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Abstract
The versatile video coding standard H.266/VVC release has been accompanied with various new contributions to 
improve the coding efficiency beyond the high-efficiency video coding (HEVC), particularly in the transformation pro-
cess. The adaptive multiple transform (AMT) is one of the new tools that was introduced in the transform module. It 
involves five transform types from the discrete cosine transform/discrete sine transform families with larger block sizes. 
The DCT-II has a fast computing algorithm, while the DST-VII relies on a complex matrix multiplication. This has led 
to an additional computational complexity. The approximation of the DST-VII can be used for the transform optimiza-
tion. At the hardware level, this method can provide a gain in power consumption, logic resources use and speed. In this 
paper, a unifed two-dimensional transform architecture that enables exact and approximate DST-VII computation of sizes 
8 × 8, 8 × 16, 8 × 32, 16 × 8, 16 × 16, 16 × 32, 32 × 8, 32 × 16 and 32 × 32 is proposed. The exact transform computation 
can be processed using either multipliers or the MCM algorithm, while the approximate transform computation is based on 
additions and bit-shifting operations. All the designs are implemented under the Arria 10 FPGA device. The synthesis results 
show that the proposed design implementing the approximate transform matrices is the most efficient method with only 4% 
of area consumption. It reduces the logic utilization by more than 65% compared to the multipliers-based exact transform 
design, while about 53% of hardware cost saving is obtained when compared to the MCM-based computation. Furthermore, 
the approximate-based 2D transform architecture can operate at 78 MHz allowing a real-time coding for 2K and 4K videos 
at 100 and 25 frames/s, respectively.
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1  Introduction

All along the past years, the multimedia world has witnessed 
a real revolution through the emergence of a myriad of appli-
cations where digital videos are ubiquitous. This revolution 
is accompanied by users’ interest in immersive and high-
quality video contents and by the platforms supporting video 
sharing such as social networks, messaging platforms and 
video streaming services.

As a result, the amount of data exchanged, especially 
on the Internet, continues to increase. A forecast done by 
Cisco indicates that, by 2022, IP video traffic will represent 
82% of the global internet traffic [1]. In addition, Comcast 

estimates that the current COVID-19 crisis has increased the 
Voice over Internet Protocol (VoIP) and video conferenc-
ing by 210-285 % and other video consumption by 20-40% 
compared to the pre-pandemic period [2]. This tremendous 
growth is mainly explained by pervasive connectivity and 
the proliferation of advanced multimedia solutions that sup-
port emerging formats such as 4K/8K Ultra-High-Definition 
(UHD) video and 360◦ omnidirectional video. This leads 
to major challenges for communication networks that have 
limited bandwidths and storage capacity, making it neces-
sary to have more efficient video compression standards that 
keep the quality unchanged.

To handle the excessive increase in video consump-
tion, the ISO/IEC (International Standardization Organiza-
tion/International Electro-technical Commission) Motion 
Picture Experts Group (MPEG) and ITU-T (International 
Telecommunication Union-Telecommunication) Video 
Coding Experts Group (VCEG) have developed different 
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video coding standards. The latest standards, Advanced 
Video Coding (AVC)/H.264 [3] and High-Efficiency Video 
Coding (HEVC)/ H.265 [4], were released in 2003 and 
2013, respectively.

However, despite the crucial improvements provided by 
the HEVC standard, a more efficient video compression 
standard is required especially for high-quality video con-
tents. Therefore, VCEG and MPEG have joined again and 
formed the Joint Video Exploration Team (JVET) in Octo-
ber 2015 to study new coding tools beyond the capabilities 
of the HEVC. A first version of the Versatile Video Coding 
standard was published in July 2020 as H.266/VVC [5].

The VVC standard has improved the coding efficiency 
while increasing its complexity from 7.5× to 34× com-
pared to the HEVC. This has revealed a critical need for 
more effective methods of video compression.

The introduction of the Adaptive Multiple Transform 
(AMT) which incorporates new types of transforms with 
sizes ranging from 4 × 4 up to 128 × 128 has led to an addi-
tional complexity in the VVC transform module. This has 
led researchers to study new transforms offering a com-
promise between performance and arithmetic complexity. 
The transform approximation has proved to be an efficient 
approach, since it simplifies the calculations of existing 
transforms rather than inventing new ones and provides 
approximate results that have practical significance at a 
considerably lower arithmetic and computational cost [6].

