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Abstract Unmanned aerial vehicle (UAV)-based tracking

has shown large potential in various domains such as trans-

portation, logistics, public safety, and more. However, de-

ploying deep learning (DL)-based tracking algorithms on

UAVs is challenging because of limitations in computing

resources, battery capacity, and maximum load. Discrimi-

native correlation filter (DCF)-based trackers have become

a popular choice in the UAV tracking community owing to

their ability to provide superior efficiency while consuming

fewer resources. However, the limited representation learn-

ing ability of DCF-based trackers leads to lower precision

in complex scenarios compared to DL-based methods. Fil-

ter pruning is a prevalent practice for deploying deep neural

networks on edge devices with constrained resources, and

it may be an effective way to solve problems encountered

when deploying deep learning trackers on UAVs. However,

the application of filter pruning to UAV tracking is underex-

plored, and a straightforward and useful pruning standard

is desirable. This paper proposes using Fisher pruning to

reduce the SiamFC++ model for UAV tracking, resulting

in the F-SiamFC++ tracker. The proposed tracker achieves

a remarkable balance between precision and efficiency, as

demonstrated through exhaustive experiments on four pop-

ular UAV benchmarks: UAVDT, DTB70, UAV123@10fps,

and Vistrone2018, showing state-of-the-art performance.
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1 Introduction

With the widespread use of UAVs, UAV-based tracking tech-

nology has become a new hot topic, attracting increasing

interest in visual tracking. It has broad potential applica-

tions in fields such as navigation, agriculture, transporta-

tion, aerial photography, and emergency response [2,3,4,

5]. While tracking in general scenes is already challenging,

UAV tracking faces even more onerous challenges. On the

one hand, the motion of UAVs causes great challenges to

the accuracy of tracking algorithms, such as scale changes,

motion blur, severe occlusion; on the other hand, con-

strained computing capabilities, demand of minimal power

consumption, and constraint of battery endurance of UAV

present tremendous difficulties regarding their efficacy as

well [2,6,7]. The present state of technology in UAV track-

ing places a great emphasis on efficiency, which is why

DCF-based trackers are often used instead of DL-based

ones [4,5]. Despite great improvements in tracking preci-

sion for DCF-based trackers, they still do not achieve the

same level of precision as the majority of state-of-the-art

DL-based trackers. A DL-based UAV tracking method with

superior speed and precision was proposed in [3] recently,

which applies a lightweight backbone for consideration of

efficiency and fuses features of shallow and deep layers for

robust representation learning with a hierarchical feature

transformer. Regrettably, despite attaining a striking trade-

off between precision and efficiency, and accomplishing top

performance in UAV tracking, this tracker is incapable of

real-time tracking on a single CPU. But importantly, this in-

dicates that an effective and lightweight DL-based tracker

may be a viable alternative to DCF-based trackers, as it can

balance precision and speed. Therefore, we are motivated

to develop lightweight DL-based trackers for UAV track-

ing and apply model compression techniques to trade preci-
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Fig. 1 Our F-SiamFC++ tracker accomplishes the optimal trade-off between precision and efficiency in the UAV benchmarks, compared with both

DCF- and DL-based trackers. Taking the UAVDT [1] benchmark as an example. (a) With only a single CPU, we can perform real-time tracking

with the highest precision. (b) Using a deep-learning architecture, we can get the greatest speed (efficiency).

sion for speed. Our goal is to develop a real-time DL-based

tracker that achieves close precision to the original model.

Model compression aims to reduce the complexity of

deep neural network models using methods like parameter

pruning and knowledge distillation while maintaining accu-

racy. The goal is to deploy cutting-edge deep network mod-

els on resource-constrained environments, such as UAVs

and embedded devices [8]. The methods extensively re-

searched and widely used for achieving model compression

involve low-rank approximation, parameter pruning, knowl-

edge distillation, quantization, and etc [9]. It is impractical

to anticipate that a universal method for model compres-

sion will effectively compress all DL-based trackers to ful-

fill real-time demands while preserving high precision. The

choice of DL-based tracker and compression technique can

significantly impact the real-time and tracking precision per-

formance. In this study, we present utilizing Fisher pruning

[10] to reduce the SiamFC++ [11] model, in order to achieve

real-time drone target tracking. This pruning method does

not require additional constraints or retraining of the model

to achieve optimized training, making it simple and effi-

cient. The SiamFC++ tracker is an extension of the efficient

SiamFC [12] tracker, which includes a regression branch

and a center-ness branch, aimed at achieving better preci-

sion and speed. Our exploration of this combination was ef-

fective, yielding an outstanding trade-off between efficiency

and precision in comparison to previous DCF and DL-based

trackers, as shown in Fig. 1. We expect that our research

could promote the study and application of model compres-

sion in the field of UAV tracking. The following is a sum-

mary of our contributions:

– We introduce Fisher pruning as a method to narrow

the performance disparity between DCF-based and DL-

based trackers in UAV tracking, which is an unexplored

approach.

– We present the F-SiamFC++ tracker which obtains an

excellent balance between precision and efficiency by

utilizing Fisher information as the pruning criterion to

reduce the deep model SiamFC++.

– We evaluate the proposed approach on four estab-

lished UAV datasets, consisting of UAVDT, DTB70,

UAV123@10fps and Vistrone2018. The experimental

results exhibit that our proposed F-SiamFC++ tracker

accomplishes state-of-the-art performance.

The remaining content of this article is organized as fol-

lows. Section 2 summarizes the related work. Section 3 pro-

vides an overview of the proposed approach. Section 4 con-

tains a description of the experiments and the results ob-

tained. And the final section presents the conclusions drawn

from this research.

2 Related Works

This paper has improved and extended our earlier work [13]

and conducting a thorough analysis of fisher pruning in real-

time UAV tracking. In this paper, we additionally explore
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block-wise pruning ratios that enable us to obtain a better

balance between tracking efficiency and precision. Thanks

to this improvement, we have achieved outstanding real-

time tracking performance on a single CPU, achieving an

average speed of over 90FPS. Note that the previous version

is represented as F-SiamFC++(v1) and the enhanced version

is represented as F-SiamFC++(v2).

