
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2022) 19:1081–1090
https://doi.org/10.1007/s11554-022-01250-y

ORIGINAL RESEARCH PAPER

A high‑performance two‑dimensional transform architecture
of variable block sizes for the VVC standard

Sonda Ben Jdidia1  · Fatma Belghith1 · Nouri Masmoudi1

Received: 25 March 2022 / Accepted: 17 August 2022 / Published online: 1 September 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
The versatile video coding standard H.266/VVC release has been accompanied with various new contributions to
improve the coding efficiency beyond the high-efficiency video coding (HEVC), particularly in the transformation pro-
cess. The adaptive multiple transform (AMT) is one of the new tools that was introduced in the transform module. It
involves five transform types from the discrete cosine transform/discrete sine transform families with larger block sizes.
The DCT-II has a fast computing algorithm, while the DST-VII relies on a complex matrix multiplication. This has led
to an additional computational complexity. The approximation of the DST-VII can be used for the transform optimiza-
tion. At the hardware level, this method can provide a gain in power consumption, logic resources use and speed. In this
paper, a unifed two-dimensional transform architecture that enables exact and approximate DST-VII computation of sizes
8 × 8, 8 × 16, 8 × 32, 16 × 8, 16 × 16, 16 × 32, 32 × 8, 32 × 16 and 32 × 32 is proposed. The exact transform computation
can be processed using either multipliers or the MCM algorithm, while the approximate transform computation is based on
additions and bit-shifting operations. All the designs are implemented under the Arria 10 FPGA device. The synthesis results
show that the proposed design implementing the approximate transform matrices is the most efficient method with only 4%
of area consumption. It reduces the logic utilization by more than 65% compared to the multipliers-based exact transform
design, while about 53% of hardware cost saving is obtained when compared to the MCM-based computation. Furthermore,
the approximate-based 2D transform architecture can operate at 78 MHz allowing a real-time coding for 2K and 4K videos
at 100 and 25 frames/s, respectively.

Keywords  Versatile video coding · Discrete sine transform · Approximate computing · Hardware implementation · FPGA

1  Introduction

All along the past years, the multimedia world has witnessed
a real revolution through the emergence of a myriad of appli-
cations where digital videos are ubiquitous. This revolution
is accompanied by users’ interest in immersive and high-
quality video contents and by the platforms supporting video
sharing such as social networks, messaging platforms and
video streaming services.

As a result, the amount of data exchanged, especially
on the Internet, continues to increase. A forecast done by
Cisco indicates that, by 2022, IP video traffic will represent
82% of the global internet traffic [1]. In addition, Comcast

estimates that the current COVID-19 crisis has increased the
Voice over Internet Protocol (VoIP) and video conferenc-
ing by 210-285 % and other video consumption by 20-40%
compared to the pre-pandemic period [2]. This tremendous
growth is mainly explained by pervasive connectivity and
the proliferation of advanced multimedia solutions that sup-
port emerging formats such as 4K/8K Ultra-High-Definition
(UHD) video and 360◦ omnidirectional video. This leads
to major challenges for communication networks that have
limited bandwidths and storage capacity, making it neces-
sary to have more efficient video compression standards that
keep the quality unchanged.

To handle the excessive increase in video consump-
tion, the ISO/IEC (International Standardization Organiza-
tion/International Electro-technical Commission) Motion
Picture Experts Group (MPEG) and ITU-T (International
Telecommunication Union-Telecommunication) Video
Coding Experts Group (VCEG) have developed different

 *	 Sonda Ben Jdidia
	 sonda.benjdidia@enis.tn

1	 Université de Sfax, ENIS, LETI, 3038 Sfax, Tunisia

http://orcid.org/0000-0001-8116-2295
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-022-01250-y&domain=pdf

1082	 Journal of Real-Time Image Processing (2022) 19:1081–1090

1 3

video coding standards. The latest standards, Advanced
Video Coding (AVC)/H.264 [3] and High-Efficiency Video
Coding (HEVC)/ H.265 [4], were released in 2003 and
2013, respectively.

However, despite the crucial improvements provided by
the HEVC standard, a more efficient video compression
standard is required especially for high-quality video con-
tents. Therefore, VCEG and MPEG have joined again and
formed the Joint Video Exploration Team (JVET) in Octo-
ber 2015 to study new coding tools beyond the capabilities
of the HEVC. A first version of the Versatile Video Coding
standard was published in July 2020 as H.266/VVC [5].

The VVC standard has improved the coding efficiency
while increasing its complexity from 7.5× to 34× com-
pared to the HEVC. This has revealed a critical need for
more effective methods of video compression.

The introduction of the Adaptive Multiple Transform
(AMT) which incorporates new types of transforms with
sizes ranging from 4 × 4 up to 128 × 128 has led to an addi-
tional complexity in the VVC transform module. This has
led researchers to study new transforms offering a com-
promise between performance and arithmetic complexity.
The transform approximation has proved to be an efficient
approach, since it simplifies the calculations of existing
transforms rather than inventing new ones and provides
approximate results that have practical significance at a
considerably lower arithmetic and computational cost [6].