Only a few works in the literature have dealt with the 
hardware implementation of the VVC transforms. Some 
of which have targeted the optimization of the transforms 
using the approximation approach. This study proposes 
a unified two-dimensional architecture that provides 
exact and approximate DST-VII transform calculations. It 
embeds all the square and rectangular transform block sizes 
(   8 × 8, 8 × 16, 8 × 32, 16 × 8, 16 × 16, 16 × 32, 32 × 8, 32 × 16
8 × 8, 8 × 16, 8 × 32, 16 × 8, 16 × 16, 16 × 32, 32 × 8, 32 × 16 
and 32 × 32 ). The approximate transform design achieves a 
compromise between the hardware resources’ consumption 

and the operational frequency. It is able to perform 
2Kp100 video coding.

The remainder of this paper is organized as follows. Sec-
tion II depicts the principle of the transform coding in the 
VVC as well as some related works which have dealt with 
efficient hardware implementation of either exact or approxi-
mate transforms. Section III describes the proposed hard-
ware implementation of the 2D DST-VII transform as well as 
the different modules that it includes. Section IV presents the 
synthesis results of the proposed hardware implementations. 
Finally, section V concludes the paper.

2 � VVC transform

2.1 � VVC transform review

The discrete cosine/sine transform proves to be a basic algo-
rithm for compression owing to its signal decorrelation and 
energy concentration properties. The DCT and DST trans-
forms are widely used in video compression applications. In 
the VVC, the AMT approach notably includes three features:

–	 Multiple core transforms, namely, DCT-II, DCT-V, 
DCT-VIII, DST-I, and DST-VII, whose basis functions 
are shown in Table 1. The coefficients of the transform 
matrices are scaled and rounded into integer numbers 
while maintaining the important transform properties.

–	 Either similar or different transform types can be used in 
the 1D and the 2D transforms.

–	 Either symmetric or asymmetric transform units are sup-
ported which is not the case in the HEVC.

The AMT approach is performed on inter- and intra-coded 
residual blocks. It is controlled by a CU level flag which 
indicates whether the AMT is applied or not. When the CU 
level flag value is 0, the residual coding is ensured by the 
DCT-II/DST-VII transform like that of the HEVC. Other-
wise, two other flags are added to mention the horizontal and 

Table 1   Basis functions of 
DCT-II/V/VIII and DST-I/VII 
transforms

Transform type Basis function Ti(j), i, j = 0, 1, ...,N − 1
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Ti(j) = �0.
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)
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DCT-VIII
Ti(j) =

√
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DST-I
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√
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vertical transforms to be used. For intra-coded Coding Unit 
(CU), a transform selection is carried out depending on the 
Intra-Prediction Mode (IPM) selected among the 67 given 
modes [7]. For each mode, a transform set is chosen from 
three sets as defined in Table 2. The two transform candi-
dates within the selected set are tested for both horizontal 
and vertical transforms. Afterwards, the optimal transform 
which meets the lowest rate distortion cost is chosen [8]. 
As for the inter-coded CU, the DST-VII and DCT-VII trans-
forms are used for all inter modes and for both horizontal 
and vertical transforms.

The reference software JEM7.1 [9] adopts integer trans-
forms in the transformation process. However, a new con-
cept called Multiple Transform Selection (MTS) is adopted 
in the final version of the reference software, named VVC 
Test Model (VTM), with only three transform kernels (DCT-
II, DST-VII, and DCT-VIII).

