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Abstract
In computed tomography (CT), scattering causes server quality degradation of the reconstructed CT images by introduc-
ing streaks and cupping artifacts which reduce the detectability of low contrast objects. Monte Carlo (MC) simulation is 
considered the most accurate approach for scatter estimation. However, the existing MC estimators are computationally 
expensive, especially for high-resolution flat-panel CT. In this paper, we propose a fast and accurate MC photon transport 
model which describes the physics within the 1 keV to 1 MeV range using multiple controllable key parameters. Based on 
this model, scatter computation for a single projection can be completed within a range of a few seconds under well-defined 
model parameters. Smoothing and interpolation are performed on the estimated scatter to accelerate the scatter calculation 
without compromising accuracy too much compared to measured near scatter-free projection images. Combining the fast 
scatter estimation with the filtered backprojection (FBP), scatter correction is performed effectively in an iterative man-
ner. To evaluate the proposed MC model, we have conducted extensive experiments on the simulated data and real-world 
high-resolution flat-panel CT. Compared to the state-of-the-art MC simulators, the proposed MC model achieved a 15× 
acceleration on a single-GPU compared to the GPU implementation of the Penelope simulator (MCGPU) utilizing several 
acceleration techniques, and a 202 × speed-up on a multi-GPU system compared to the multi-threaded state-of-the-art 
EGSnrc MC simulator. Furthermore, it is shown that for high-resolution images, scatter correction with sufficient accuracy 
is accomplished within one to three iterations using a FBP and the proposed fast MC photon transport model.
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1  Introduction

Computed tomography (CT) imaging is a powerful non-
destructive testing technique. It provides inception about 
the inner of the scanned object and is widely used for indus-
trial and medical applications. However, this technique 
suffers from severe quality degradation artifacts. Among 
these artifacts the scatter, which results from the change in 
the direction or the direction and the energy of the pho-
ton penetrating the object, degrades the quality of the CT 
reconstructed image by inserting cupping and streak arti-
facts. These artifacts reduce the contrast of this image [1, 
2], and the contrast-to-noise [3–5]. MC method can estimate 
the scatter accurately due to the accurate modeling of the 

physics involved in the photon matter interactions, the shape 
and the composition of the object require no simplification 
and could be easily simulated, the ability of this method to 
model any order of scatter, and requires no simplification or 
alteration of the real-world scanner configuration, i.e., any 
scan protocol and setting can be adopted by the MC method 
[1]. Although it is accurate, the MC method requires a huge 
computation time.

An accurate and fast MC model accelerated over mul-
tiple-GPU is implemented in this paper, which simulates 
the fundamentals physics involved within the keV range 
including Compton scattering, Rayleigh scattering, and pho-
toelectric absorption. This MC model has been extensively 
evaluated against other MC simulators and real-world CT 
scanner. On the other hand, an iterative scatter correction 
algorithm which requires a few iterations for scatter com-
pensation is also implemented, the latter has been embedded 
with the implemented MC model for fast scatter estimation. 
The estimated scatter from this MC model is used to correct 
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the scatter-corrupted raw projections from the real-world 
scanner. Moreover, smoothing and interpolation are used 
to accelerate the iterative scatter correction algorithm. 
Smoothing reduces the time needed for the MC simulation 
by denoising the estimated scatter acquired using a reduced 
number of photons, while interpolation is used to estimate 
a full set of projections from half the number, and to up-
sampling the simulated projection from low-resolution to 
high-resolution. The correction result from the iterative scat-
ter correction algorithm is in fine agreement with the near 
scatter-free collimator-based reconstructed data set.

1.1 � Contributions

1.1.1 � Implementation of an accurate and parameterized 
multi‑GPU accelerated MC forward projection model 
with postprocessing

The proposed MC model incorporates basic physical prop-
erties such as Compton scattering, Rayleigh scattering, and 
photoelectric absorption, as well as parameterized post-
processing such as filtering and resolution interpolation to 
reduce the computation time through slight approximations 
that lead to minor but tolerable deviations in the compu-
tation result. In addition, the basic parameters of the MC 
model, such as the step size of the ray tracing, which control 
the number of voxels crossed during the ray tracing, and the 
splitting number of photons, can be controlled to balance the 
trade-off between the speed-up and the accuracy of the scat-
tering estimate. It is shown that the proposed MC model has 
achieved more than 15 × acceleration in comparison to the 
GPU implementation of the Penelope simulator (MCGPU) 
[35] utilizing these parameters. Moreover, this MC model 
has been accelerated using the multi-GPU platform such that 
thousands of photons are simulated simultaneously. In com-
parison with the state-of-the-art multi-threaded CPU MC 
simulator EGSnrc, our model achieves 202 × speed-up on a 
four GPUs system.

1.1.2 � Fast iterative scatter correction near real‑time

MC simulation is considered the gold standard for the scat-
ter estimation [5–11, 14], due to the accurate modeling of 
the physics involved in the photon transport. However, it 
is computationally expensive. This has led to a choice of 
methods other than MC simulation for scatter correction for 
the reconstruction of volume representations in computed 
tomography in the past. The huge computation time is par-
ticularly true for the high resolutions in non-medical com-
puted tomography, i.e., computed tomography for materials, 
engineering, and natural sciences in general. In this work, 
we show that by optimizing the parameters of the GPU-
accelerated MC simulation and by the use of smoothing and 

interpolation techniques, accurate and fast scatter correction 
are achieved simultaneously. This makes the MC simula-
tion and correction of scattering suitable for integration into 
a real-world high-resolution flat-panel CT reconstruction. 
Based on this approach, we achieved a significant speed-
up of MC simulation in a demonstrated use case from 45.4 
to 0.28 h for 3000 projections of a computed tomography 
scan with a flat-panel detector of 2k × 3k resolution. This 
computation time for MC simulation is even lower than the 
acquisition time required by the real-world CT scanner for 
the same number of projections which takes almost 0.8 h. In 
Ref. [15], and for the same scanner model, the reported scan 
time is 0.435 h for 3142 projections with an exposure time of 
500 ms, a voltage of 120 kV, and a current of 90 μ A. In the 
proposed work, the scan was performed using 3000 projec-
tions with an exposure time of 1 s, a voltage of 200 kV, and 
a current of 50 μ A. Moreover, this simulation time using 
this model is less than the time of the non-iterative filtered 
backprojection (FBP). Furthermore, the achieved simulation 
time is very close to the time required by the fast Boltzmann 
equation solver methods [17–20]. However, the simulation 
time achieved by the proposed MC model is without the 
need to down-sample the detector and the voxelized volume 
to the same extent suggested by these methods. Considering 
all the above mentioned, scatter correction using the pro-
posed MC model can be achieved in near real-time or even 
in real-time, i.e., faster processing time than the required 
acquisition time for the projections images from the real-
world CT scanners [16].