2.1 Visual Tracking Approachs

Tracking techniques have advanced rapidly with the emer-

gence of modern visual trackers. There are two major cat-

egories of modern trackers: DCF-based trackers that lo-

cate targets by learning the correlation between templates

and search areas, and DL-based trackers that automati-

cally learn features using powerful neural networks. DCF-

based trackers originated from the minimum output sum

of squared error (MOSSE) filter [14], which is an early

representative in the field of visual tracking. Since then,

DCF-based tracker has continuously improved its correla-

tion learning methods and update mechanisms within the

correlation filtering framework, achieving notable progress

[6]. DCF-based trackers can accomplish competitive perfor-

mance while maintaining relatively high efficiency, thanks

to their use of handcrafted features and the ability to be cal-

culated in the Fourier domain. This is why they have become

popular in UAV tracking. However, handcrafted features are

difficult to maintain tracking stability and accuracy under

complex and challenging conditions.

Recently, visual tracking has seen significant improve-

ments in precision and robustness, due to the widespread

adoption of deep learning techniques. SiamFC [12] was

the first to propose formulating the visual tracking task

as a generalized similarity learning problem and employ-

ing a Siamese network [15] to measure the similarity be-

tween target and search images. Siamese-based trackers

can be further classified into two main types: anchor-based

and anchor-free trackers [16]. In the class of anchor-based

methods, SiamRPN [17] introduced a region proposal net-

work (RPN) into Siamese networks and treated tracking

as two sub-tasks that were accomplished by a classifica-

tion and a regression branch. DaSiamRPN [18] incorpo-

rated an effective sampling strategy and a distractor-aware

module. SiamMask [19] added a new branch to produce

a pixel-wise binary mask. Recently, in order to leverage

the powerful representation ability of deep features, more

and more researchers have devoted to studying deeper ar-

chitectures for visual tracking, such as SiamRPN++ [20]

and SiamDW [21]. However, the use of these methods of-

ten results in a significant reduction in efficiency. With re-

gards to anchor-free trackers, SiamFC++ [11] proposed a

novel quality assessment branch for classification, which

constitutes a simple yet effective framework for visual track-

ing. After that, SiamCAR [22] harnessed this framework

to reengineer the anchor-free structure and integrate mul-

tiple layers of features, delivering impressive performance

gains. Besides, SiamBAN [23] proposed a new strategy for

generating classification labels and regression targets. Apart

from Siamese-based trackers, there exist multiple DL-based

trackers that extend online discriminative frameworks us-

ing deep networks for end-to-end training, e.g., ATOM [24],

DiMP [25], KYS [26], and KeepTrack [27]. Unfortunately,

the efficiency of these methods is too low for real-time UAV

tracking.

In summary, the development of deeper architectures in

recent years indeed has substantially enhanced tracking pre-

cision, but typically at the expense of efficiency. In contrast,

SiamFC++ [11] is a simple yet powerful DL-based object

tracking framework with a lightweight backbone and an ef-

fective quality assessment branch. Regrettably, while it ex-

hibits remarkable GPU speed, its CPU speed appears insuf-

ficient to satisfy rigorous real-time requirements (i.e., with a

speed of ≫ 30 FPS). Our purpose in this work is to enhance

the efficiency of SiamFC++ by employing model compres-

sion methods while sustaining its precision to the greatest

extent for real-time UAV tracking [11].

2.2 Methods of Filter Pruning

Pruning is a widely applied method for compressing neu-

ral networks, whose pipeline conventionally includes three

stages: pretraining, pruning, and finetuning. There are four

typical topics involved in the pipeline: pruning structure,

pruning ratio, pruning criterion, and pruning schedule [9].

Typically, pruning structures are classified into two cate-

gories: weight pruning and filter pruning. The first method

includes eliminating individual neurons or weights, which is

difficult to harness for accelerating on general-purpose hard-

ware [28]. In contrast, the second method involves delet-

ing entire filters or channels, it is simpler due to the regular

weight arrangement and can achieve significant acceleration

[29]. Pruning ratios determine the percentage of weights that

should be removed. Typically, there are two methods for

adjusting the pruning ratio. The first is to directly specify

one global ratio or numerous layer-wise ratios. The second

alternative is to indirectly modify the pruning ratio, such

as by using regularization-based pruning procedures, but

this involves a significant amount of technical adjustment

to achieve a given ratio [30]. The pruning criterion indicates

which weights should be removed, and weight magnitude is

the most fundamental criterion for weight pruning. Popular

criteria used for filter pruning include the Frobenius norm,

filter response sparsity, and selecting weights that result in

the smallest amount of weight loss [9]. The pruning sched-

ule outlines how network sparsity is gradually increased
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from zero to a target value, with two available approaches

[9]: (1) in a single step, namely, one-shot, followed by fine-

tuning, or (2) progressively, pruning and training interlaced.

While the progressive approach may yield better results with

more training time available, the one-shot method is more

efficient and can reduce the burden of developing sophisti-

cated training techniques.

Overall, despite extensive research, there is still much

potential for further exploration in filter pruning methods.

The Fisher pruning presented in [10] recently and devel-

oped into Group Fisher pruning in [31], has proved to be

an efficient and effective filter pruning approach. It is sched-

uled in the one-shot way and adopts Fisher information as

the pruning criterion. It obviates the necessity to impose

additional constraints or retraining, thereby simplifying the

pruning procedure substantially. We have employed this ap-

proach in our work to achieve our objective of model com-

pression. The difference lies in the fact that we have used

global pruning ratios and block-wise pruning ratios rather

than layer-wise ratios in order to simplify the pruning pro-

cess. Determining layer-wise pruning ratios in the previous

approach is a tedious and time-consuming task, but our ap-

proach using global and block-wise pruning ratios signifi-

cantly simplifies the pruning process.