Only a few works in the literature have dealt with the
hardware implementation of the VVC transforms. Some
of which have targeted the optimization of the transforms
using the approximation approach. This study proposes
a unified two-dimensional architecture that provides
exact and approximate DST-VII transform calculations. It
embeds all the square and rectangular transform block sizes
(  8 × 8, 8 × 16, 8 × 32, 16 × 8, 16 × 16, 16 × 32, 32 × 8, 32 × 16
8 × 8, 8 × 16, 8 × 32, 16 × 8, 16 × 16, 16 × 32, 32 × 8, 32 × 16
and 32 × 32 ). The approximate transform design achieves a
compromise between the hardware resources’ consumption

and the operational frequency. It is able to perform
2Kp100 video coding.

The remainder of this paper is organized as follows. Sec-
tion II depicts the principle of the transform coding in the
VVC as well as some related works which have dealt with
efficient hardware implementation of either exact or approxi-
mate transforms. Section III describes the proposed hard-
ware implementation of the 2D DST-VII transform as well as
the different modules that it includes. Section IV presents the
synthesis results of the proposed hardware implementations.
Finally, section V concludes the paper.

2 � VVC transform

2.1 � VVC transform review

The discrete cosine/sine transform proves to be a basic algo-
rithm for compression owing to its signal decorrelation and
energy concentration properties. The DCT and DST trans-
forms are widely used in video compression applications. In
the VVC, the AMT approach notably includes three features:

–	 Multiple core transforms, namely, DCT-II, DCT-V,
DCT-VIII, DST-I, and DST-VII, whose basis functions
are shown in Table 1. The coefficients of the transform
matrices are scaled and rounded into integer numbers
while maintaining the important transform properties.

–	 Either similar or different transform types can be used in
the 1D and the 2D transforms.

–	 Either symmetric or asymmetric transform units are sup-
ported which is not the case in the HEVC.

The AMT approach is performed on inter- and intra-coded
residual blocks. It is controlled by a CU level flag which
indicates whether the AMT is applied or not. When the CU
level flag value is 0, the residual coding is ensured by the
DCT-II/DST-VII transform like that of the HEVC. Other-
wise, two other flags are added to mention the horizontal and

Table 1   Basis functions of
DCT-II/V/VIII and DST-I/VII
transforms

Transform type Basis function Ti(j), i, j = 0, 1, ...,N − 1

DCT-II
Ti(j) = �0.

√

2

N
cos

(

�.i.(2j+1)

2N

)

,where �0 =

{√

2

N
, i = 0

1, i ≠ 0

DCT-V
Ti(j) = �0.�1

√

2

2N−1
cos

(

2�.i.j

2N−1

)

,where �0 =

{√

2

N
, i = 0

1, i ≠ 0
,�1 =

{√

2

N
, j = 0

1, j ≠ 0

DCT-VIII
Ti(j) =

√

4

2N+1
cos(

�.(2i+1).(2j+1)

4N+2
)

DST-I
Ti(j) =

√

2

N+1
sin(

�.(i+1).(j+1)

N+1
)

DST-VII
Ti(j) =

√

4

2N+1
sin(

�.(2i+1).(j+1)

2N+1
)

1083Journal of Real-Time Image Processing (2022) 19:1081–1090	

1 3

vertical transforms to be used. For intra-coded Coding Unit
(CU), a transform selection is carried out depending on the
Intra-Prediction Mode (IPM) selected among the 67 given
modes [7]. For each mode, a transform set is chosen from
three sets as defined in Table 2. The two transform candi-
dates within the selected set are tested for both horizontal
and vertical transforms. Afterwards, the optimal transform
which meets the lowest rate distortion cost is chosen [8].
As for the inter-coded CU, the DST-VII and DCT-VII trans-
forms are used for all inter modes and for both horizontal
and vertical transforms.

The reference software JEM7.1 [9] adopts integer trans-
forms in the transformation process. However, a new con-
cept called Multiple Transform Selection (MTS) is adopted
in the final version of the reference software, named VVC
Test Model (VTM), with only three transform kernels (DCT-
II, DST-VII, and DCT-VIII).

The 2D transform is computed by performing the 1D
transform in the horizontal and vertical directions, respec-
tively. The 1D horizontal transform is computed according
to Eq. (1)

where TH is the N × N matrix of the horizontal transform
which can be one of the transform types represented in
Table 1, X is the ( 1 × N  ) input row vector, and Yint is the
( N × 1 ) intermediate output column vector. After perform-
ing the 1D horizontal transform, the 1D vertical transform
is computed according to Eq. (2)

where TV is the N × N matrix of the vertical transform which
can be of the same or different type as the horizontal trans-
form and Y is the ( N × 1 ) output column vector. Equation 3
summarizes the 2D transform computation

Since the transform types are independent, it is actually
hard to design a unified architecture that allows the 2D
computation of all the five transform types together. Con-
sequently, it is recommended to propose an efficient design

(1)Yint = TH ⋅ XT
,

(2)Y = TV ⋅ YT
int
,

(3)Y = TV ⋅ (TH ⋅ XT
)
T
.

for each transform type with a low hardware cost. This can
be achieved by efficiently implementing either the exact or
the approximate version of the transform. A fairly relevant
approximation of the DST-VII transform was proposed in
[10] which targets the transforms of sizes 8, 16, and 32.
The hardware architectures of both exact and approximate
1D transforms were designed. This paper focuses on the 2D
implementation of the DST-VII transform in its exact and
approximate versions based on the 1D architecture of [10].