Additionally, it is shown that the proposed MC model 
and the scatter correction algorithm provide a solution to the 
problem of scatter correction with sufficiently high accuracy, 
which is close to a nearly scatter-free measurement gener-
ated using a collimator.

1.2 � Related work

Several methods have been introduced to compensate for 
scatter. According to [21], these methods are divided into 
two approaches. The first approach is the direct elimination 
of the scatter during the scan process by the use of an anti-
scatter grid [22], bowtie filter [23], or optimizing the geom-
etry by increasing the distance between the scattering object 
and detector [24–26]. These methods can only reduce the 
scatter in the reconstructed image due to a better CT-scanner 
setup and do not lead to a complete scatter correction. The 
second approach is by computing the scatter and its subtrac-
tion in each projection using different computational models 
like an analytical or empirical approach, by neural networks 
[11] or by MC simulation.

Recently, a new approach to estimate the scatter has 
been introduced [17–20]. Unlike the MC approach, which 
solves the Boltzmann problem of the photon transport 
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stochastically, these methods try to solve the problem deter-
ministically. Using this approach, the estimation time of a 
single scatter projection by these methods is within seconds 
on the GPU platform. To reach this execution time, a severe 
reduction of the detector and the volume resolutions is 
required in these works [17, 18], this hardens the possibility 
to track high-frequency features of the scatter. In addition, 
the recent use of the neural network to estimate the scatter 
results in very fast estimation. Nevertheless, a significant 
reduction in the accuracy can be encountered when the net-
work is used to predict the scatter in a region that is not a 
part of the training data set of this network or under a differ-
ent scan voltage far from the training data [12]. This imposes 
limitations on the flexibility of the scan geometry and the 
type of object which can be used.

MC simulation is an accurate approach to model the scat-
ter due to the accurate modeling of the physics involved in 
the photon-matter interaction. Many MC simulators have 
been introduced for this purpose. Among these simulators 
are MCNP [27], aRTist [28, 29], EGSnrc [30], Penelope 
[31], and others. The main drawback of the existing MC sim-
ulators is their required computational effort. To reduce the 
computation time, many acceleration methods are adopted. 
In Refs. [5, 8, 32–34], it is mentioned that the use of what 
is known as the variance reduction techniques, such as pho-
ton splitting, Russian Roulette, and forced detection could 
enhance the efficiency of the photon transport and reduce 
the execution time by several orders of magnitude. How-
ever, even with the extensive use of the variance reduction 
techniques, the MC simulation still required long compu-
tation times [35]. Single instruction multiple data (SIMD) 
based computation is an approach that is used to accelerate 
the computation through the vectorization of the data which 
results in an enhanced matrix multiplication [36]. The SIMD 
technique shows good performance when it is used to accel-
erate the ray-tetrahedron intersection for the MC photon 
transport simulator in Ref. [37]. Moreover, random number 
generation using the SIMD acceleration is also tested in Ref. 
[37]. The combination of these techniques results in a 22% 
speed improvement in comparison to the non-SIMD case.

Apart from the aforementioned algorithmic accelera-
tion techniques, GPU is employed to further accelerate the 
MC simulation from the hardware aspect. In Ref. [35], the 
authors have accelerated the MC simulation in a voxelized 
geometry using the Penelope MC simulation physics by the 
use of the CUDA programming model. A speed-up fac-
tor of 27 compared to the CPU version of this simulator is 
achieved. The authors in Ref. [38] have implemented the 
simulation of the photon transport of the EGSnrc simulator 
on the GPU by the use of the CUDA programming model. 
Between 20 to 40 × speed-up is achieved depending on the 
number of voxels used in the simulation. The Geant4 MC 
simulator is the base of the work in Ref. [39] in which the 

authors took advantage of the varieties of the physics avail-
able in this simulator and performed the acceleration on the 
GPU with a speed-up factor of 86. Variance reduction tech-
niques have not been implemented in the aforementioned 
works, which imposes a limitation on the speed and the effi-
ciency of these works [41, 53]. In contrast to the all methods 
mentioned above, which perform the MC simulation using 
a voxelized object, the method in Ref. [40] uses quadratic 
functions to represent the bounding surfaces of a region. 
As a result, a ∼ 3 × higher computation time is required in 
comparison to the use of a voxelized geometry. A hybrid 
approach of using a GPU accelerated MC simulation com-
bined with the use of the variance reduction technique is 
introduced in Ref. [41]. A GPU accelerated MC simulation 
for mega-voltage cone-beam computed tomography (MV-
CBCT) is introduced in Ref. [42]. The main physics simu-
lated using this model is the photoelectric and the Compton 
scattering only, while ignoring the Rayleigh scattering.

In Ref. [43] the authors have developed a GPU-based 
MC code for dose calculation in the radiotherapy treatment 
known as GPU dose planning method (gDPM) based on the 
original CPU-based dose calculation package dose planning 
method (DPM) [45]. An improved version of this work has 
been published in Ref. [44]. In this version, the simulations 
of the electron and the photon have been separated by plac-
ing the particles to be simulated into two different arrays 
in which the GPU simulates particles in only one array at 
a time. Following this approach reduces the GPU thread 
divergence that occurs due to the different particle transport 
physics for different types of particles [44, 46], which results 
in a faster execution time in comparison to the work in Ref. 
[43]. The GPU-based coupled photon–electron MC dose 
calculation package, GPU Monte Carlo dose (GPUMCD), 
has been implemented for a voxelized geometry in Ref. 
[47]. This work follows the same aforementioned approach 
to separate the transport of the electrons and the photons. 
The work in Ref. [48] introduces the MC photon–electron 
transport package GPU Monte Carlo (GMC). In contrast to 
the gDPM and the GPUMCD simulators, which simulate 
the full trajectory of an electron through their GPU kernels, 
the GPU kernel in this simulator transports the electron by 
only one step [46, 48]. The GPU-based MC photon dose 
code (MCPDC), introduced in Ref. [49], supports the dose 
calculation by simulating only the photon transport. How-
ever, the above-mentioned works are for dose calculation 
and radiotherapy problems only. Their main application is 
for treatment planning [50–52]. In contrast to the proposed 
MC model, the dose calculation methods can not be used for 
non-destructive testing in industrial applications. In addi-
tion, their implementation followed simple photon physics 
treatment. In this treatment, the Rayleigh scattering has 
been ignored, and the Compton scattering is considered to 
occur with free electrons only. Such an assumption does not 
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include the electron-atom binding effect on both the angular 
and energy distribution (Doppler broadening) of the scat-
tered photon. As a consequence, they are only suitable for 
high-energy photons (above 1 MeV simulation). Full phys-
ics simulation has been reported in Ref. [53]. In this work, 
a GPU accelerated MC dose calculation code (gCTD) has 
been introduced. The result from the gCTD simulator is in 
good agreement with the EGSnrc simulator. However, in 
the same work, it is stated that there is no implementation 
of the variance reduction techniques in the gCTD simulator. 
As mentioned before, this affects both the convergence rate 
and efficiency of the MC simulator [53].