3 Proposed Method

Our F-SiamFC++ is built up by pruning SiamFC++ [11] us-

ing the Fisher pruning technique introduced in [10]. Unlike

previous methods, we employed both global and block-wise

pruning ratios to identify the optimal pruning ratios. The de-

tails are described as follows.

3.1 F-SiamFC++ Overview

Our proposed F-SiamFC++ tracker is composed of two

branches, which is trained offline and is utilized for online

prediction. The first branch holds the template and the sec-

ond branch is responsible for searching. Refer to Fig. 2 for

depiction. The input for the preceding is the tracking target

patch Z, whereas the input for the following is the search

patch X. The two branches utilize a common backbone for

feature extraction, which is represented by the mapping ϕ(·).

Before being used for subsequent classification and regres-

sion tasks, the features from both branches are interacted

through cross-correlation. The definition of the coupled fea-

tures is given as follows:

fi(Z,X) = ψi(ϕ(Z)) ⋆ ψi(ϕ(X)), i ∈ {cls, reg} (1)

where ψi(·) denotes the task-specific layer (abbreviated as

’cls’ for classification and ’reg’ for regression) and ⋆ denotes

the cross-correlation operation. The outputs of ψcls and ψreg

are equal in size, and to evaluate the accuracy of classifi-

cation and ultimately reweight the classification scores, a

center-ness branch is parallel to the classification branch.

The following summarizes the entire training loss:

L({pz}, {qz}, {tz}) =
1

Npos

∑

z

(Lcls(pz, p
∗
z)+

λ1I{p∗

z
>0}Lqual(qz, q

∗
z) + λ2I{p∗

z
>0}Lreg(tz, t

∗
z)),

(2)

where z denotes a location on a feature map represented by

its coordinates, the variables pz , qz , and tz represent the pre-

dicted values, while p∗z , q∗z , and t∗z represent the correspond-

ing target label, I{·} represents the indicator function, Lcls,

Lqual , and Lreg denote the focal loss, the binary cross en-

tropy loss and the IoU loss for classification, quality assess-

ment, and regression, respectively. Refer to [11] for more

details. Constants λ1 and λ2 are used to balance the losses,

and Npos =
∑

z I{p∗

z
>0}. Be aware that p∗z is given 1 if z

is thought of as a positive sample and 0 if it is thought of

as a negative sample. Our F-SiamFC++ follows the same

pipeline as SiamFC++, but differs in terms of the pruned fil-

ters obtained through filter pruning, and this difference will

be explained with thorough explanations later on.

3.2 Fisher Pruning

Fisher information offers an approach to measure the quan-

tity of information that an observable random variable con-

tains about an unknown parameter of a distribution that

serves as a model for the variable [32]. Formally, it repre-

sents the score variance or the expected value of the informa-

tion that has been observed. Fisher Pruning is a filter pruning

technique that builds its pruning criterion using Fisher in-

formation. Its purpose is to use the Fisher information [10]

measure to discard feature maps that have little impact on

the model’s overall performance. Note that Qθ(z|I) repre-

sent the model, where I , z, and θ correspond to the input,

output, and parameters to be trained, respectively. Assum-

ing the objective of training is the minimization of the sub-

sequent loss function, without loss of generality [10]:

L(θ) = EP(I)[−logQθ(z|I)], (3)

where P(I) is a specific data distribution with respect to

which the expectation is taken. Fisher pruning uses a 2nd or-

der approximation to approximate the corresponding change

in L for a slight change d in the parameters:

L(θ + d) ≈ L(θ) + gT d +
1

2
dT Hd, (4)

where the gradient and the Hessian matrix, respectively, are

denoted by g = ▽L(θ) and H = ▽2L(θ). The change in



Short form of title 5

Fig. 2 An illustration of the network structure of the proposed F-SiamFC++ method, which is similar to that of SiamFC++ except for differences

in the pruned feature maps and filters. It should be noted that the subsequent architectures linked to the head are not considered here since they do

not involve pruning.

loss that can be expressed as follows result from dropping

the kth parameter, θk:

∆L(θk) = L(θ − θkek)− L(θ) ≈ −gT θk +
1

2
Hkkθ

2
k, (5)

where ek denotes the one-hot vector whose ith element has

a value of 1. We would have ▽L(θ) ≈ 0 if the model had

converged during training, which simplifies equation (5) to

L(θ − θkek)− L(θ) ≈
1

2
Hkkθ

2
k. (6)

For the diagonal entry of the Hessian matrix, it follows

Hkk =
∂2

∂θ2k
EP(I)[−logQθ(z|I)]

= EP(I)

[

(
∂

∂θk
logQθ(z|I))

2

]

− EP(I)





∂2

∂θ2

k

Qθ(z|I)

Qθ(z|I)



 .

(7)

If Qθ(z|I) had been trained to be close to the ideal distribu-

tion P (z|I), then

EP(I)





∂2

∂θ2

k

Qθ(z|I)

Qθ(z|I)



 =

∫

P (I)
P (z|I)

Qθ(z|I)

∂2

∂θ2k
Qθ(z|I)d(z|I)

≈
∂2

∂θ2k

∫

P (I)Qθ(z|I)d(z|I) = 0.

(8)

Moreover, the Hessian matrix simply reduces to the Fisher

information matrix if Qθ(z|I) and P (z|I) are equivalent and

Qθ(z|I) is twice differentiable with respect to θ [10]. In ac-

cordance with Fisher pruning, the change in loss resulting

from pruning an individual parameter θk can be estimated

with the help of N samples, as follows:

∆̂L(θk) =
1

2N
θ2k

N
∑

n=1

(
∂Ln

∂θk
)2, (9)

where Ln stands for the n-th sample’s loss. As our goal is

to speedups by pruning entire feature channels as opposed

to individual parameters, we indicate the kth filter by θk

and denote its parameter at position (i, j) by θkij , then the

resulting change of the loss due to the kth filter is removed

is

∆̂L(θk) =
1

2N

N
∑

n=1

∑

ij

(θkij
∂Ln

∂θkij
)2, (10)

which in Fisher pruning should be minimized.