2.2 � Related works

Within the transform hardware implementation context, effi-
cient transform computation algorithms represent a major
controversial topic, subject of intensive studies. Based
on a literature review, the transform computation’ relat-
ing approaches tend to be categorized under the exact and
approximate methods. Concerning the present work, the
focus of interest is primarily laid on investigating a unifed
2D architecture that enable both exact and approximate
transform computations. To our knowledge, no previously
elaborated work has suggested to design a unified architec-
ture that involves two transform computation methods.

2.2.1 � Hardware implementation of exact transforms

Within the context of efficient exact transform computation
algorithms, Mert et al. [11] proposed two methods of the
AMT 2D hardware implementation including all the trans-
form types for sizes 4 × 4 and 8 × 8 . The first method uses
separate datapaths for each 1D transform and the second
method uses one reconfigurable datapath for the 1D column/
row transform. Implementation results show that the recon-
figurable hardware consumes less logic resources and more
energy than the baseline hardware. The proposed methods
allow a 2D transform computation of all the transform types,
but do not support transform sizes larger than 8, which are
more complex and require more logic resources. Authors
in [12] suggested a hardware implementation of the AMT
of size 8. The transforms are computed using either Altera
multipliers (LPM) or addition and bit-shifting operations.
Synthesis results show that the design based on addition and
bit-shifting operations is more efficient in terms of hardware
resources consumption and operational frequency. Garrido
et al. [13] proposed a hardware architecture for the five trans-
forms of the AMT allowing a 4 × 4 , 8 × 8 , 16 × 16 or 32 × 32
1D transform. The proposed architecture is implemented on
three FPGA chips. The synthesis results show that the design
can process real-time 4K UHD formats with a low hardware
resources’ consumption. However, this architecture only
concerns the 1D transform applied to symmetric block size
combinations, whereas including the 2D transform as well
as considering asymmetric block may be more complex.

Table 2   Pre-defined transform
candidate subsets

Trans-
form
Set

Transform candidates

0 DST-VII, DCT-VIII
1 DST-VII, DST-I
2 DST-VII, DCT-V

1084	 Journal of Real-Time Image Processing (2022) 19:1081–1090

1 3

The authors extended their work in [14] to consider the 2D
transform design. The architecture is composed of two 1D
AMT processors and a transpose memory to store the 1D
intermediate results. The design is synthesized for a low-
end, a middle-end and a high-end FPGA devices. Synthesis
results reveal that the logic utilization is almost the same in
all cases, while the operational clock frequency differs from
one case to another and depends on the FPGA technology.
Authors in [15] proposed an implementation of size 4 AMT
transforms using additions and shifts instead of multiplica-
tions. The transforms are described in two versions : with
or without use of the state machine. The synthesis results
show that both methods, supporting all the transform types,
require less than 3% of the resources available in the FPGA
device and provide 285 MHz and 318 MHz, respectively,
as the maximum operational frequency. This work was
extended in [16] to a 2D hardware implementation support-
ing square and rectangular block sizes. The proposed design
requires about 53% of logic resources and 93% of DSPs
available in the FPGA device. Fan et al. [17] designed a
32 × 32 block-based transform architecture that allows a 2D
DST-VII and DCT-VIII transform computation of all sizes.
The proposed ASIC-based design needs a small logic uti-
lization and reaches an operational frequency of 250 MHz.
Sau et al. [18] introduced two different implementations of
the AMT. The first is a standalone design which permits the
computation of one single transform. The second is a recon-
figurable design which allows the computation of multiple
transforms. The different architectures, performing 4 × 4 2D
transform, are evaluated and compared in terms of hardware
resources consumption and maximum operational frequency.
Yibo et al. [19] adopted a unified transform architecture
that computes 1D DST-VII and DCT-VIII transforms of all
sizes through a Reduced Adder Graph (RAG-n) algorithm to
design the Shift-Addition Units (SAU) . A comparison with
the multiplication-based designs show that the SAU-based
design results in area and power savings.

2.2.2 � Hardware implementation of approximate
transforms

Some relevant works revealed efficient computation of the
approximate transforms instead of the exact ones. In this
context, Kammoun et al. [20] developed a hardware design
of forward and inverse 2D approximate transforms of sizes
4 × 4 , 8 × 8 , 16 × 16 and 32 × 32 meant to consume only 9%
of the total hardware area and only 15% of the DSP blocks.
Yet, it does not support rectangular block sizes which may
result in additional area consumption. Authors in [21] pre-
sented a hardware implementation of 8-point exact and
approximate DST-VII transform. The hardware synthesis
results show that the approximate design presents 70% of
hardware resources saving with regard to the exact transform

implementation. Ben Jdidia et al. [10] proposed a hardware
description of 8- and 16-point exact transforms using mul-
tipliers and the Multiple Constant Multiplication (MCM)
algorithm as well as the approximate transforms using addi-
tion and bit-shifting operations. The synthesis results reveal
that the proposed approximations provide a significant gain
in terms of hardware resources and power consumption. The
work in [22] depicts the implementation of the approximate
DST-VII and DCT-VIII 1D transforms of sizes ranging from
4 to 32. The proposed hardware design requires a reduced
hardware cost.