The acceleration of the MC simulation over the GPU 
platform has been conducted for positron emission tomog-
raphy (PET) in Refs. [54, 55]. The accuracy of the GPU-
based MC gPET simulation tool has been compared with the 
GATE 8.0 (Geant4 application for tomography emission). It 
is mentioned that in terms of accuracy, both simulators are 
very close. The work in Ref. [56] uses the GPU platform to 
accelerate the ray-tracing calculations that are involved in 
the MC simulation. Another GPU-based MC code for PET 
named pet aimed novel nuclear images (PANNI) is imple-
mented in Ref. [57]. This work aims to implement a PET 
image reconstruction with the iterative maximum likelihood 
expectation maximization (MLEM) relying on the accuracy 
of MC to calculate the elements of a PET system matrix. The 
authors in Ref. [58] have proposed a fast GPU-based PET 
simulator named Ultra-fast MC PET simulator (UMC-PET). 
All the relevant physics related to the transport, emission 
and detection of the radiation in the PET simulation have 
been considered in this simulator. This includes the scat-
ter, positron range, the attenuation inside the patient, photon 
interaction from the environment, and the detector response. 
The simulation results from this simulator are in fine agree-
ment with the results from the PeneloPET. PET imaging is 
a powerful tool that is mainly used in the medical field to 
evaluate organs and tissues for possible diseases. Therefore 
the main application of the above-mentioned MC-based PET 
simulator is in the medical field [59], in which they do not 
target the industrial non-destructive testing applications as 
well.

Scatter correction based on MC computation is the 
focus of several works. In Ref. [8], the authors have used 
the EGSnrc simulator supported by the use of the vari-
ance reduction techniques to correct the scatter-corrupted 
projections iteratively for low-resolution projections. The 
same approach is extended for a real phantom study in Ref. 
[5] also for low-resolution projections. Other works based 
on CPU MC simulators are found in Refs. [6, 7, 60, 64]. 
Although the number of projections and photons used in 
these works is low, their simulations required long compu-
tation time beyond the applicability to high-resolution flat-
panel CT and with compromised correction quality [32]. 

Acceleration techniques are employed to accelerate the 
MC simulators and the scatter correction algorithms. The 
iterative scatter correction in Ref. [1] is based on the fast 
estimation of the scatter using a low number of photons. 
The resultant noisy scatter estimation was then efficiently 
denoised by a three dimensional fitting of the Gaussian 
basis function. However, this approach works well for small 
objects only [34]. The MC-based scatter correction algo-
rithm proposed in Ref. [65] estimates the scatter on a small 
number of detector nodes combined with a reduced number 
of projections. Linear interpolation is then used between the 
nodes and projections to derive the complete scatter estima-
tion of the scan. Such an approach could not track possible 
high spatial frequencies in the scatter distribution especially 
if the interpolation grid is too coarse [34]. The fast scatter 
correction algorithm proposed in [32], which is based on 
a single-GPU MC scatter simulation and extended in Ref. 
[9] for multi-GPU, relies again on the usage of a very low 
number of photons and projections and requires the avail-
ability of a priori information such as the planning CT scan. 
By utilizing a GPU-accelerated MC model in Ref. [41], the 
scatter is corrected using a two-stage of scattering estimation 
which is rather expensive. The fully iterative GPU-based 
scatter correction algorithm in Ref. [63] is used to correct 
the scatter from breast examination only. Every voxel in the 
volume is assumed to be composed of two materials glan-
dular and adipose. The range of the voltages supported by 
this work is from 10 to 50 keV with a simplified version of 
MC simulation, this includes the assumption of 100% detec-
tor efficiency.

Unlike most of the previously mentioned works, the scat-
ter correction algorithm introduced here does not rely on 
heavily smoothing or interpolating the simulated projections. 
By applying certain acceleration techniques, the proposed 
MC model could achieve a 162 × speed-up in comparison to 
the standard case without acceleration using the same model.

2 � Material and methods

2.1 � The proposed MC photon transport model

A detailed MC photon transport model through a voxelized 
geometry in a GPU has been implemented using the OpenCL 
2.1 programming model. The implemented MC model simu-
lates the photon physics within the 1 keV to 1 MeV range. 
In this model, the X-ray source is treated as a point source 
that emits a polychromatic spectrum. This spectrum is sim-
ulated using the Geant4 MC simulator and it is imported 
into this model as a discrete spectrum with several energy 
bins of 2 keV resolution. The total number of photons to be 
simulated is distributed among the energy bins according to 
the spectrum. Simulation is then conducted for each energy 
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bin sequentially. The attenuation coefficients of the materi-
als used in the simulation are from the national institute of 
standard and technology (NIST) database [66]. The major 
physics of the photon-matter interaction such as Compton 
scattering, Rayleigh scattering, and photoelectric absorption 
have been considered in this model. The Compton scatter-
ing angular distribution was simulated using the Compton 
scattering PDF which is an extension of the Klein–Nishina 
PDF by including the form factor tabulated by Hubbel [68], 
this PDF is given in Eq. 1 [67].

where � = 2�(1 − cos(�)) , � is the scatter angle of the pho-
ton, r0 is the electron radius 2.8179 × 10−15 m, � and �′ are 
the incident and final photon energies in units of 0.511 MeV, 
� = E∕(mc2) , where m is the mass of the electron and c is the 
speed of light, and ��

= �∕[1 + �(1 − cos(�))] , S(q, Z) is an 
appropriate scattering factor modifying the Klein–Nishina 
cross-section taken from [68] with q being the inverse length 
and Z being the atomic number of the material. Taking into 
account the scattering form factor is necessary to include 
the binding effect of the electron-atom on the angular dis-
tribution of the photon. Moreover, to include the binding 
effect on the energy distribution, the Doppler broadening of 
the energy of the photon is also simulated according to [69, 
70]. For the Rayleigh scattering, the angular distribution is 
simulated using the Rayleigh scattering PDF which is the 
extension of the Thomson scattering by the inclusion of the 
scattering form factor, this PDF is given in Eq. 2 [71].

where F(q, z) is a form factor modifying the energy-inde-
pendent Thomson cross-section taken from [68].