The 2D transform is computed by performing the 1D 
transform in the horizontal and vertical directions, respec-
tively. The 1D horizontal transform is computed according 
to Eq. (1)

where TH is the N × N matrix of the horizontal transform 
which can be one of the transform types represented in 
Table 1, X is the ( 1 × N  ) input row vector, and Yint is the 
( N × 1 ) intermediate output column vector. After perform-
ing the 1D horizontal transform, the 1D vertical transform 
is computed according to Eq. (2)

where TV is the N × N matrix of the vertical transform which 
can be of the same or different type as the horizontal trans-
form and Y is the ( N × 1 ) output column vector. Equation 3 
summarizes the 2D transform computation

Since the transform types are independent, it is actually 
hard to design a unified architecture that allows the 2D 
computation of all the five transform types together. Con-
sequently, it is recommended to propose an efficient design 

(1)Yint = TH ⋅ XT
,

(2)Y = TV ⋅ YT
int
,

(3)Y = TV ⋅ (TH ⋅ XT
)
T
.

for each transform type with a low hardware cost. This can 
be achieved by efficiently implementing either the exact or 
the approximate version of the transform. A fairly relevant 
approximation of the DST-VII transform was proposed in 
[10] which targets the transforms of sizes 8, 16, and 32. 
The hardware architectures of both exact and approximate 
1D transforms were designed. This paper focuses on the 2D 
implementation of the DST-VII transform in its exact and 
approximate versions based on the 1D architecture of [10].

2.2 � Related works

Within the transform hardware implementation context, effi-
cient transform computation algorithms represent a major 
controversial topic, subject of intensive studies. Based 
on a literature review, the transform computation’ relat-
ing approaches tend to be categorized under the exact and 
approximate methods. Concerning the present work, the 
focus of interest is primarily laid on investigating a unifed 
2D architecture that enable both exact and approximate 
transform computations. To our knowledge, no previously 
elaborated work has suggested to design a unified architec-
ture that involves two transform computation methods.

2.2.1 � Hardware implementation of exact transforms

Within the context of efficient exact transform computation 
algorithms, Mert et al. [11] proposed two methods of the 
AMT 2D hardware implementation including all the trans-
form types for sizes 4 × 4 and 8 × 8 . The first method uses 
separate datapaths for each 1D transform and the second 
method uses one reconfigurable datapath for the 1D column/
row transform. Implementation results show that the recon-
figurable hardware consumes less logic resources and more 
energy than the baseline hardware. The proposed methods 
allow a 2D transform computation of all the transform types, 
but do not support transform sizes larger than 8, which are 
more complex and require more logic resources. Authors 
in [12] suggested a hardware implementation of the AMT 
of size 8. The transforms are computed using either Altera 
multipliers (LPM) or addition and bit-shifting operations. 
Synthesis results show that the design based on addition and 
bit-shifting operations is more efficient in terms of hardware 
resources consumption and operational frequency. Garrido 
et al. [13] proposed a hardware architecture for the five trans-
forms of the AMT allowing a 4 × 4 , 8 × 8 , 16 × 16 or 32 × 32 
1D transform. The proposed architecture is implemented on 
three FPGA chips. The synthesis results show that the design 
can process real-time 4K UHD formats with a low hardware 
resources’ consumption. However, this architecture only 
concerns the 1D transform applied to symmetric block size 
combinations, whereas including the 2D transform as well 
as considering asymmetric block may be more complex. 

Table 2   Pre-defined transform 
candidate subsets

Trans-
form 
Set

Transform candidates

0 DST-VII, DCT-VIII
1 DST-VII, DST-I
2 DST-VII, DCT-V
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The authors extended their work in [14] to consider the 2D 
transform design. The architecture is composed of two 1D 
AMT processors and a transpose memory to store the 1D 
intermediate results. The design is synthesized for a low-
end, a middle-end and a high-end FPGA devices. Synthesis 
results reveal that the logic utilization is almost the same in 
all cases, while the operational clock frequency differs from 
one case to another and depends on the FPGA technology. 
Authors in [15] proposed an implementation of size 4 AMT 
transforms using additions and shifts instead of multiplica-
tions. The transforms are described in two versions : with 
or without use of the state machine. The synthesis results 
show that both methods, supporting all the transform types, 
require less than 3% of the resources available in the FPGA 
device and provide 285 MHz and 318 MHz, respectively, 
as the maximum operational frequency. This work was 
extended in [16] to a 2D hardware implementation support-
ing square and rectangular block sizes. The proposed design 
requires about 53% of logic resources and 93% of DSPs 
available in the FPGA device. Fan et al. [17] designed a 
32 × 32 block-based transform architecture that allows a 2D 
DST-VII and DCT-VIII transform computation of all sizes. 
The proposed ASIC-based design needs a small logic uti-
lization and reaches an operational frequency of 250 MHz. 
Sau et al. [18] introduced two different implementations of 
the AMT. The first is a standalone design which permits the 
computation of one single transform. The second is a recon-
figurable design which allows the computation of multiple 
transforms. The different architectures, performing 4 × 4 2D 
transform, are evaluated and compared in terms of hardware 
resources consumption and maximum operational frequency. 
Yibo et al. [19] adopted a unified transform architecture 
that computes 1D DST-VII and DCT-VIII transforms of all 
sizes through a Reduced Adder Graph (RAG-n) algorithm to 
design the Shift-Addition Units (SAU) . A comparison with 
the multiplication-based designs show that the SAU-based 
design results in area and power savings.

