
= ‖ xi −DI α̂i[s− 1] ‖22

+
λ

N i+

∑
{t|ξ̂i

t
[s−1]>0}

(τ + (2yit − 1)C− dLt α̂
i[s− 1])

2

= ‖ xi −DI α̂i[s− 1] ‖22 +
λ

N i+

T∑
t=1

(ξ̂it)
2

= f(α̂i[s− 1]).

(12)

Equation (12) means that g(αi) , lim
αi→α̂i[s−1]

f(αi) is almost

a smooth approximation of f(αi) in the current estimate of
MCSC. Moreover, since α̂i[s] is supposed to be the optimum
of g(αi), we have g(α̂i[s]) ≤ g(α̂i[s − 1]). Therefore, consid-
ering Equation (12), g(α̂i[s]) ≤ f(α̂i[s − 1]). Moreover, it is
obvious that f(αi) ≤ g(αi), for all possible αi, because the
squared loss used in g(αi) is greater than or equal to hinge
loss. So, we can now confirm our first proposition and mini-
mizing the primary optimization problem of Equation (3).
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