To simulate the scatter event, a photon that reaches the 
volume from the source is transported to the first inter-
action point with a distance l = −(1∕�(E, �)) log(�) [27], 
where � is the linear attenuation value, E is the energy 
of the photon, � is the density of the material, and � is a 
random number generated. The scattering interaction type 
is then determined by sampling from the cumulative prob-
ability formed using the probability of each interaction 
type. If the photon encounters a photoelectric absorption it 
is then immediately terminated. Otherwise, the scattering 
angle is sampled, using the rejection and inversion meth-
ods [71–74], from Eq. 1 or Eq. 2 depending on the selected 
interaction type. Figure 1a, b show the sampling results 
from the Compton scattering, and the Rayleigh scattering 
PDFs, respectively, taken from the proposed MC model. 
To reduce the variance of the scattering image, the photon 
is split into what is known as pseudo-particles to randomly 
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selected pixels on the detector [27, 34]. The weight of 
the photon is then divided by the selected split number to 
keep the result unbiased [27]. The scoring of the scatter on 
the detector in this model is done by the use of the point 
detector method, i.e., the contribution to the detector from 
each interaction point is calculated using the following 
equation [27].

where D(E) is the energy response of the detector, p(�d) 
represents the probability of scattering toward the detector 
given by Eqs. 4 and 5 for the Compton and the Rayleigh 
scattering, respectively, [27], �d is the cosine of the angle 
between the photon path and the direction to the detector 
[27], W is the photon’s weight, L is the distance from the 
interaction point to the detector. From each interaction point, 
the term exp(− ∫ L

0
�(E, �, �)d�) , where � is the spatial posi-

tion, is calculated by checking the material type in a specific 
step length which represents the number of voxels that the 
ray-tracer crosses. At each step, the code checks the mate-
rial type and interpolates the � value from the table of the 
selected material. The tables of the � values of the relevant 
materials are imported to the code from external files already 
prepared and stored within the code directory. The voxelized 
volume is segmented and assigned to different materials 
using multi-threshold derived using the Otsu method [76] 
before the start of the simulation.

�r2
0
 is a constant and �Incoh , �Coh , are the integrated incoher-
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Fig. 1   Sampling from the Compton and the Rayleigh scattering 
PDFs. a Compton scattering PDFs and the sampling results. b Ray-
leigh scattering PDFs and the sampling result. Both results are for 
aluminum at different photon energies
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The scatter intensity projection on the detector is calcu-
lated by summing up the contributions from all the interac-
tion points of all the simulated photons according to Eq. 6. 
The selection of the pixel, where the scoring occurs, is done 
randomly.

where N is the number of energy bins of the polychromatic 
source, M is the number of photons in the energy bin, and K 
is the number of interactions.

Regarding the GPU implementation, two kernels were 
implemented in this model. The first kernel is to calculate 
the primary projection as given in Eq. 7 [75].

While the second kernel is used to calculate the scatter pro-
jection. The number of threads that are used in the simula-
tion is 16,384, as this number gives the fastest execution. On 
the other hand, the number of work items per work group 
was determined automatically by the OpenCL implementa-
tion. In addition, the GPU MC model supports both single 
and double-precision with a significant enhancement of the 
performance regarding the speed using the single-precision 
format. The implemented GPU-based MC model is designed 
to estimate the scatter and the primary projections using a 
voxelized volume to enable the use of this model in the cor-
rection of the scatter artifacts iteratively [5].

This GPU-based MC model is a parameterized model in 
which it is not only accelerated using the multi-GPU plat-
form but is embedded with several controllable key param-
eters to speed up the simulation. An example of these pow-
erful key parameters is the ray-tracing step size, in which 
the number of voxels that are crossed during the ray-tracing 
can be controlled to reduce the simulation time. Other key 
parameters are the number of photons and the splitting num-
ber of the photons. To demonstrate the effect of these param-
eters on the simulation time, it is shown in Sect. 3.5 that the 
implemented model can achieve 15 × speed-up in compari-
son to the MCGPU simulator utilizing these key parameters. 
Moreover, Sect. 3.6 shows how the proper adjustment of 
these parameters can lead to a real-time MC simulation with 
a simulation time that is even lower than the time required by 
the real scanner considering the same number of projections. 
From the hardware aspect, the number of projections, that 
are needed to be simulated, are distributed among multi-
GPU. This scale the simulation time almost linearly with the 
number of GPUs. As a result, the simulation time for the full 
set of projections is divided by the number of GPUs. Moreo-
ver, the achievable speed-up is neither with the extensive 
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reduction in the projection and the volume resolution nor 
by the use of a very low number of photons and projections, 
which is the approach almost used in all the scatter correc-
tion methods that adopt the MC simulation to estimate the 
scatter [1, 5–7, 32, 60, 64, 65].

This GPU-based MC model is made a part of an in-house 
tool that contains several CT reconstruction algorithms 
and solutions. The GPU implementation of this CT tool is 
achieved using the OpenCL 2.1 framework. Consequently, 
the GPU implementation of the proposed MC model has 
been performed using the same OpenCL version.

The CPU version of the implemented MC model is 
designed to perform the simulation on a computer-aided 
design (CAD) surface model using triangular elements. This 
version of the implemented MC model is embedded by a 
fast highly vectorized ray-tracer algorithm named Embree 
[61]. This MC version is also parallelized using multi 
CPU threads. This parallelization on the CPU platform is 
implemented using the OpenMP framework [62]. However, 
being independent of the CAD model provides numerous 
advantages if the estimated scatter is to be used in the itera-
tive scatter correction process. First, the CAD model is not 
always available in all the cases or it only describes parts of 
the object, second, it is required a registration that should 
be robust against the CT artifacts, and finally, it is possible 
that doing the correction using the CAD model could bias 
the measurement toward the CAD model itself [13]. The 
implementation and execution of the GPU and the CPU ver-
sions of the implemented MC model are performed using a 
Linux system.

2.2 � Applied acceleration schemes

From the hardware aspect, we have accelerated the proposed 
MC model using the GPU platforms. The GPU implemen-
tation is achieved using the OpenCL framework in which 
multiple thousands of photons are simulated simultaneously 
by exploiting the threads of the GPU. Regarding multi-
GPU implementation, the number of projections is equally 
assigned to the available GPUs so that these projections can 
be simulated simultaneously.

In addition to the GPU acceleration, other techniques 
are utilized to accelerate the scatter correction process. 
To reduce the variance in the scatter image and enhance 
the speed, the variance reduction techniques are used [34]. 
Examples of these techniques are splitting and Russian Rou-
lette. Splitting reduces the variance in the image by distrib-
uting any high contribution on the detector among many 
pixels. Russian Roulette is used to discard some of the split 
particles that have low contributions to the result overall to 
save the time of the expensive tracking process [27].

Moreover, the ray-tracing through the voxelized vol-
ume is an expensive method, as millions of voxels need to 
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be crossed by these rays to score the values on the detec-
tor. Therefore, the number of voxels of the original vol-
ume is down-sampled from 3164 × 2304 × 3164 voxels to 
791 × 576 × 791 voxels to fit the GPU first, and to reduce 
the number of voxels that the ray-tracer crosses. In addition, 
we have shown, in Sect. 3.6, that instead of looping on every 
voxel and checking the material type during the ray-tracing, 
one can adjust the loop to make the ray crosses several vox-
els before checking the material type through the use of a 
higher step size. This has led to a significant improvement 
in the simulation time while maintaining the accuracy of 
the result. A study of the effect of different step sizes on the 
accuracy of the scatter correction can be found in Sect. 3.6.