2.2.2 � Hardware implementation of approximate 
transforms

Some relevant works revealed efficient computation of the 
approximate transforms instead of the exact ones. In this 
context, Kammoun et al. [20] developed a hardware design 
of forward and inverse 2D approximate transforms of sizes 
4 × 4 , 8 × 8 , 16 × 16 and 32 × 32 meant to consume only 9% 
of the total hardware area and only 15% of the DSP blocks. 
Yet, it does not support rectangular block sizes which may 
result in additional area consumption. Authors in [21] pre-
sented a hardware implementation of 8-point exact and 
approximate DST-VII transform. The hardware synthesis 
results show that the approximate design presents 70% of 
hardware resources saving with regard to the exact transform 

implementation. Ben Jdidia et al. [10] proposed a hardware 
description of 8- and 16-point exact transforms using mul-
tipliers and the Multiple Constant Multiplication (MCM) 
algorithm as well as the approximate transforms using addi-
tion and bit-shifting operations. The synthesis results reveal 
that the proposed approximations provide a significant gain 
in terms of hardware resources and power consumption. The 
work in [22] depicts the implementation of the approximate 
DST-VII and DCT-VIII 1D transforms of sizes ranging from 
4 to 32. The proposed hardware design requires a reduced 
hardware cost.

3 � 2D DST‑VII transform hardware 
implementation

A two-dimensional transform applied to an M × N transform 
block is processed sequentially as follows : 

1.	 The M-point 1D transform is performed on the transform 
block input columns.

2.	 The results are rounded by applying the appropriate shift 
value according to the transform size.

3.	 The rounded results are transposed.
4.	 The N-point 1D transform is performed on the columns 

of the transposed matrix.
5.	 The results are rounded by applying the appropriate shift 

value according to the transform size to get the final 
output results.

In this section, an architecture is described to compute the 
2D DST-VII transform for the blocks of sizes up to 32 × 32 . 
Figure 1 sums up the proposed architecture of the 2D trans-
form. The interface of the 2D DST-VII architecture is out-
lined in Table 3. The transform computation is launched 
with a pulse in the Xav input signal. The 1D and 2D trans-
form sizes are specified by selv and selh input signals, respec-
tively. The 16-bit input data X0..X7 are fed to the design to 
compute the outputs Y0..Y7 which are validated by the Yav 
output signal.

In the proposed design, three 1D transforms are instanti-
ated, one for each size. They are reused for the second 1D 
transform. Duplicating the 1D transforms can be needed to 
pipeline all the computation, at the cost of a higher area 
usage. The proposed architecture is based on the 1D DST-
VII design of [10] to compute either the exact or the approxi-
mate version of the DST-VII transform. Since the design is 
unified for sizes 8, 16 and 32, then, according to the “ selv ” 
signal which defines the transform size to be used in the 1D 
transform, the input column is given in one cycle when the 
transform size is 8, two cycles when the transform size is 16 
(first half first) and four cycles when the transform size is 32 
(first quarter first). The “transform index” signal takes ’0’ 



1085Journal of Real-Time Image Processing (2022) 19:1081–1090	

1 3

during the first 1D transform and ’1’ during the second 1D 
transform. After performing the 1D transform, the outputs 
are rounded using the shift values defined in the VVC refer-
ence software. These values depend on the transform size 
and whether it is the 1D or 2D transform. The truncated col-
umns are fed to the transpose module. The result will serve 
as input to the second 1D transform. The number of inputs 
is specified according to the “ selh ” signal which defines the 
transform size to be used in the second 1D transform. Once 
the 2D outputs are obtained and shifted, the results which 
are the final output rows are given in one cycle when the 
transform size is 8, two cycles when the transform size is 
16 (first half first) and four cycles when the transform size 
is 32 (first quarter first). The signal Yav indicates that the 
outputs are available. The different modules of the proposed 
architecture are detailed in the sections below.