3.3 Fisher Pruning Schedule

Let a group of 3-D filters represents the i-th (i ∈ [1,K])

convolutional layer Ci of the SiamFC++. Let ni be de-

fined as the number of filters in Ci, ki be defined as the

kernel size, and the j-th filter be wi
j ∈ R

ni−1×ki×ki . And

then the set of 3-D filters is WCi = {wi
1, w

i
2, ..., w

i
m} ∈

R
ni×ni−1×ki×ki . The procedure of Fisher pruning can be

described as follows in detail. First, a Fisher information set

{F i}Ki=1 = {{f i1, f
i
2, ..., f

i
ni
}}Ki=1 is created by first calcu-

lating the Fisher information of any filter for each layer. Sec-

ond, each F i is sorted from highest to lowest, resulting in

F̄ i = {f i
si
1

, f i
si
2

, ..., f i
si
ni

}, where sij is the index of the j-th

highest value in F i. Third, we develop a pruned SiamFC++
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(c) UAVDT (b) DTB70 (a) UAV123@10fps (d) VisDrone2018

Fig. 3 The overall performance of hand-crafted trackers on UAVDT [1], DTB70 [33], UAV123@10fps [34], and VisDrone2018 [35] datasets are

presented from left to right, evaluated by precision and success rate in one-pass evaluation (OPE). The ranking of trackers is determined based on

the precision at 20 pixels and the area under curve (AUC), which are represented in the precision and success plots, respectively.

model, denoted by F-SiamFC++, by experimentally deter-

mining the number of pruned filters of each layer ni
p in ac-

cordance with a global pruning ratio or block-wise ratios.

After pruning, F i becomes F̂ i = {f i
si
1

, f i
si
2

, ..., f i
si
n̂i

}, where

n̂i = ni − ni
p, ni

p specifies the number of filters to remove

in Ci. In the final step, trained SiamFC++ model’s original

weights are used to initialize the filters kept. The resulting

compressed model, F-SiamFC++, is then fine-tuned to ad-

just its parameters for better performance.

4 Experiments

To validate the excellent performance of our proposed F-

SiamFC++ tracker, we conducted a comprehensive eval-

uation on four challenging UAV tracking benchmarks,

i.e., UAVDT [1], DTB70 [33], UAV123@10fps [34] and

Vistrone2018 [35]. UAVDT is mainly designed for tracking

vehicles under various weather conditions, flying altitudes,

and camera perspectives. DTB70 consists of 70 sequences

captured by drones, containing cluttered scenes and objects

of various sizes. It is designed to evaluate the robustness of

tracking algorithms in complex scenarios. UAV123@10fps

is constructed by sampling the UAV123 [34] benchmark

from original 30FPS to 10FPS, and Its purpose is to inves-

tigate the effect of camera capture rate on tracking perfor-

mance. The Vistrone2018 dataset is derived from a single-

object tracking challenge that was conducted in conjunc-

tion with the European Conference on Computer Vision

(ECCV2018) and focused on evaluating drone tracking al-

gorithms.

4.1 Experimental environment

We conducted all evaluation experiments on a PC equipped

with an Intel Core i9-10850K processor (3.6GHz), an

NVIDIA TitanX GPU, and 16GB RAM. Note that there

are two pruning ratio settings for our F-SiamFC++, which

correspond to two different versions of the implementa-

tion denoted by F-SiamFC++(v1) and F-SiamFC++(v2),

respectively. F-SiamFC++(v1) employs a global pruning

ratio and is the realization in our previous work [13].

F-SiamFC++(v2) is implemented here and uses block-

wise pruning ratios for enhancement. Specifically, F-

SiamFC++(v1) utilizes a global pruning ratio of 0.2. In F-

SiamFC++(v2), three blocks (backbone, neck, and head)

need to be pruned, with pruning ratios of 0.5, 0.6, and 0.4,

respectively. Other parameters for training and inference fol-

low SiamFC++ [11]. It is worth noting that the real-time

performance discussed in this paper is relatively defined and

only applicable to platforms with equal or greater computing

resources than those we used. This means that if lower com-

puting resources are used, the performance may be lower

than our experimental results.

4.2 Comparison with DCF-based trackers

We compared our proposed tracker to ten state-of-the-

art trackers based on hand-crafted features: KCF [36],

fDSST [37], BACF [39], Staple-CA [38], ECO-HC [40],

STRCF [42], MCCT-H [41], AutoTrack [4], ARCF-HC

[5], RACF [7]. Fig. 3 illustrates the precision and suc-

cess rate on four benchmark tests, namely UAVDT, DTB70,
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(a) UAVDT (b) DTB70 (c) UAV123@10fps (d) VisDrone2018

Fig. 4 Comparison based on attributes such as object blur, object motion, scale variation, out-of-plane rotation, aspect ratio change, viewpoint

change, fast motion, and low resolution.

Table 1 The average precision and speed (FPS) of F-SiamFC++ and hand-crafted based trackers were compared on the UAVDT [1], DTB70 [33],

UAV123@10fps [34], and VisDrone2018 [35] datasets. All FPS values reported were evaluated on a single CPU. Note that F-SiamFC++ is the top

real-time tracker (with a speed >30FPS) on a single CPU.

KCF[36]

TPAMI 15

fDSST[37]

CVPR 16

Staple-CA[38]

CVPR 17

BACF[39]

ICCV 17

ECO-HC[40]

CVPR 17

MCCT-H[41]

CVPR 18

STRCF[42]

CVPR 18

ARCF-HC[5]

ICCV 19

AutoTrack[4]

CVPR 20

RACF[7]

PR 22

F-SiamFC++(v1)

Ours

F-SiamFC++(v2)

Ours

Precision 53.3 60.4 64.2 65.3 68.8 66.8 67.1 71.9 72.3 75.7 78.4 78.1

FPS (CPU) 655.6 203.6 67.7 57.0 88.9 66.7 29.9 36.0 61.8 37.5 51.9 93.9

UAV123@10fps, and VisDrone2018, arranged from left to

right. Fig. 4 shows the evaluation results of partial attributes

on the corresponding benchmark tests. In addition, Table.