3 � 2D DST‑VII transform hardware
implementation

A two-dimensional transform applied to an M × N transform
block is processed sequentially as follows :

1.	 The M-point 1D transform is performed on the transform
block input columns.

2.	 The results are rounded by applying the appropriate shift
value according to the transform size.

3.	 The rounded results are transposed.
4.	 The N-point 1D transform is performed on the columns

of the transposed matrix.
5.	 The results are rounded by applying the appropriate shift

value according to the transform size to get the final
output results.

In this section, an architecture is described to compute the
2D DST-VII transform for the blocks of sizes up to 32 × 32 .
Figure 1 sums up the proposed architecture of the 2D trans-
form. The interface of the 2D DST-VII architecture is out-
lined in Table 3. The transform computation is launched
with a pulse in the Xav input signal. The 1D and 2D trans-
form sizes are specified by selv and selh input signals, respec-
tively. The 16-bit input data X0..X7 are fed to the design to
compute the outputs Y0..Y7 which are validated by the Yav
output signal.

In the proposed design, three 1D transforms are instanti-
ated, one for each size. They are reused for the second 1D
transform. Duplicating the 1D transforms can be needed to
pipeline all the computation, at the cost of a higher area
usage. The proposed architecture is based on the 1D DST-
VII design of [10] to compute either the exact or the approxi-
mate version of the DST-VII transform. Since the design is
unified for sizes 8, 16 and 32, then, according to the “ selv ”
signal which defines the transform size to be used in the 1D
transform, the input column is given in one cycle when the
transform size is 8, two cycles when the transform size is 16
(first half first) and four cycles when the transform size is 32
(first quarter first). The “transform index” signal takes ’0’

1085Journal of Real-Time Image Processing (2022) 19:1081–1090	

1 3

during the first 1D transform and ’1’ during the second 1D
transform. After performing the 1D transform, the outputs
are rounded using the shift values defined in the VVC refer-
ence software. These values depend on the transform size
and whether it is the 1D or 2D transform. The truncated col-
umns are fed to the transpose module. The result will serve
as input to the second 1D transform. The number of inputs
is specified according to the “ selh ” signal which defines the
transform size to be used in the second 1D transform. Once
the 2D outputs are obtained and shifted, the results which
are the final output rows are given in one cycle when the
transform size is 8, two cycles when the transform size is
16 (first half first) and four cycles when the transform size
is 32 (first quarter first). The signal Yav indicates that the
outputs are available. The different modules of the proposed
architecture are detailed in the sections below.

An example of a 2D transform computation for a 16 × 32
transform block is outlined in Fig. 2. When the input signal
value selv is set to “01”, it indicates that the size of the first
1D transform is equal to 16. When the input signal value

selh is equal to “10”, the size of the second 1D transform is
equal to 32. The 32 input columns are read from the input
file; each column is read every two clock cycles, because
the input column is composed of 16 coefficients and only 8
inputs can be read in every cycle. These inputs are registered
in the signal X_16, which is a vector of 16 inputs, as shown
in Fig. 1. Once all the values of the signal X_16 are read, the
computation of the 1D transform of size 16 can be launched
to generate the intermediate outputs, which are stored in the
signal Y_16. The truncate and the transposition modules are
processed combinatorially. The result of the transposition
stage will serve as input for the second 1D transform, which
is a transform of size 32. The same process is used to com-
pute the output values, which are stored in the signal Y_32.
These values are shifted to get the final output results which
are given row by row, each row every four clock cycles.

3.1 � The 1D transform computation

The N-point 1D transform architecture is depicted in
Fig. 3. It allows the computation of the 1D N-point trans-
form ( N ∈ {8, 16, 32} ) using one of the methods : the exact
transform using either multipliers or the MCM algorithm
and the approximate transform using adders and bit-shifting
operations. One of the three methods is chosen according to
the control signal “computation method”. For a given input
column vector X_N which is an N × 16−bit vector, one of
the mentioned methods is used to compute the ouput Y_N
whose width depends on the computation method. The three
methods are well explained in [10].

The transform module is basically a matrix multiplica-
tion. The transform computation performed using multipli-
ers requires a lot of hardware resources. The MCM algo-
rithm is used in transform computation, because the input
number is always multiplied by the same transform matrix

Fig. 1   The proposed 2D trans-
form architecture

8-point 1D
transform

16-point 1D
transformM

ux X_16

M
ux

Transpose
Input row

Truncate (2D)

Truncate (1D)

Truncated column

32-point 1D
transform

X_8

X_32

selv

selh

rst

clk

2

Xav Yav

Transform index Transform size index

X0

X1

X2

X3

X4

X5

X6

X7
16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

2

X

Y

Y_8

Y_16

Y_32

Table 3   2D interface description design

Signal I/O Bits Description

clk I 1 System clock
reset I 1 Asynchronous system reset, active low
selv I 2 1D transform size :

0 : size 8, 1 : size 16, 2 : size 32
selh I 2 2D transform size :

0 : size 8, 1 : size 16, 2 : size 32
Xav I 1 Inputs are available : positive pulse
X0 .. X7 I 128 Input vector, 8 × 16−bit inputs
Y0 .. Y7 O 128 Output vector, 8 × 16−bit outputs
Yav O 1 Outputs are available : positive pulse

1086	 Journal of Real-Time Image Processing (2022) 19:1081–1090

1 3

coefficients. Another alternative which drastically reduces
the hardware resources consumption is to consider approxi-
mate transforms instead of exact ones. These lightweight
transforms can be efficiently implemented by only adopting
adders and bit-shifting operations.