An example of a 2D transform computation for a 16 × 32 
transform block is outlined in Fig. 2. When the input signal 
value selv is set to “01”, it indicates that the size of the first 
1D transform is equal to 16. When the input signal value 

selh is equal to “10”, the size of the second 1D transform is 
equal to 32. The 32 input columns are read from the input 
file; each column is read every two clock cycles, because 
the input column is composed of 16 coefficients and only 8 
inputs can be read in every cycle. These inputs are registered 
in the signal X_16, which is a vector of 16 inputs, as shown 
in Fig. 1. Once all the values of the signal X_16 are read, the 
computation of the 1D transform of size 16 can be launched 
to generate the intermediate outputs, which are stored in the 
signal Y_16. The truncate and the transposition modules are 
processed combinatorially. The result of the transposition 
stage will serve as input for the second 1D transform, which 
is a transform of size 32. The same process is used to com-
pute the output values, which are stored in the signal Y_32. 
These values are shifted to get the final output results which 
are given row by row, each row every four clock cycles.

3.1 � The 1D transform computation

The N-point 1D transform architecture is depicted in 
Fig. 3. It allows the computation of the 1D N-point trans-
form ( N ∈ {8, 16, 32} ) using one of the methods : the exact 
transform using either multipliers or the MCM algorithm 
and the approximate transform using adders and bit-shifting 
operations. One of the three methods is chosen according to 
the control signal “computation method”. For a given input 
column vector X_N which is an N × 16−bit vector, one of 
the mentioned methods is used to compute the ouput Y_N 
whose width depends on the computation method. The three 
methods are well explained in [10].

The transform module is basically a matrix multiplica-
tion. The transform computation performed using multipli-
ers requires a lot of hardware resources. The MCM algo-
rithm is used in transform computation, because the input 
number is always multiplied by the same transform matrix 

Fig. 1   The proposed 2D trans-
form architecture
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Table 3   2D interface description design

Signal I/O Bits Description

clk I 1 System clock
reset I 1 Asynchronous system reset, active low
selv I 2 1D transform size :

0 : size 8, 1 : size 16, 2 : size 32
selh I 2 2D transform size :

0 : size 8, 1 : size 16, 2 : size 32
Xav I 1 Inputs are available : positive pulse
X0 .. X7 I 128 Input vector, 8 × 16−bit inputs
Y0 .. Y7 O 128 Output vector, 8 × 16−bit outputs
Yav O 1 Outputs are available : positive pulse
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coefficients. Another alternative which drastically reduces 
the hardware resources consumption is to consider approxi-
mate transforms instead of exact ones. These lightweight 
transforms can be efficiently implemented by only adopting 
adders and bit-shifting operations.

3.2 � The truncate module

Figure 4 illustrates the truncate module which is used to 
scale the outputs of the 1D column DST-VII and the 1D row 

DST-VII to 16 bits. The truncate (1D) module shifts the 1D 
column outputs right by 6, 7 and 8 bits when the transform 
size is 8, 16 and 32, respectively. The truncate (2D) module 
shifts the 1D row outputs right by 11, 12 and 13 bits when 
the transform size is 8, 16 and 32, respectively. Selecting 
whether it is the 1D or the 2D transform is done using the 
“dimension” input signal. The transform size is selected 
according to the “transform_size_index” signal.

3.3 � The transpose module

The intermediate 1D results are temporarily stored in a 
matrix of registers. To transpose the result of the first 1D 
transform, each transform column is written in a matrix of 
registers, and it is read row by row. Figure 5 illustrates the 
transpose module. This block design stores the 1D output 
column vectors of size N after applying the appropriate shift 
value.