1 presents the average performance calculated in terms of

frames per second (FPS) and precision (PRC) on a single

CPU.

Overall performance evaluation: The overall perfor-

mance of F-SiamFC++ compared to other trackers on

the four benchmarks is illustrated in Fig. 3. It can be

observed that F-SiamFC++(v1) and F-SiamFC++(v2) ex-

hibit better performance than all other trackers on all four

benchmarks, except for the VisDrone2018. In particular,

in UAVDT, DTB70, and UAV123@10fps benchmarks, F-

SiamFC++(v1) demonstrates a notable superiority over the

second-best tracker RACF by a significant margin in terms

of (PRC, AUC), with improvements of (2.1%, 6.1%), (8.9%,

10.0%), and (2.7%, 5.9%), respectively. Meanwhile, F-

SiamFC++(v2) is superior to RACF with gains of (3.4%,

7.2%), (6.9%, 8.8%), and (1.6%, 5.3%) on the same three

benchmarks, respectively. On VisDrone2018, although F-

SiamFC++(v1) and F-SiamFC++(v2) exhibit inferiority to

the first-ranked tracer RACF in terms of (PRC, AUC), with

respective gaps of (2.7%, 0.4%) and (2.2%, 0.9%), they

surpass all other trackers. Note that averagely the gaps on

VisDron2018 are much smaller than those on the other

three benchmarks. Although the more efficient version F-

SiamFC++(v2) is inferior to F-SiamFC++(v1) in terms of

(PRC, AUC) on DTB70 and UAV123@10fps, with re-

spective margins of (2.0%, 1.2%) and (1.0%, 0.6%), F-

SiamFC++(v2) shows better performance on UAVDT and

VisDrone2018, resulting in an average precision difference

between this two version of only 0.3% on the four bench-

marks. In terms of speed, we assess the average FPS on

a single CPU for the competing trackers across the four

benchmarks.Table 1 displays the average FPS and aver-

age precision rates (PRCs) of the competing trackers on

a single CPU. As can be seen, F-SiamFC++(v1) and F-

SiamFC++(v2) outperform all the other competing trackers

in precision, with average PRCs of 78.4% and 78.1%, re-

spectively. They are also the best real-time trackers (with

a speed of >30FPS) on a single CPU, achieving speeds of

51.9 FPS and 93.9 FPS, respectively. Note that although F-

SiamFC++(v1) has a slight advantage in average precision

over F-SiamFC++(v2), F-SiamFC++(v2) achieves a higher

average pruning ratio and faster speed, close to 1.81 times

that of F-SiamFC++(v1). In summary, F-SiamFC++(v2)

achieves a better balance between efficiency and precision

compared to F-SiamFC++(v1).

Attribute-based evaluation: In the four benchmarks,

our F-SiamFC++(v1) and F-SiamFC++(v2) are superior
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Table 2 This table presents a comparison between F-SiamFC++ and other deep-based trackers on UAVDT [1] in terms of precision and speed

(FPS). All FPS values reported are evaluated on a single GPU, where the first, second, and third place are indicated by Red, blue and green colors,

respectively.

SiamR-CNN[43]

CVPR 20

D3S[44]

CVPR 20

PrDimp18[45]

CVPR 20

KYS[26]

ECCV 20

SiamGAT[46]

CVPR 21

LightTrank[47]

CVPR 21

TransT[48]

CVPR 21

HiFT[3]

ICCV 21

SOAT[49]

ICCV21

AutoMatch[50]

ICCV21

P-SiamFC++[51]

ICME 2022

F-SiamFC++(v1)

Ours

F-SiamFC++(v2)

Ours

Precision 66.5 72.2 73.2 79.8 76.4 80.4 82.6 65.2 82.1 82.1 80.7 79.6 81.9

FPS (GPU) 7.2 44.6 48.5 30.2 74.8 84.8 42.1 135.3 29.4 50.4 258.8 266.2 391.8

to other DCF-based trackers in the majority of the de-

fined attributes. Fig. 4 illustrates examples of success plots.

As can be seen, in the situations of object blur and ob-

ject motion on UAVDT, scale variation and out-of-plane

rotation on DTB70, aspect ratio change and viewpoint

change on UAV123@10fps, and fast motion and low resolu-

tion on VisDrone2018, significant improvements have been

demonstrated by F-SiamFC++(v1) and F-SiamFC++(v2)

over other trackers, which can be attributed to the effective-

ness of feature representation achieved through deep learn-

ing. For example, F-SiamFC++(v1) and F-SiamFC++(v2)

significantly surpass the second-ranked tracker RACF on

the scale variation subset of DTB70 by a gap of 15.3% and

15.9%, on the object motion subset of UAVDT by a gap of

8.3% and 9.0%, respectively. This justifies the effectiveness

of developing lightweight deeper trackers for UAV tracking.

Meanwhile we can observe that F-SiamFC++(v2) performs

better than F-SiamFC++(v1) in the cases of scale variation

and out-of-plane rotation on DTB70, object blur/motion on

UAVDT, and low resolution on VisDrone2018, for instance,

although the former contains more network parameter. This

supports that block-wise pruning ratios can provide a bet-

ter pruned network architecture than a global pruning ratio

does so that we are able to achieve a more efficient com-

pressed model when seeking a certain level of tracking pre-

cision. And thanks to the relatively small number of prun-

ing ratios, block-wise ratios are easier to determine than

layer-wise ones, justifying the reasonability of the choice of

block-wise pruning ratios to enhance our previous version

of a global pruning ratio.