Interpolation techniques have been also used. First, cubic 
interpolation is used to up-sample the simulated primary 
and scatter projections from 576 × 800 pixels resolution to 
2304 × 3200 pixels resolution; second, only half the num-
ber of scatter projections is simulated using the proposed 
MC model, and the other half is generated using the linear 
interpolation.

On the other hand, the smoothing operation enhances 
the estimation speed of the scatter by more than 50% by 
reducing the number of photons required in the MC simu-
lation [8]. Many previous works adopt smoothing filters 
[1, 78]. The EGSnrc simulator uses the Savitzky–Golay 
filter [8, 79]. The Savitzky–Golay filter is used to denoise 
the noisy scatter estimates in this work, as this type of 
filter can preserve the high-frequency components of the 
smoothed image [80]. Figure 2 shows that the profile line 
from the denoised scatter projection fits well with the 
profile line of the scatter projection acquired with a 10 × 

higher number of photons in comparison to the first case 
[8].

2.3 � Simulation of the polychromatic behavior

To achieve an accurate CT scan simulation, the polychro-
matic behavior of the source and the detector should be 
accurately simulated. The simulations of the two have 
been performed using the Geant4 MC simulator taking 
into account the internal construction and the components 
setup of both.

2.4 � Iterative scatter correction

The iterative scatter correction algorithm based on a 
fast FBP and the proposed fast photon transport model 
is shown in Fig. 3. Usually, one to three iterations are 
required for the scatter correction in considered cases 
shown later.

The algorithm starts by importing the scatter corrupted 
raw intensity projections from the scanner. These projections 
are of 2304 × 3200 pixels resolution. The intensity projec-
tions are then converted into linear attenuation projections 
and reconstruction using the FBP method is then performed 
to get a volume using these projections. The reconstructed 
volume is down-sampled to 791 × 576 × 791 voxels to fit the 
GPU. The different materials in the down-sampled volume 
are segmented using multi-threshold derived from the Otsu 
method and then converted into densities. A MC simulation 
is then applied, using the proposed MC model, to acquire 
the scatter and the primary intensity projections using the 
voxelized volume. These projections are then used in Eq. 8 
to perform the scatter correction in the iterative algorithm.

Fig. 2   The effectiveness of the smoothing operation using the 
Savitzky–Golay filter. a Scatter projection from the proposed MC 
model using 7 × 10

9 photons. b Scatter projection from the proposed 
MC model using 7 × 10

8 photons smoothed using this filter. c The 
white dashed profile lines of a and b. d Profile lines of a and the scat-
ter result from the proposed MC model using 7 × 10

8 photons without 
smoothing (not shown here)

Scanner
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Projs.

Convert to
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tenuation (a)
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(
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)

Fig. 3   Flowchart of the iterative scatter correction algorithm. The 
dotted line is a one time execution
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where c is the corrected projection, a is the scatter-corrupted 
linear attenuation projection from the scanner, and Is, Ip are 
the scatter and the primary intensity projections taken from 
the proposed MC model, respectively. As mentioned before, 
this work aims to correct high-resolution projection from 
the scanner. Two approaches can be followed in the iterative 
scatter correction algorithm. The first approach is to calcu-
late the scatter and the primary projections using the pro-
posed MC model with the same resolution of 2304 × 3200 
from the scanner. These projections should be denoised 
by the smoothing filter before using them in the correc-
tion step. This approach is time-consuming, as performing 
the MC simulation on a high-resolution detector requires a 
high number of photons to get a low noise projection. The 
second approach is to calculate the scatter and the primary 
projections using a lower resolution, i.e., 576 × 800 with less 
number of photons. These projections are then up-sampled 
to the high-resolution case using cubic interpolation to pre-
pare them for the correction step.

In CT, a high number of projections should be used 
to get a proper reconstruction quality using the FBP 
method. Simulating the scatter for all these projections is 
timely expensive. Since the scatter tends to change slowly 
between projections [77], only half of the projections are 
simulated and the other half is acquired using linear inter-
polation between every two projections.

The primary and the scatter intensities projections, pre-
pared in the previous step, are used in the initial correction 
of the projections from the scanner using Eq. 8. This initial 
correction lacks accuracy since the estimation of the scat-
ter and the primary intensities in this step has been done 
using a scatter-corrupted volume.

The correction process is repeated again using the par-
tially corrected projections until an adequate correction 
is derived. Different parameters of the MC setting were 
tested for the sake of optimizing the time. It is shown that 
certain settings of these parameters minimize the MC sim-
ulation time to the lowest extent while maintaining the 
accuracy of the scatter correction. This is one of the main 
differences between the iterative scatter correction algo-
rithm given in Fig. 3 compared to previous works [5, 8]. 
Further differences are the low-resolution, low number of 
photons, low number of projections, and the CPU instead 
of GPU-based scattering corrections.

The iterative scatter correction algorithm has been 
accelerated using multi CPU threads. Only the MC simu-
lation, as it is the most time-consuming part of the algo-
rithm, has been accelerated using multi-GPU.

(8)c = a − ln

(

Ip

Ip + Is

)

,
3 � Experiments and results

In this section, the proposed MC model is evaluated on 
real-world data sets and compared with other simulators. 
The real-world datasets were acquired using the Nikon 
scanner available at our institute for different test objects. 
In particular, several examples of cement-based materials 
were acquired using objects prepared also at our institute. 
In addition, results of the scatter correction algorithm and 
comparison of these results with and without the use of 
different acceleration and optimization techniques are also 
shown for different experimental objects.

3.1 � Collimator scatter‑suppressed results

Two copper blocks of 2 cm × 2 cm × 4 cm dimension have 
been used as a simple collimator in this work. These 
blocks were placed on top of each other in front of the 
X-ray source in which the long side was positioned per-
pendicularly with the exit window of the X-ray source with 
an opening slit of 1 mm thickness. As a result, the original 
cone beam is converted into a fan beam and the scanned 
slit with this fan beam is used as ground truth in this work.

3.2 � Verification of the proposed MC model

Several methods were used to verify the proposed GPU-
based MC model. First, the model is used to correct a 
scatter-corrupted projection from the real scanner. This 
correction result is compared with the experimental near 
scatter-free projection acquired experimentally using the 
collimator.

Second, the model is used to correct a scatter-corrupted 
projection from the EGSnrc simulator in which the result 
is compared with the scatter-free projection available from 
this simulator.