4 � Experimental results

4.1 � Experimental setup

The 2D transform design is described using the VHDL hard-
ware description language. The 2D transform process of the 

Fig. 2   Timing chronogram for the 2D transform of a 16 × 32 block size

Computation method

X_N Y_N

Fig. 3   The N-point 1D transform architecture
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16

Output_number

Input_number
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Transform_size_index
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Fig. 4   The truncate module
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different block sizes is tested with simulation and synthesis 
software tools [23, 24], under the Arria 10 FPGA device 
[25]. Self-checking testbench files are used to verify the out-
put results. The test process is carried out as follows. A set 
of pseudorandom inputs and their corresponding outputs are 
generated using a python script for the different block sizes. 
Then, the testbench file reads the input file and compares the 
simulation results with those obtained using the reference 
software implementation. The different tests cover all the 
transform unit sizes from 8 × 8 to 32 × 32 including sym-
metric and asymmetric blocks.

4.2 � Results and analysis

The synthesis results of the 2D transform design are dis-
played in Table 4. The design uses 264 pins which repre-
sent 27% of the total pins available in the FPGA device. 
Pin counts regroups the clock, reset, selv , selh , Xav and the 
8 16-bit input signals as well as Yav and the 8 16-bit out-
put signals. For the exact 2D transform computation using 
multipliers, only 12% of the ALMs and 1% of the registers 
are required. The design does not use any DSP blocks and 
reaches an operational frequency up to 69 MHz. The MCM-
based design is more efficient in terms of logic utilization. It 
uses 9% of the ALMs. The operational frequency achieved 
by the MCM-based transform design is of 63 MHz. The 
computation of the 2D approximate transform is the most 
efficient implementation in terms of area consumption. In 
comparison to the multipliers-based computation, the 2D 
approximate transform computation requires approximately 
2× less logic resources. Compared to the MCM-based com-
putation, about 53% of hardware cost saving is obtained. 

These synthesis results of the 2D transform design have the 
same tendencies as for the 1D transform design (presented in 
[10]) in terms of logic utilization. The operational frequency 
is improved compared to the exact transform computation 
methods. It reaches 78 MHz.

The performances of the 2D transform design of the dif-
ferent block sizes are evaluated in Table 5. The number of 
cycles depends on the transform block size which is being 
computed. It varies from 17 cycles in the case of an 8 × 8 
block size to 257 cycles in the case of a 32 × 32 block size. 
The throughput in frames per seconds (fps) is calculated 

Fig. 5   The transpose module Y0
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Table 4   Synthesis results of the 
2D DST-VII transform design

Exact transform Approximate transform

Multipliers-based MCM-based

Pins 264 (27%) 264 (27%) 264 (27%)
ALMs 50876 (12%) 37527 (9%) 17631 (4%)
Registers 17313 17313 17313
DSPs 0 0 0
Frequency (MHz) 69 63 78

Table 5   Performance of the 2D transform design

Computation method Transform 
block size

Cycles 2K fps 4K fps

Multipliers 8 × 8 17 84 21
8 × 16 33 86 22
16 × 16 65 87 22
16 × 32 129 88 22
32 × 32 257 88 22

MCM 8 × 8 17 76 19
8 × 16 33 79 20
16 × 16 65 80 20
16 × 32 129 80 20
32 × 32 257 81 20

Approximated 8 × 8 17 94 24
8 × 16 33 97 24
16 × 16 65 99 25
16 × 32 129 100 25
32 × 32 257 100 25
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using Eq. (4) for the different 2D block size combinations. 
Freq represents the operational frequency used to compute 
an M × N block size over CCycles clock cycles, Res defines the 
video resolutions 2K (1920×1080) and 4K (3840×2160), and 
1.5 is a factor assigned to the image color sampling in 4:2:0

The proposed approximate-based transform achieves a high 
frame rate performance. It can be noticed that the larger 
the transform unit is, the better the throughputs are. These 
results are obtained assuming the same block size for all 
the transforms. Whereas, in real video applications, each 
frame is encoded using different transform block sizes. Con-
sequently, in this regard, the proposed 2D design may have 
a better performance. The approximate-based 2D transform 
architecture has a more efficient coding performance in 
terms of frames per second compared to the exact transform 
design computed using either the multipliers or the MCM 
algorithm. In fact, it enables a real-time coding for 2K and 
4K videos at 100 and 25 frames/s, respectively.