Qualitative evaluation: Fig. 6 shows eight qualitative

tracking results of our F-SiamFC++ and four top DCF-based

trackers, i.e., ECO-HC [40], ARCF-HC [5], AutoTrack [4],

and RACF [7]. We selected a total of eight video sequences

from the four benchmarks (two from each benchmark) in-

cluding S1607, S0304, BMX5, Surfing06, person16, boat3,

uav0000180 00050 s, and uav000020 00675 s for demon-

stration. As can be observed, the four DCF-based track-

ers cannot remain robustness in challenging scenarios

with significant deformation, pose change, or partial oc-

clusion, whereas our F-SiamFC++ exhibits better perfor-

mance and generates visually more satisfactory results by

virtue of its deep representation learning. Specifically, all

the trackers except F-SiamFC++(v1) and F-SiamFC++(v2),

fail to track the person in the sequence person16; only

Fig. 5 Illustration of the non-linear correlation between the number of

parameters of F-SiamFC++ and the global pruning ratio. Note that the

purple dashed line depicts a linear correlation for comparison.

F-SiamFC++(v1), F-SiamFC++(v2), RACF and ECO-HC

succeed in tracking the target in BMX5 but our F-

SiamFC++(v1) and F-SiamFC++(v2) are more accurate;

only F-SiamFC++(v1), F-SiamFC++(v2) and Auto Track

succeed in tracking the surfer in Surfing06 but also our F-

SiamFC++(v1) and F-SiamFC++(v2) are more accurate; all

trackers are able to track the targets in S1607, S0304, boat3,

uav0000180 00050 s, and uav0000207 00675 s success-

fully. However, our F-SiamFC++(v1) and F-SiamFC++(v2)

still perform better in these sequences than the DCF-based

trackers. These results suggest that developing lightweight

DL-based trackers for UAV tracking might be a more effec-

tive means for enhancing tracking precision.

4.3 Comparison with DL-based trackers

We also compared our proposed tracker to eleven state-of-

the-art DL-based trackers in the field, including SiamR-

CNN [43], D3S [44], PrDiMP18 [45], KYS [26], Light-

Track [47], SiamGAT [46], TransT [48], HiFT [3], SOAT

[49], AutoMatch [50], and P-siamFC++ [51], on all four

benchmarks. Table 2 displays the FPS and precision val-

ues obtained on the UAVDT benchmark. As can be seen,

although our F-SiamFC++ (v1) and F-SiamFC++ (v2)

have lower precision compared to TransT, SOAT, and Au-

toMatch, the differences are less than 3.0%, and the gap be-

tween F-SiamFC++(v2) and the first-ranked tracker TransT

is less than 1.0%, i.e., 0.7%, specifically. Remarkably,
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Fig. 6 Qualitative evaluation on 8 sequences from, respectively, UAVDT, DTB70, UAV123@10fps, and VisDrone2018 (i.e. S1607, S0304, BMX5,

Surfing06, person16, boat3, uav0000180 00050 s, uav0000207 00675 s). We have used different colors to mark the tracking results of different

methods.
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Table 3 Illustration of how the average precision (PRC) and model size of F-SiamFC++ change as the block-wise pruning ratios (ρB , ρN , ρH )

are adjusted for the backbone, neck, and head, respectively. We constructed a range of combinations for each ratio using the values of 0.2 to 0.5

for the backbone, 0.3 to 0.6 for the neck, and 0.4 to 0.7 for the head, with a step size of 0.1, on all four benchmarks.

(ρB,ρN,ρH) PRC Parameters (M) (ρB,ρN,ρH) PRC Parameters (M) (ρB,ρN,ρH) PRC Parameters (M) (ρB,ρN,ρH) PRC Parameters (M)

(0.2, 0.3, 0.4) 76.7 5.04 (0.3, 0.3, 0.4) 77.9 4.33 (0.4, 0.3, 0.4) 76.8 3.67 (0.5, 0.3, 0.4) 76.8 3.11

(0.2, 0.3, 0.5) 77.0 4.71 (0.3, 0.3, 0.5) 77.1 3.99 (0.4, 0.3, 0.5) 76.9 3.34 (0.5, 0.3, 0.5) 76.0 2.78

(0.2, 0.3, 0.6) 76.7 4.41 (0.3, 0.3, 0.6) 77.6 3.69 (0.4, 0.3, 0.6) 77.2 3.04 (0.5, 0.3, 0.6) 74.2 2.48

(0.2, 0.3, 0.7) 76.5 4.16 (0.3, 0.3, 0.7) 76.5 3.43 (0.4, 0.3, 0.7) 76.5 2.79 (0.5, 0.3, 0.7) 75.9 2.23

(0.2, 0.4, 0.4) 77.1 4.78 (0.3, 0.4, 0.4) 77.4 4.09 (0.4, 0.4, 0.4) 77.3 3.46 (0.5, 0.4, 0.4) 75.0 2.92

(0.2, 0.4, 0.5) 76.9 4.46 (0.3, 0.4, 0.5) 77.0 3.77 (0.4, 0.4, 0.5) 76.4 3.14 (0.5, 0.4, 0.5) 76.3 2.60

(0.2, 0.4, 0.6) 77.0 4.17 (0.3, 0.4, 0.6) 77.5 3.48 (0.4, 0.4, 0.6) 77.1 2.85 (0.5, 0.4, 0.6) 78.1 2.31

(0.2, 0.4, 0.7) 75.9 3.93 (0.3, 0.4, 0.7) 78.8 3.24 (0.4, 0.4, 0.7) 76.5 2.61 (0.5, 0.4, 0.7) 74.8 2.07

(0.2, 0.5, 0.4) 76.2 4.53 (0.3, 0.5, 0.4) 77.4 3.86 (0.4, 0.5, 0.4) 76.0 3.25 (0.5, 0.5, 0.4) 76.9 2.73

(0.2, 0.5, 0.5) 76.1 4.22 (0.3, 0.5, 0.5) 76.6 3.55 (0.4, 0.5, 0.5) 75.7 2.94 (0.5, 0.5, 0.5) 77.6 2.42

(0.2, 0.5, 0.6) 77.1 3.94 (0.3, 0.5, 0.6) 77.3 3.27 (0.4, 0.5, 0.6) 75.5 2.67 (0.5, 0.5, 0.6) 77.1 2.15

(0.2, 0.5, 0.7) 77.3 3.72 (0.3, 0.5, 0.7) 75.8 3.05 (0.4, 0.5, 0.7) 76.4 2.44 (0.5, 0.5, 0.7) 77.1 1.92