Figure 4 shows the result of the scatter correction of 
the scatter-corrupted linear attenuation projection from 
the scanner. The correction was done using Eq. 8 utilizing 
the scatter and the primary projections simulated by the 
proposed MC model. The result of the correction of this 
projection matches well with the near scatter-free result of 
the same scan acquired using the collimator.

On the other hand, the result of the scatter correction of 
the scatter-corrupted projection from the EGSnrc simula-
tor is shown in Fig. 5. It is shown that the scatter correc-
tion result matches the scatter-free projection from this 
simulator.
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3.3 � Scatter correction for motorcycle cylinder head

The scatter is corrected for an aluminum motorcycle cyl-
inder head using the proposed iterative scatter correction 
method with three iterations only. 1500 scatter and 3000 
primary projections were simulated using the proposed 
MC model with 2.5 × 108 photons and a 576 × 800 reso-
lution. The scatter projections were linearly interpolated 
to 3000 projections and then up-sampled along with the 
primary projections to the same resolution of the scan-
ner before using them in the iterative scatter correction 
method. Figure 6 shows the results of the third iteration of 
the scatter correction. As shown in the figure, the results 
of the scatter correction using the iterative algorithm coin-
cide with the collimator results.

The scatter correction results in each one of the three itera-
tions are shown in Fig. 7 (the collimator result is not shown 
in this figure). This figure shows that some parts of the alu-
minum material were wrongly corrected as steel in the first 
and the second iterations, as the thresholds derived by the Otsu 
method fail to distinguish between the steel and the aluminum 

Fig. 4   Correction of a scatter-corrupted attenuation projection 
acquired from the scanner for an aluminum motorcycle cylinder head. 
a Scatter-corrupted projection. b Scatter-corrected projection. c The 

white dashed profile lines of a, b, and from the near scatter-free pro-
jection acquired using a collimator

Fig. 5   Correction of a scatter-corrupted attenuation projection from 
EGSnrc simulator for an iron engine. a Scatter-free projection. b 
Scatter-corrupted projection. c Result of the scatter correction using 
the proposed MC model. d The white dashed profile lines of the 
images in a–c 

Fig. 6   Results of the third 
iteration of the iterative scatter 
correction algorithm. a Slice 
from the scatter-corrupted 
volume (front view). b Same 
slice from the corrected volume. 
c The white dashed profile lines 
of a, b, and the near scatter-free 
volume’s slice from the collima-
tor. d Slice from the scatter-
corrupted volume (side view). 
e Same slice from the corrected 
volume. f The white dashed 
profile lines of d, e, and the near 
scatter-free volume’s slice from 
the collimator. The profile lines 
in this example are averaged 
over multiple rows to suppress 
the noise
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materials due to the severe scatter artifacts. However, the 
third iteration shows a good scatter correction result has been 
achieved.

In Ref. [5], it is suggested that the result of each iteration 
can be quantified with the reference scatter-free result by 
the use of the square root of the mean square error (RMSE), 
given in Eq. 9, of the reconstructed voxels. Figure 7f shows 
the plot of the RMSE values for all the iterations. These 
RMSE values are calculated for the regions marked with 
blue circles in Fig. 7b–d, and from the result of the fourth 
iteration (not shown here). The scatter-free reference image, 
used in Eq. 9, is taken from the collimator. According to 
Fig. 7f, the fourth iteration gives almost the same RMSE 
value as the third iteration. Therefore, only three iterations 
were used to correct the scatter artifact.

Here �i and �i,ref are the mean of the linear attenuation values 
in the scatter-corrected volume region of interest (ROI) and 
the reference near scatter-free volume ROI, respectively, for 
material i.

The setting of the scan parameters used in this example 
and the time required for the scatter correction of this object 
using three iterations are shown in Tables 1 and 2, respec-
tively. In Sect. 3.6, it is shown that a near real-time scatter 
correction is achieved for this example following certain 
optimization of the MC key parameters.

3.4 � Scatter correction of cement objects with steel 
rods

Figure 8 shows the scatter correction results of differ-
ent cement-based objects. The first row shows the scatter 

(9)RMSE =

√

(�i − �i,ref)
2.

correction result of a cement cylinder with 11 cm outer 
diameter and 5 cm inner diameter with eight steel rods 
inserted in this cylinder. The second row shows the cor-
rection result of a 7 cm diameter cement cylinder with 
eight steel rods. The last row shows the result for a 7 cm 
diameter cement cylinder without any insertion. 3000 

Fig. 7   Results of the three 
iterations of the iterative scatter 
correction algorithm. a Slice 
from the scatter-corrupted 
volume. b Result of the first 
iteration. c Result of the second 
iteration (the red and blue 
circles mark the regions which 
are still considered wrongly as 
steel while they are aluminum). 
d Result of the third iteration. e 
The white dashed profile lines 
of a–d. f RMSE values as a 
function of scatter correction 
iteration number calculated in 
the regions marked by the blue 
circles in b–d, and from the 
result of the fourth iteration. 
The profile lines in this example 
are averaged over multiple rows 
to suppress the noise

Table 1   Measurements parameters for the motorcycle cylinder head 
and the cement objects scans

(a)SDD denotes the source-detector distance
(b)SOD denotes the source-object distance

Parameter Cylinder head Cement objects

SDD(a) 1.282 m 1.282 m
SOD(b) 0.862 m 0.907 m
Resolution (pixel) 2304 × 3200 2304 × 3200

Pixel size 0.127 μm 0.127 μm
X-ray voltage 200 kV 200 kV
X-ray current 36 μA 50 μA
Exposure time 1 s 1 s

Table 2   Time required for three iterations of scatter correction using 
four GPUs with and without the use of the interpolation technique for 
the cylinder head example, the MC simulation time is for one itera-
tion only

(a)W/interpolation: 1500 scatter and 3000 primary projections with 
size of 576 × 800 ; w/o interpolation: 3000 scatter and primary projec-
tions with size of 2304 × 3200

(b) A higher number of photons is used in the case of high-resolution

Method Photons no. Iterative corr. (s) MC sim.(a) (s)

W/interp. 2.5 × 108 39,240 8110
W/o interp. 7 × 108 (b) 175,405 50,000
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projections from the scanner for each one of these objects 
were corrected using the implemented iterative scatter cor-
rection algorithm following the same approach which is 
used to correct the motorcycle cylinder head object. The 
number of photons used in the MC simulation, in this case, 
was 4.9 × 108 photons.

Since the reconstructed volumes from the scanners’ 
projections are well segmented, only a single iteration 
was used for the correction. The good segmentation result 
is a consequence of the high diversity between the linear 
attenuation values of the cement and the steel. Although 
the steel material is highly affected by the scatter in these 
examples, the value of the linear attenuation of the steel is 
still easily distinguishable from the one of the cement. The 
primary and the scatter projections, simulated using the 
proposed MC model in this single iteration, were accurate 
enough for the scatter correction process.