3.2 � The truncate module

Figure 4 illustrates the truncate module which is used to
scale the outputs of the 1D column DST-VII and the 1D row

DST-VII to 16 bits. The truncate (1D) module shifts the 1D
column outputs right by 6, 7 and 8 bits when the transform
size is 8, 16 and 32, respectively. The truncate (2D) module
shifts the 1D row outputs right by 11, 12 and 13 bits when
the transform size is 8, 16 and 32, respectively. Selecting
whether it is the 1D or the 2D transform is done using the
“dimension” input signal. The transform size is selected
according to the “transform_size_index” signal.

3.3 � The transpose module

The intermediate 1D results are temporarily stored in a
matrix of registers. To transpose the result of the first 1D
transform, each transform column is written in a matrix of
registers, and it is read row by row. Figure 5 illustrates the
transpose module. This block design stores the 1D output
column vectors of size N after applying the appropriate shift
value.

4 � Experimental results

4.1 � Experimental setup

The 2D transform design is described using the VHDL hard-
ware description language. The 2D transform process of the

Fig. 2   Timing chronogram for the 2D transform of a 16 × 32 block size

Computation method

X_N Y_N

Fig. 3   The N-point 1D transform architecture

Truncate module
16

Output_number

Input_number

dimension

Transform_size_index
2

width

Fig. 4   The truncate module

1087Journal of Real-Time Image Processing (2022) 19:1081–1090	

1 3

different block sizes is tested with simulation and synthesis
software tools [23, 24], under the Arria 10 FPGA device
[25]. Self-checking testbench files are used to verify the out-
put results. The test process is carried out as follows. A set
of pseudorandom inputs and their corresponding outputs are
generated using a python script for the different block sizes.
Then, the testbench file reads the input file and compares the
simulation results with those obtained using the reference
software implementation. The different tests cover all the
transform unit sizes from 8 × 8 to 32 × 32 including sym-
metric and asymmetric blocks.

4.2 � Results and analysis

The synthesis results of the 2D transform design are dis-
played in Table 4. The design uses 264 pins which repre-
sent 27% of the total pins available in the FPGA device.
Pin counts regroups the clock, reset, selv , selh , Xav and the
8 16-bit input signals as well as Yav and the 8 16-bit out-
put signals. For the exact 2D transform computation using
multipliers, only 12% of the ALMs and 1% of the registers
are required. The design does not use any DSP blocks and
reaches an operational frequency up to 69 MHz. The MCM-
based design is more efficient in terms of logic utilization. It
uses 9% of the ALMs. The operational frequency achieved
by the MCM-based transform design is of 63 MHz. The
computation of the 2D approximate transform is the most
efficient implementation in terms of area consumption. In
comparison to the multipliers-based computation, the 2D
approximate transform computation requires approximately
2× less logic resources. Compared to the MCM-based com-
putation, about 53% of hardware cost saving is obtained.

These synthesis results of the 2D transform design have the
same tendencies as for the 1D transform design (presented in
[10]) in terms of logic utilization. The operational frequency
is improved compared to the exact transform computation
methods. It reaches 78 MHz.

The performances of the 2D transform design of the dif-
ferent block sizes are evaluated in Table 5. The number of
cycles depends on the transform block size which is being
computed. It varies from 17 cycles in the case of an 8 × 8
block size to 257 cycles in the case of a 32 × 32 block size.
The throughput in frames per seconds (fps) is calculated

Fig. 5   The transpose module Y0

Y1

YN-1

Y0

Y1

YN-1

Y0

Y1

YN-1

C1 C2 CN

Y0

Y0

Y0

Y1

Y1

Y1

YN-1

YN-1

YN-1

After transposition

C1 C2 CN

Table 4   Synthesis results of the
2D DST-VII transform design

Exact transform Approximate transform

Multipliers-based MCM-based

Pins 264 (27%) 264 (27%) 264 (27%)
ALMs 50876 (12%) 37527 (9%) 17631 (4%)
Registers 17313 17313 17313
DSPs 0 0 0
Frequency (MHz) 69 63 78

Table 5   Performance of the 2D transform design

Computation method Transform
block size

Cycles 2K fps 4K fps

Multipliers 8 × 8 17 84 21
8 × 16 33 86 22
16 × 16 65 87 22
16 × 32 129 88 22
32 × 32 257 88 22

MCM 8 × 8 17 76 19
8 × 16 33 79 20
16 × 16 65 80 20
16 × 32 129 80 20
32 × 32 257 81 20

Approximated 8 × 8 17 94 24
8 × 16 33 97 24
16 × 16 65 99 25
16 × 32 129 100 25
32 × 32 257 100 25