(0.2, 0.6, 0.4) 76.0 4.27 (0.3, 0.6, 0.4) 76.6 3.62 (0.4, 0.6, 0.4) 76.9 3.04 (0.5, 0.6, 0.4) 76.2 2.54

(0.2, 0.6, 0.5) 76.4 3.97 (0.3, 0.6, 0.5) 77.2 3.32 (0.4, 0.6, 0.5) 77.4 2.74 (0.5, 0.6, 0.5) 76.6 2.24

(0.2, 0.6, 0.6) 76.6 3.70 (0.3, 0.6, 0.6) 76.8 3.06 (0.4, 0.6, 0.6) 77.0 2.47 (0.5, 0.6, 0.6) 75.8 1.98

(0.2, 0.6, 0.7) 77.1 3.49 (0.3, 0.6, 0.7) 77.2 2.84 (0.4, 0.6, 0.7) 76.1 2.26 (0.5, 0.6, 0.7) 74.0 1.76

SiamFC++(v1) is 5, 8, and 4 times faster than TransT,

SOAT, and AutoMatch, respectively. And the enhanced ver-

sion SiamFC++(v2) is more efficient and its GPU speed

is close to 1.5 times of SiamFC++(v1), with an increase

of 2.3% precision on UAVDT. These results indicate that

our F-SiamFC++, and in particular F-SiamFC++(v2), offers

a superior trade-off between precision and efficiency (i.e.,

speed), providing an inspiring solution alternative to DCF-

based trackers for real-time UAV tracking.

4.4 Ablation study

Impact of layer-wise and global pruning ratios: We

trained F-SiamFC++ with both layer-wise and global prun-

ing ratios to investigate their impact on the model’s preci-

sion. In layer-wise pruning, we prune a specific layer of

SiamFC++ with a pruning ratio setting from 0.1 to 0.8, while

keeping other layers fixed. In global pruning, we prune each

convolutional layer in the backbone, neck, and head with

a global ratio ranging from 0.1 to 0.8. The precisions of

F-SiamFC++ on DTB70 benchmark with different settings

of pruning ratios are shown in Table 4. Note that the larger

pruning ratios are, the greater the number of filters that will

be pruned. It is also worthy of note that it is not linear that

correlation between the number of model parameters and

even the global pruning ratio. Because the actual pruning

ratio of each convolutional layer depends as well on the tar-

get pruning ratio of its previous layer. This non-linear cor-

relation can be easily seen from Fig. 5, which plots how F-

SiamFC++’s number of parameters varies with the global

pruning ratio. As we can see, in the layer-wise manner the

best precision is reached when the pruning ratio is smaller

than 0.7, but the distribution of the best pruning ratios for

Table 4 The accuracy (PRC) of F-SiamFC++ on DTB70 varies when

the pruning ratio goes from 0.1 to 0.8 in step of 0.1. ’L1 (Backbone)’

means that only the first convolutional layer is pruned in the backbone,

and ’Backbone + Neck + Head’ means all the convolutional layers are

pruned with the same pruning ratio in all the backbone, neck, and head.

Model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

L1 (Backbone) 79.2 79.0 79.8 79.1 78.6 74.7 76.5 76.3

L2 (Backbone) 77.3 79.0 78.4 81.1 80.4 78.5 78.7 74.0

L3 (Backbone) 77.6 78.6 78.6 76.0 79.7 78.2 78.1 79.1

L4 (Backbone) 79.0 81.7* 80.0 78.6 81.0 79.3 78.6 78.5

L5 (Backbone) 78.5 80.1 79.9 78.3 78.8 77.5 78.2 77.9

L1 (Head) 77.5 77.9 77.5 77.9 76.9 78.9 77.7 77.3

L2 (Head) 79.4 78.9 78.7 79.8 78.1 77.1 80.6 76.7

L3 (Head) 79.3 81.7* 77.3 81.7 79.0 74.8 76.6 76.3

Backbone + Neck + Head 79.6 80.0 81.0 79.5 77.6 78.6 77.9 76.4

each layer does not provide any guidance on how to find bet-

ter layer-wise pruning ratios. In other words, finding good

layer-wise pruning ratios is laborious and time-consuming

in view of the huge possibility of combinations. In the global

manner, the highest precision is achieved with a pruning ra-

tio of 0.2. However, if the global pruning ratio exceeds 0.7,

there is a significant drop in precision. Last but not least, this

result implies that filter pruning is not only beneficial for

simplifying the model and improving efficiency but also for

increasing precision, as it may enhance the model’s general-

ization ability if appropriate pruning ratios are chosen. How-

ever, applying a global pruning ratio would overlook the

variations among different layers, which makes it difficult

to achieve optimal pruning effects for each layer simulta-

neously. Meanwhile, determining optimal layer-wise prun-

ing ratios is too cumbersome and time-consuming, which is

why we explore block-wise pruning ratios to overcome this

problem in this work.

Impact of block-wise pruning ratios: The process of

finding the best layer-wise pruning ratios through exhaust-
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Table 5 Comparison of model size (parameters), multiply-accumulates (MACs), precision (PRC), and tracking speed between our F-SiamFC++

and the baseline method SiamFC++ on four UAV benchmarks. Note that only the precision on CPU is shown here since the difference between

the precision on CPU and on GPU is very small.

Methods Parameters MACs

UAVDT DTB70 UAV123@10fps VisDrone2018 Avg.