Table 6 displays a comparison between different 2D 
hardware designs for the VVC standard. The approximate-
based 2D transform architecture ensures a good compromise 
between the logic utilization and the operational frequency. 
Compared to the design proposed by Mert et al.[11], the pro-
posed design consumes more hardware resources, because it 
supports 8-, 16- and 32-point transform modules and enables 
all the possible combinations of block sizes which can be 
symmetric or asymmetric. The design proposed by Kam-
moun et al.[16] supports all the AMT types and sizes, but it 
consumes important logic resources in terms of ALMs and 
registers. The design proposed by Garrido et al.[14] is the 
most efficient one regarding area. The hardware architecture 
proposed by Kammoun et al.[20] is more efficient than their 
previous work presented in [16] in terms of logic utiliza-
tion. However, the proposed design does not consider the 

(4)fps =
Freq ×M × N

C
Cycles

× Res × 1.5
.

asymmetric transform block sizes and requires more logic 
resources.

5 � Conclusion

In this work, a unified two-dimensional architecture 
of the exact and the approximate versions of the DST-
VII transform is proposed. It allows the computation 
of the square and rectangular transform block sizes 
(   8 × 8, 8 × 16, 8 × 32, 16 × 8, 16 × 16, 16 × 32, 32 × 8, 32 × 16 
and 32 × 32).

Actually, the proposed 2D transform mainly consists 
of the 1D transform module, the truncate module, and the 
transpose module. Three variants can be used to compute the 
1D transform including the multipliers-based exact trans-
form, the MCM-based exact transform, and the approximate 
transform with adders and bit-shifting operations.

All the designs are implemented under the Arria 10 FPGA 
device. The proposed architecture turns out to remarkably 
outperform the already existing designs as it ensures a good 
compromise between the logic utilization and the operational 
frequency. The proposed designs highlight the efficiency of 
the approximated transforms through synthesis results. The 
proposed computation of the 2D approximate transform is 
the most efficient implementation with only 4% of area con-
sumption. Compared to the multipliers-based computation, 
the 2D approximate transform requires nearly 2× less logic 
resources. Compared to the MCM-based computation, about 
53% of hardware cost saving is obtained. More than that, the 
approximate-based 2D transform architecture can operate at 
78 MHz enabling a real-time coding for 2K and 4K videos 
at 100 and 25 frames/s, respectively.

To the best of our knowledge, this is the first 2D uni-
fied transform design that allows the computation of the 
exact transform using two different methods as well as the 
approximate transforms. The proposed architecture takes 

Table 6   Comparison of different 2D hardware transform designs for the VVC standard

Design Mert et al.[11] Kammoun et al.[16] Garrido et al.[14] Kammoun et al.[20] Proposed

Technology 40 nm FPGA ME 20 nm FPGA ME 20nm FPGA ME 20 nm FPGA ME 20 nm FPGA
ALMs 5292 133017 1312 36766 17631
Registers – 274902 3654 – 17313
DSPs – 1561 32 738 0
Frequency (MHz) 167 147 458 228 78
Frames/sec 3840x2160p30 1920x1080p50 3840x2610p18 3840x2610p96 1920x1080p100
Transform unit 4, 8 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 8, 16, 32

sym sym + asym sym sym sym + asym
Transform type AMT AMT MTS MTS DST-VII
Dimension 2D 2D 2D 2D 2D
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into account all the symmetric and asymmetric transform 
units.

As future works, the proposed design can be extended to 
a unified one that supports the computation of the DST-VII 
and the DCT-VIII transforms of different lengths. This is 
because the DCT-VIII can be easily computed from the DST-
VII transform. This hardware sharing will not involve any 
additional hardware resources. Furthermore, even though the 
proposed architecture is designed for the encoder, it can be 
extended for the decoder side by applying a transposition to 
the transform matrices.
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