1088	 Journal of Real-Time Image Processing (2022) 19:1081–1090

1 3

using Eq. (4) for the different 2D block size combinations.
Freq represents the operational frequency used to compute
an M × N block size over CCycles clock cycles, Res defines the
video resolutions 2K (1920×1080) and 4K (3840×2160), and
1.5 is a factor assigned to the image color sampling in 4:2:0

The proposed approximate-based transform achieves a high
frame rate performance. It can be noticed that the larger
the transform unit is, the better the throughputs are. These
results are obtained assuming the same block size for all
the transforms. Whereas, in real video applications, each
frame is encoded using different transform block sizes. Con-
sequently, in this regard, the proposed 2D design may have
a better performance. The approximate-based 2D transform
architecture has a more efficient coding performance in
terms of frames per second compared to the exact transform
design computed using either the multipliers or the MCM
algorithm. In fact, it enables a real-time coding for 2K and
4K videos at 100 and 25 frames/s, respectively.

Table 6 displays a comparison between different 2D
hardware designs for the VVC standard. The approximate-
based 2D transform architecture ensures a good compromise
between the logic utilization and the operational frequency.
Compared to the design proposed by Mert et al.[11], the pro-
posed design consumes more hardware resources, because it
supports 8-, 16- and 32-point transform modules and enables
all the possible combinations of block sizes which can be
symmetric or asymmetric. The design proposed by Kam-
moun et al.[16] supports all the AMT types and sizes, but it
consumes important logic resources in terms of ALMs and
registers. The design proposed by Garrido et al.[14] is the
most efficient one regarding area. The hardware architecture
proposed by Kammoun et al.[20] is more efficient than their
previous work presented in [16] in terms of logic utiliza-
tion. However, the proposed design does not consider the

(4)fps =
Freq ×M × N

C
Cycles

× Res × 1.5
.

asymmetric transform block sizes and requires more logic
resources.

5 � Conclusion

In this work, a unified two-dimensional architecture
of the exact and the approximate versions of the DST-
VII transform is proposed. It allows the computation
of the square and rectangular transform block sizes
(  8 × 8, 8 × 16, 8 × 32, 16 × 8, 16 × 16, 16 × 32, 32 × 8, 32 × 16
and 32 × 32).

Actually, the proposed 2D transform mainly consists
of the 1D transform module, the truncate module, and the
transpose module. Three variants can be used to compute the
1D transform including the multipliers-based exact trans-
form, the MCM-based exact transform, and the approximate
transform with adders and bit-shifting operations.

All the designs are implemented under the Arria 10 FPGA
device. The proposed architecture turns out to remarkably
outperform the already existing designs as it ensures a good
compromise between the logic utilization and the operational
frequency. The proposed designs highlight the efficiency of
the approximated transforms through synthesis results. The
proposed computation of the 2D approximate transform is
the most efficient implementation with only 4% of area con-
sumption. Compared to the multipliers-based computation,
the 2D approximate transform requires nearly 2× less logic
resources. Compared to the MCM-based computation, about
53% of hardware cost saving is obtained. More than that, the
approximate-based 2D transform architecture can operate at
78 MHz enabling a real-time coding for 2K and 4K videos
at 100 and 25 frames/s, respectively.

To the best of our knowledge, this is the first 2D uni-
fied transform design that allows the computation of the
exact transform using two different methods as well as the
approximate transforms. The proposed architecture takes

Table 6   Comparison of different 2D hardware transform designs for the VVC standard

Design Mert et al.[11] Kammoun et al.[16] Garrido et al.[14] Kammoun et al.[20] Proposed

Technology 40 nm FPGA ME 20 nm FPGA ME 20nm FPGA ME 20 nm FPGA ME 20 nm FPGA
ALMs 5292 133017 1312 36766 17631
Registers – 274902 3654 – 17313
DSPs – 1561 32 738 0
Frequency (MHz) 167 147 458 228 78
Frames/sec 3840x2160p30 1920x1080p50 3840x2610p18 3840x2610p96 1920x1080p100
Transform unit 4, 8 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 8, 16, 32

sym sym + asym sym sym sym + asym
Transform type AMT AMT MTS MTS DST-VII
Dimension 2D 2D 2D 2D 2D

1089Journal of Real-Time Image Processing (2022) 19:1081–1090	

1 3

into account all the symmetric and asymmetric transform
units.

As future works, the proposed design can be extended to
a unified one that supports the computation of the DST-VII
and the DCT-VIII transforms of different lengths. This is
because the DCT-VIII can be easily computed from the DST-
VII transform. This hardware sharing will not involve any
additional hardware resources. Furthermore, even though the
proposed architecture is designed for the encoder, it can be
extended for the decoder side by applying a transposition to
the transform matrices.