The results of the scatter correction of these objects 
resemble the near scatter-free results from the collimator. 
Besides, it is also shown that the scatter correction suc-
cessfully reduces the cupping and the streak artifacts that 
are severely affecting the original volumes from the scan-
ner. Table 1 shows the parameters of the scan which are 
used to acquire the projections from the scanner. Table 3 
shows the time required for a single iteration of the scatter 
correction and for the MC simulation of the three objects.

3.5 � Evaluation of execution time of the proposed 
MC model

Three different objects were used to evaluate the 
required execution time of the CPU and the GPU ver-
sions of the MC model against other CPU-based 
simulators. Object (3) is shown in Fig.  5, objects 
(1) and (2) are not shown here however, the occupa-
tion of these objects on the screen is the same as the 
object in Fig.  5. The dimensions of the objects are 
18.4 cm × 20 cm × 18.4 cm  ,  18.1 cm × 22.4 cm × 13.5 cm  , 
and 16.7 cm × 13.7 cm × 9.8 cm for object (1), (2) and (3), 

Fig. 8   Scatter correction results in different cement-based objects. a, 
b Show the white and the blue central profile lines of the images in 
the first row, respectively. c, d Show the white and the blue central 

profile lines of the images in the second row, respectively. e, f Show 
the white and the blue central profile lines of the images in the third 
row, respectively

Table 3   Time required for a single iteration of scatter correction for 
the cement objects using four GPUs with and without the use of the 
interpolation technique

Method Objects Photons no. Iterative corr. (s) MC sim. (s)

W/interp. Object1 4.9 × 108 19,615 16,606
Object2 4.9 × 108 22,861 19,982
Object3 4.9 × 108 18,727 15,950

W/o interp. Object1 1.9 × 109 72,473 69,464
Object2 1.9 × 109 84,323 81,444
Object3 1.9 × 109 65,409 62,632
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respectively. The platform of the execution of the CPU 
simulators is Intel(R) Core(TM) i7-5820k CPU 3.30 GHz, 
while a GeForce GTX 1080 Nvidia GPU has been used 
for the proposed MC model. The number of photons used 
in the simulation was 4.2 × 108 photons from 190 energy 
bins. The detector resolution in these simulations was 
576 × 800 pixels. The evaluation of the execution time was 
done with two different cases.

In the first case, a single thread was used in the simula-
tions of the CPU simulators, whereas a single GPU was 
used in the simulation of the proposed MC GPU model. 
Table 4 shows the time required for a single projection. 
Considering the comparison case of the object (2), 347 × 
acceleration is achieved compared to the EGSnrc simula-
tor, while more than 18 × acceleration is achieved com-
pared to the aRTist simulator using the GPU version of the 
MC model. Compared to the CPU version of the imple-
mented MC model, a 19 × acceleration is achieved com-
pared to the EGSnrc simulator, and with a slightly better 
performance compared to the aRTist simulator. It is worth 

mentioning that the aRTist simulator is one of the fastest 
simulators available on the CPU platform [28].

In the second case, the evaluation is done by comparing 
the total simulation time required for the full set of projec-
tions. Thus, 3000 projections were simulated on four GPUs 
using the proposed MC model. Whereas 12 threads were 
used in the simulation of the CPU simulators. Table 5 shows 
the time required for the simulation. For the comparison case 
of the object (2), the multi-GPU implementation achieves a 
202 × and 9 × acceleration compared to the EGSnrce simula-
tor and the aRTist simulator, respectively. While using the 
CPU version, a 17 × acceleration has been achieved com-
pared to the EGSnrc simulator. In comparison to the aRTist 
simulator, the CPU version is slightly slower. This slow per-
formance is due to the use of some atomic operations in the 
OpenMP implementation of our CPU version. On the other 
hand, a lower speed-up factor is achieved using the GPU 
MC model in this case, as the use of the multi-GPU imposes 
an extra time to copy the data from all the devices to the 
CPU memory and merge them, which is a time-consuming 
process. It is worth mentioning that the achieved speed-up 
factor is not the same for all the objects. It is shown that the 
performance using object (2) is better than the others. This 
is related to the occupation of the object on the detector and 
how complex the object is, as ray tracing through complex 
objects requires more time.

Moreover, the execution time of the proposed GPU-based 
MC model has been evaluated against the MCGPU simu-
lator. The two GPU-based models were used to correct a 
scatter-corrupted projection from the EGSnrc simulator. Fig-
ure 9 shows that the scatter correction results from the two 
models match the scatter-free projection from the EGSnrc 
simulator. Regarding the speed and the accuracy, the pro-
posed MC model achieved a scatter correction result with a 
better contrast-to-noise ratio (CNR) and speed compared to 
the MCGPU simulator considering the use of other accelera-
tion methods in addition to the GPU platform. In contrast 
to the MCGPU model, the proposed MC model supports 
the usage of variance reduction and other acceleration tech-
niques to accelerate the acquisition of the projections. By 

Table 4   Time for the execution on different platforms using a single-
GPU for the MC model and a single thread for the CPU models

GPU model (s) CAD model (s) EGSnrc (s) aRTist

Object(1) 50 840 8500 1008
Object(2) 44 790 15,300 832
Object(3) 44.2 1750 4400 1218

Table 5   Time for simulating 3000 projections on different platforms 
using four GPUs for the proposed MC model and 12 threads for the 
CPU models (no interpolation applied)

GPU model (h) CAD model (h) EGSnrc (h) aRTist (h)

Object(1) 10.4 111 1011 108
Object(2) 9 105 1820 88.3
Object(3) 9.2 209 523 120.8

Fig. 9   Scatter correction using 
the MCGPU and the proposed 
GPU model. a Scatter-corrupted 
projection from the EGSnrc 
simulator. b Scatter-free projec-
tion from the EGSnrc simulator. 
c Corrected projection using 
the proposed MC model. d 
Corrected projection using the 
MCGPU. e The white dashed 
profile lines of a–d. The red 
squares represent the ROI and 
the background regions used to 
calculate the CNR
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utilizing these techniques, i.e., a photon’s splitting number 
of 30, and a step size of four, and with 5 × 108 photons, the 
proposed MC model simulates the primary and the scatter 
projections in 18 seconds using a single-GPU. These projec-
tions produce a scatter correction result, shown in Fig. 9c, 
with a CNR of 68.19. This CNR is very close to the one of 
the scatter-free projection from the EGSnrc simulator which 
is 69.43. On the other hand, by utilizing 1010 photons and 
with a simulation time of 280 seconds, the MCGPU model 
produces a scatter correction result, shown in Fig. 9d, with 
a CNR of 67.96. Thus, using the proposed acceleration tech-
niques, better image correction quality and more than 15× 
acceleration have been achieved compared to the MCGPU 
simulator.