PRC
FPS

PRC
FPS

PRC
FPS

PRC
FPS

PRC
FPS

CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU

SiamFC++ 9.66M 297.98G 76.2 36.9 243.8 80.5 36.1 232.6 72.8 36.2 226.5 72.5 37.0 211.0 75.5 36.5 228.4

F-SiamFC++ (v1) 7.73M 193.58G 79.4 52.4 266.2 81.4 50.5 254.3 72.1 53.0 259.0 80.7 51.5 251.5 78.4 51.9 257.8

F-SiamFC++(v2) 2.31M 80.53G 80.7 93.6 391.8 79.5 92.1 389.4 71.0 94.1 391.3 81.2 95.7 385.5 78.1 93.9 389.5

ing search methods is a time-consuming endeavor. Even if

the same pruning ratios are applied to corresponding layers

of the head and neck branches, there are still 10 layer-wise

pruning ratios that require determination. Therefore, we uti-

lize block-wise pruning ratios to simplify the process, divid-

ing the model into three blocks: backbone, neck, and head,

and defining a separate pruning ratio for each block denoted

as ρB, ρN, and ρH, respectively. The combinations consist of

the following ranges: 0.2 to 0.5 for the backbone, 0.3 to 0.6

for the neck, and 0.4 to 0.7 for the head, all with step size of

0.1. As a result, the total number of combinations is reduced

from 810 to 43, a manageable amount given the time and

computation resources we have. Table 3 shows the average

precision (PRC) on the four benchmarks and model size of

F-SiamFC++ with different block-wise pruning ratios. From

the table, it is evident that the model achieves the highest av-

erage precision of 78.8 with a model size of around 3.24M

when (ρB, ρN, ρH) is set to (0.3, 0.4, 0.7). With (ρB , ρN ,

ρH ) set to (0.5, 0.6, 0.7), F-SiamFC++ has the smallest size

of around 1.76M, but it only achieves an average precision

of 74.0%, significantly lower than the highest average pre-

cision, i.e., with a gap of 4.8%. The second highest preci-

sion of 78.1 is achieved by setting it to (0.5, 0.4, 0.6), with

a model size of around 2.31M, which makes the setting of

pruning ratios for our tracker F-SiamFC++(v2) considering

its better trade-off between precision and efficiency. We can

also observe that no simple correlation between model size

and average precision. For example, the largest model has

5.04M parameters when (ρB , ρN , ρH ) is set to (0.2, 0.3,

0.4), but its average precision, i.e., 76.7%, is lower than that

of F-SiamFC++(v2), with a gap of 1.4%. These results also

reinforce the idea that Fisher pruning can enhance both ef-

ficiency and accuracy if pruning ratios are properly deter-

mined, as previously suggested.

Effect of fisher pruning: We compared the proposed

F-SiamFC++(v1) and F-SiamFC++(v2) with the baseline

tracker SiamFC++ on all four UAV benchmarks. Our aim

was to investigate the impact of applying Fisher filter

pruning on the model size, multiply-accumulates (MACs),

precision, and tracking speed of the baseline SiamFC++.

Their comparison in terms of model size, MACs, preci-

sion (PRC), and speed (on both CPU and GPU) are shown

in Table 5. We can observe that, the model size of F-

SiamFC++(v1) and F-SiamFC++(v2) are reduced to 80.0%

(≈7.73/9.66) and 23.9% (≈2.31/9.66) of the original, re-

spectively. Significant decreases of MACs can also be ob-

served, from SiamFC++’s 297.98G to F-SiamFC++(v1)’s

193.58G and F-SiamFC++(v2)’s 80.53G. Both CPU and

GPU speeds are improved. Due to the parallel computing

units on our GPU significantly exceed the size of these

models, the average GPU speeds grow by just 12.8% and

70.5% on F-SiamFC++(v1) and F-SiamFC++(v2), respec-

tively. However, their average CPU speeds increase, respec-

tively, by 42.2% to 51.9 FPS and by 157.2% to 93.9 FPS

from SiamFC++’s 36.5 FPS. Although F-SiamFC++(v1)

performs slightly worse than the baseline SiamFC++ on

UAV123@10fps with a gap of 0.7%, it achieves signifi-

cant precision improvements on UAVDT and VisDrone2018

benchmarks, with gains of 4.2% and 11.3%, respectively.

Regarding F-SiamFC++(v2), it improves the precision of F-

SiamFC++(v1) on UAVDT and VisDron2018, meanwhile

significantly enhancing its speed and reducing its model

size. Specifically, F-SiamFC++(v2) improves the precision

of F-SiamFC++(v1) by 1.6%, 0.6% on UAVDT and Vis-

Drone2018, respectively, reduces its model size by nearly

70%, i.e., from 7.73M to 2.31M, and raises the CPU and

GPU speed by 42.0 FPS and 131.7 FPS, respectively, despite

a slight decrease of 1.0% and 1.9% on UAV123@10fps and

DTB70, respectively. Overall, F-SiamFC++(v2) achieves a

better trade-off between precision and efficiency compared

to F-SiamFC++(v1), and both variants enhance the effi-

ciency and precision of SiamFC++ across all benchmarks.

These results justify that the proposed method is effec-

tive for real-time UAV tracking and may encourage more

work on developing lightweight DL-based trackers with fil-

ter pruning for real-time UAV tracking.

5 Conclusions

In this paper, we are the first to employ Fisher pruning

to reduce the gap between DCF- and DL-based trackers

in UAV tracking. The proposed F-SiamFC++(v1) and F-

SiamFC++(v2) strike an impressive balance between pre-
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cision and efficiency while showcasing state-of-the-art per-

formance on four widely used UAV benchmarks: UAVDT,

DTB70, UAV123@10fps, and Vistrone2018. Remarkably,

the proposed approach not only enhances efficiency but

also surprisingly enhances tracking precision. Specifically,

compared with the baseline tracker SiamFC++ which runs

at 36.5 FPS on a single CPU with 75.5% precision, F-

SiamFC++(v1) can run at more than 50 FPS on a single

CPU with 78.4% precision, while F-SiamFC++(v2) has a

CPU speed above 90 FPS with an almost equal precision of

78.1%, effectively combating the negative effects (i.e., a pre-

cision drop) with filter pruning. Our research is expected to

generate more interest in model compression and DL-based

trackers among the UAV tracking community..

In this research, fisher pruning was the sole method used

for compressing the baseline SiamFC++. Future studies may

look into alternative filter pruning methods, superior prun-

ing criteria, and different baseline trackers. Another avenue

of research would be to explore utilizing discriminative rep-

resentation learning to enhance the discriminative power of

the compressed model in view of the significant decrease of

model parameters.
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