References

	 1.	 Cisco Visual Networking Index: Forecast and Trends 2017-2022.
http://​web.​archi​ve.​org/​web/​20181​21310​5003/​https:/​www.​cisco.​
com/c/​en/​us/​solut​ions/​colla​teral/​servi​ce-​provi​der/​visual-​netwo​
rking-​index-​vni/​white-​paper-​c11-​741490.​pdf (2018). Accessed
June 2021

	 2.	 Comcast Corporation: COVID-19 network update. https://​
corpo​rate.​comca​st.​com/​covid-​19/​netwo​rk/​may-​20-​2020 (2021).
Accessed June 2021

	 3.	 Wiegand, T., Sullivan, G.J., Bjontegaard, G., et al.: Overview of
the h. 264/avc video coding standard. IEEE Trans. Circuits Syst.
Video Technol. 13(7), 560–576 (2003)

	 4.	 Sullivan, G.J., Ohm, J.-R., Han, W.-J., et al.: Overview of the
high efficiency video coding (hevc) standard. IEEE Trans. Circuits
Syst. Video Technol. 22(12), 1649–1668 (2012)

	 5.	 International Telecommunication Union (ITU): New versatile
video coding standard to enable next-generation video compres-
sion.’ https://​www.​itu.​int/​en/​media​centre/​Pages/​pr13-​2020-​New-​
Versa​tile-​Video-​coding-​stand​ard-​video-​compr​ession.​aspx (2021).
Accessed Apr 2021

	 6.	 Kammoun, A., Hamidouche, W., Philipp, P., Belghith, F., Mass-
moudi, N., Nezan, J.-F.: Hardware acceleration of approximate
transform module for the versatile video coding standard. In: 2019
27th European Signal Processing Conference (EUSIPCO), pp. 1–5
(2019). https://​doi.​org/​10.​23919/​EUSIP​CO.​2019.​89025​94

	 7.	 Schwarz, H., Rudat, C., Siekmann, M., et al.: Coding efficiency/
complexity analysis of jem 1.0 coding tools for the random access
configuration. In: Document JVET-B0044 3rd 2nd JVET Meeting
(2016)

	 8.	 Chen, J., Alshina, E., Sullivan, G. J., et al.: Algorithm description
of joint exploration test model 7 (jem 7). In: Joint Video Explora-
tion Team (JVET) of ITU-T SG (2017)

	 9.	 Joint-Video-Exploration-Team: JEVT software repository. https://​
jvet.​hhi.​fraun​hofer.​de/​svn/​svn_​HMJEM​Softw​are/​branc​hes/​HM-​
16.6-​JEM-7.​1-​dev/ (2019). Accessed March 2019

	10.	 Ben Jdidia, S., Belghith, F., Sallem, A., et al.: Hardware imple-
mentation of PSO-based approximate DST transform for VVC
standard. J. Real-Time Image Process. 19(1), 87–101 (2022)

	11.	 Mert, A.C., Kalali, E., Hamzaoglu, I.: High performance 2d trans-
form hardware for future video coding. IEEE Trans. Consum.
Electron. 63(2), 117–125 (2017)

	12.	 Ben Jdidia, S., Kammoun, A., Belghith, F., et al.: Hardware imple-
mentation of 1-d 8-point adaptive multiple transform in post-hevc
standard. In: 18th International Conference on Sciences and Tech-
niques of Automatic Control and Computer Engineering (STA),
IEEE, pp. 146–151 (2017)

	13.	 Garrido, M.J., Pescador, F., Chavarrias, M., et al.: A high per-
formance FPGA-based architecture for the future video coding
adaptive multiple core transform. IEEE Trans. Consum. Electron.
64(1), 53–60 (2018)

	14.	 Garrido, M.J., Pescador, F., Chavarrías, M., et al.: A 2-D multi-
ple transform processor for the versatile video coding standard.
IEEE Trans. Consum. Electron. 65(3), 274–283 (2019)

	15.	 Kammoun, A., Ben Jdidia, S., Belghith, F., et al.: An optimized
hardware implementation of 4-point adaptive multiple transform
design for post-hevc. In: 2018 4th International Conference
on Advanced Technologies for Signal and Image Processing
(ATSIP), IEEE, pp. 1–6 (2018)

	16.	 Kammoun, A., Hamidouche, W., Belghith, F., et al.: Hardware
design and implementation of adaptive multiple transforms for
the versatile video coding standard. IEEE Trans. Consum. Elec-
tron. 64(4), 424–432 (2018)

	17.	 Fan, Y., Zeng, Y., Sun, H., et al.: A pipelined 2d transform
architecture supporting mixed block sizes for the VVC standard.
IEEE Trans. Circuits Syst. Video Technol. 30(9), 3289–3295
(2019)

	18.	 Sau, C., Ligas, D., Fanni, T., et al.: Reconfigurable adaptive
multiple transform hardware solutions for versatile video cod-
ing. IEEE Access 7, 153258–153268 (2019)

	19.	 Yibo, F., Jiro, K., Heming, S., et al.: A minimal adder-oriented
1d dst-vii/dct-viii hardware implementation for vvc standard.
In: 2019 32nd IEEE International System-on-Chip Conference
(SOCC), IEEE, pp. 176–180 (2019)

	20.	 Kammoun, A., Hamidouche, W., Philippe, P., et al.: Forward-
inverse 2D hardware implementation of approximate transform
core for the VVC standard. IEEE Trans. Circuits Syst. Video
Technol. 30(11), 4340–4354 (2019)

	21.	 Ben Jdidia, S., Belghith, F., Jridi, M., et al.: A multicriteria
optimization of the discrete sine transform for versatile video
coding standard. Signal Image Video Process. 16(2), 329–337
(2022)