3.6 � Optimization of the runtime of MC simulation

In this work, key parameters are made controllable to opti-
mize the runtime for the MC simulation as it is the most 
expensive part of the correction process. The MC simulation 
alone consumes almost 85% of the complete simulation time 
required for the iterative scatter correction process shown 
in Fig. 3. Table 6 shows five cases of simulations. The first 
column shows the setting of the standard MC simulation. 
In this standard case, there are no optimization of the key 
parameters, no smoothing, and no interpolation techniques 
used. This approach results in a very long computation time 
for the MC simulation and the scatter correction algorithm. 
In the rest of the simulation cases, both the interpolation 
and the smoothing techniques are used to accelerate the 
simulation in addition to the optimization of the MC key 
parameters. Columns 2–5 show different settings of these 
key parameters. These settings gradually decrease the 
simulation time of both the MC simulation and the scatter 

correction algorithm. The number of projections simulated 
in the simulation cases shown in columns 2-5 is only 1500 
projections. In simulation case 1, and as a comparison to 
the standard case given in column 1, the number of photons 
is divided by 10, while the step size of the ray-tracer and 
the splitting number of photons are not changed. The time 
for the MC simulation in this case for the 1500 projections 
is 2.25 h. For simulation case 2, the number of photons is 
reduced further in comparison to the standard case and case 
1. Moreover, the step size of the ray-tracing is increased, i.e., 
we use 2 instead of 1. In addition, the splitting number of the 
photons is changed from 20 to 10 only. The MC simulation 
time for case 2 is 0.48 h. We further decreased the number of 
photons in case 3, the splitting number of photons is reduced 
from 10 to 5 only, and the step size is increased to 3. The MC 

Fig. 10   Correction results with different parameters’ optimization. 
a Scatter-corrected case 1. b Scatter-corrected case 2. c Scatter-cor-
rected case 3. d Scatter-corrected case 4. e The white dashed profile 
lines of the images in a–d, from the near scatter-free volume’s slice 

from the collimator, and from the scatter-corrupted volume. The pro-
file lines in this example are averaged over multiple rows to suppress 
the noise. The red squares represent the ROI and the background 
regions used to calculate the CNR

Table 6   Summary of the simulation parameters and the time required 
for the MC simulation and the scatter correction for the test cases 
(1–4)

(a)This represents the simulation time of a single projection over sin-
gle-GPU
(b)The simulations are performed using four GPUs

Standard Case 1 Case 2 Case 3 Case 4

FBP Projs. 3000 3000 3000 3000 3000
FBP time 1670 s 1670 s 1670 s 1670 s 1670 s
Photons 2.4e9 2.4e8 1.2e8 8.5e7 5e7

Splitting 20 20 10 5 10
Step size 1 1 2 3 2
Projs. sim. 3000 1500 1500 1500 1500
MC/proj.(a) 218 s 21.6 s 4.6 s 2.7 s 2 s
MC/iter.(b) 45.4 h 2.25 h 0.48 h 0.28 h 0.2 h
Corr./iter.(b) 46.3 h 3.6 h 1.9 h 1.7 h 1.2 h
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simulation time is reduced to only 0.28 h using these param-
eter settings. Considering the last simulation case, case 4, 
the number of photons and the splitting number of photons 
are both reduced in comparison to cases 1-3, while the step 
size is set to 2. The simulation time is recorded as 0.2 h only.

The quality of the result of the scatter correction has been 
assessed using quantitative evaluation methods such as the 
CNR, the mean square error (MSE), and the normalized 
cross-correlation (NCC). The results of this evaluation are 
shown in Table 7. According to this evaluation, the results 
of both cases 2 and 3 which are shown in Fig. 10b, c, respec-
tively, produce good scatter correction quality with a great 
enhancement of the computation time in comparison to case 
1 (shown in Fig. 10a) and the standard case (not shown). 
Case 3, for example, can simulate a single scatter projection 
within 2.7 seconds only, whereas the full set of the projec-
tions is calculated within 0.28 h using four GPUs in near 
real-time, which is comparable to real-world CT acquisition. 
This gives a 162 × speed-up in comparison to the standard 
case (column 1) which requires 45.4 h to acquire the full 
set of projections. Although further optimization of the key 
parameters in case 4 results in less required computation 
time in comparison to the other cases, the result of the scat-
ter correction, in this case, is noisy as shown in Fig. 10d.

4 � Conclusion

In this work, a multi-GPU accelerated MC photon trans-
port model has been implemented and embedded into the 
iterative scatter correction algorithm for high resolution 
flat-panel CT. Especially, fundamental physics including 
Compton scattering, Rayleigh scattering, and photoelectric 
absorption are implemented in the proposed MC model. The 
MC model is accelerated by splitting the projections equally 
over multi-GPU to enable a full parallelization. In addition, 
several key parameters are made adjustable in this model. 
It is shown that certain adjustments of these key parameters 
enhanced the speed of the scatter simulation while main-
taining accuracy. The most effective factor in the speed-up 
achieved using the proposed MC model is the use of the 
multi-GPU in conjunction with the above-mentioned key 

parameters speeding up the simulation significantly with 
a proper adjustment. Moreover, the MC code itself is effi-
ciently written, by excluding the multi-GPU acceleration and 
the key parameters from the count, the CPU version itself 
achieves a comparable speed to the aRTist simulator, which 
is one of the fastest simulators on the CPU platform. To 
validate the speed and accuracy of the proposed MC model, 
comparisons have been conducted with the state-of-the-art 
MC simulators, i.e., EGSnrc, aRTist, MCGPU, and with the 
real-world scanner. In comparison with the multi-threaded 
MC simulator EGSnrc, a 202 × speed-up is achieved for a 
2304 × 3200 pixels detector using four GPUs. Furthermore, 
using the implemented iterative scatter correction algorithm, 
we show the possibility to perform the correction of the scat-
ter artifact iteratively in near real-time. Compared to the 
reference images acquired using the collimator, the scatter-
ing artifacts are effectively suppressed within one to three 
iterations of the proposed scatter correction algorithm. It is 
shown that the proposed MC photon transport model is both 
sufficiently fast (real-time) compared to the acquisition time 
by the real-world CT scanner and to FBP and sufficiently 
accurate for scattering artifact correction in high-resolution 
flat-panel CT reconstruction. With the achieved speed using 
the proposed GPU MC model, the integration of this model 
into an iterative reconstruction method, e.g., the MLEM 
method, can increase its accuracy by considering the full 
physics in the forward projection part of the reconstruction 
iteration.
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Table 7   Quantitative evaluation of the scatter correction results for 
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CNR 13.1 16 18.5 13.5 7
MSE – – 74.8 84.7 117
NCC – – 0.956 0.951 0.937
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