	22.	 Zeng, Y., Sun, H., Katto, J., et al.: Approximated reconfigurable
transform architecture for vvc. In: 2021 IEEE International Sym-
posium on Circuits and Systems (ISCAS), IEEE, pp. 1–5 (2021)

	23.	 Mentor-modelsim: Functional-verification-tool-web. https://​www.​
mentor.​com/​produ​cts/​fv/​model​sim (2019)

	24.	 Intel-FPGA: Download-center. https://​www.​altera.​com/​downl​
oads/​downl​oadce​nter.​ html (2019)

	25.	 Intel/Altera: Intel-arria-10-device-overview. https://​www.​altera.​
com/​docum​entat​ion/​sam14​03480​274650.​html (2018)

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and
applicable law.

http://web.archive.org/web/20181213105003/https:/www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.pdf
http://web.archive.org/web/20181213105003/https:/www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.pdf
http://web.archive.org/web/20181213105003/https:/www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.pdf
https://corporate.comcast.com/covid-19/network/may-20-2020
https://corporate.comcast.com/covid-19/network/may-20-2020
https://www.itu.int/en/mediacentre/Pages/pr13-2020-New-Versatile-Video-coding-standard-video-compression.aspx
https://www.itu.int/en/mediacentre/Pages/pr13-2020-New-Versatile-Video-coding-standard-video-compression.aspx
https://doi.org/10.23919/EUSIPCO.2019.8902594
https://jvet.hhi.fraunhofer.de/svn/svn_HMJEMSoftware/branches/HM-16.6-JEM-7.1-dev/
https://jvet.hhi.fraunhofer.de/svn/svn_HMJEMSoftware/branches/HM-16.6-JEM-7.1-dev/
https://jvet.hhi.fraunhofer.de/svn/svn_HMJEMSoftware/branches/HM-16.6-JEM-7.1-dev/
https://www.mentor.com/products/fv/modelsim
https://www.mentor.com/products/fv/modelsim
https://www.altera.com/downloads/downloadcenter.%20html
https://www.altera.com/downloads/downloadcenter.%20html
https://www.altera.com/documentation/sam1403480274650.html
https://www.altera.com/documentation/sam1403480274650.html

1090	 Journal of Real-Time Image Processing (2022) 19:1081–1090

1 3

Sonda Ben Jdidia  was born in
Sfax, Tunisia, in 1993. She
received her Electrical Engineer-
ing degree and her Ph.D degree
from the National Engineering
School of Sfax (ENIS), Tunisia,
in 2017 and 2021 respectively.
She is currently a member of
research team at Laboratory of
Electronics and Information
Technology LETI-ENIS, Univer-
sity of Sfax. Her research inter-
ests include video coding and
compression, potential video cod-
ing standards and codecs, FPGA
hardware implementation.

Fatma Belghith  was born in 1988,
in Sfax, Tunisia. She received
her degree in Electrical Engi-
neering and her Ph.D degrees
from the National School of
Engineering (ENIS), Sfax, Tuni-
sia, in 2012 and 2016 respec-
tively. She is currently a member
of research team at Laboratory of
Electronics and Information
Technology LETI-ENIS, Univer-
sity of Sfax. She is an Assistant
Professor at Faculty of Science
and Technology of Sidi Bouzid,
Tunisia. Her current research
interests include video coding

with emphasis on HEVC standard and beyond, hardware implementa-
tion using FPGA and embedded systems technology

Nouri Masmoudi  was born in
Sfax, Tunisia, in 1955. He
received electrical engineering
degree from the Faculty of Sci-
ences and Techniques - Sfax,
Tunisia, in 1982, the DEA
degree from the National Insti-
tute of Applied Sciences-Lyon
and University Claude Bernard-
Lyon, France in 1984. From
1986 to 1990, he prepared his
thesis at the laboratory of Power
Electronics (LEP) at the National
School Engineering of Sfax
(ENIS). He received his PhD
degree from the National School

Engineering of Tunis (ENIT), Tunisia in 1990. From 1990 to 2000, he
was an assistant professor at the electrical engineering department
-ENIS. Since 2000, he has been an associate professor and head of the
group ‘Circuits and Systems’ in the Laboratory of Electronics and
Information Technology. Since 2003, He is responsible for the Elec-
tronic Master Program at ENIS. His research activities have been
devoted to several topics: Design, Telecommunication, Embedded sys-
tems and Information technology. Video Coding (Motion Estimation,
Mode Decision, H.264 Standard), Image Processing (Wavelet Image
Compression, Subband Image Coding, Image Interpolation,
Denoising).

	A high-performance two-dimensional transform architecture of variable block sizes for the VVC standard
	Abstract
	1 Introduction
	2 VVC transform
	2.1 VVC transform review
	2.2 Related works
	2.2.1 Hardware implementation of exact transforms
	2.2.2 Hardware implementation of approximate transforms

	3 2D DST-VII transform hardware implementation
	3.1 The 1D transform computation
	3.2 The truncate module
	3.3 The transpose module

	4 Experimental results
	4.1 Experimental setup
	4.2 Results and analysis

	5 Conclusion
	References

