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Abstract
Object detection methods based on deep learning have made great progress in recent years and have been used successfully 
in many different applications. However, since they have been evaluated predominantly on datasets of natural images, it is 
still unclear how accurate and effective they can be if used in special domain applications, for example in scientific, indus-
trial, etc. images, where the properties of the images are very different from those taken in natural scenes. In this study, we 
illustrate the challenges one needs to face in such a setting on a concrete practical application, involving the detection of a 
particular fluid phenomenon—bag-breakup—in images of droplet scattering, which differ significantly from natural images. 
Using two technologically mature and state-of-the-art object detection methods, RetinaNet and YOLOv7, we discuss what 
strategies need to be considered in this problem setting, and perform both quantitative and qualitative evaluations to study 
their effects. Additionally, we also propose a new method to further improve accuracy of detection by utilizing information 
from several consecutive frames. We hope that the practical insights gained in this study can be of use to other researchers 
and practitioners when targeting applications where the images differ greatly from natural images.

Keywords  Object detection · Scientific and industrial applications · Real-time processing · Small-size datasets · YOLOv7 · 
RetinaNet

1  Introduction

Object detection is one of the major tasks in computer 
vision and recently, various deep learning-based models 
with improved accuracy and detection speed have been pro-
posed (see [3, 6, 7, 12] for recent comprehensive surveys 
on object detection). However, in practice, there are various 
problems in applying deep learning-based object detection 
models, especially in special domains, where images repre-
sent specific scientific phenomena or are taken in industrial 
settings, etc., and it is generally difficult to secure a large 
amount of annotated data for such applications. The reason 

for this is that in such cases (in contrast with natural scene 
images), usually, only experts can provide the annotations, 
which makes the annotation process very costly. Therefore, 
in such cases, securing large annotated datasets for training 
the data-hungry deep learning models is either impossible or 
impractical. Additionally, often the presence of rare classes 
of objects, or phenomena to be detected, leads to the class 
imbalance problem, which can make the learning process 
difficult and unreliable.

Furthermore, it is a common practice that newly devel-
oped and state-of-the-art object detection models are mainly 
evaluated using natural image-based datasets such as the 
PASCAL VOC (PASCAL Visual Object Classes Challenge) 
dataset [5] and the COCO (Microsoft Common Objects in 
Context) dataset [11]. Since the images in these datasets (and 
the features extracted from them) would differ significantly 
from those targeted in general scientific/industrial applica-
tions, it is unclear how accurate and effective the methods 
are, and which of their components are critical for the suc-
cess of the targeted application. Sometimes, the practitioners 
who need to provide the solutions (using appropriate object 
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detection methods) are scientists or other staff which are 
not machine learning experts, and for such people, it can 
be very difficult to orientate themselves in the extremely 
rapidly evolving landscape of object detection algorithms, 
very often leaving them without a clue which method should 
they use and which strategies should they follow to obtain 
the best possible performance on their application.

Therefore, in this study, we apply two representative 
object detection models to a small-size dataset from a 
domain that differs significantly from natural images, and 
examine their detection accuracy and the effects of the 
models’ components on accuracy. The dataset used in this 
study consists of basic experimental images representing a 
phenomenon called droplet dispersion, which occurs inside 
an automobile exhaust pipe. The dataset consists of a small 
number of about 800 images, and the target of detection is a 
form of droplet dispersal called bag-breakup. While in the 
case of natural scene images usually there can be dozens of 
detection targets in a single image, or it is easy to obtain a 
large number of images with the targets of interest (like cats, 
or cars, etc.), our dataset has typically one and maximum 
two detection targets in a single image, while we can have 
many thousands of images collected from the experiments, 
which do not contain any detection target at all. Additionally, 
what makes the droplet dispersion images more challenging 
is that the detection targets (bag-breakups in our task) are 
very similar to the background (in terms of visual appear-
ance and texture patterns); while in natural scene images, it 
is much more easier to discriminate between, for example, 
cats and their background. Finally, in test mode, the trained 
model has to process an enormous volume of experimen-
tal data/images generated daily and input as a video stream 
to the system, therefore real-time processing abilities are 
crucial.

To address these issues, and provide guidance to practi-
tioners who might have to deal with similar challenges, we 
consider a set of solutions and architecture choices suitable 
for such a setting and investigate their effectiveness. The 
rest of this paper is organized as follows. First, in the next 
section, we describe the concrete task which motivates our 
research. In Sect. 3, we discuss the most common problems 
and challenges which practitioners need to deal with when 
applying object detection methods in special domains and 
show how these can be overcome using corresponding prac-
tices and architecture decisions developed in recent state-of-
the-art methods in the object detection field. Additionally, in 
Sect. 3.4 we propose a new method, which by utilizing infor-
mation from several consecutive frames further improves 
accuracy of detection by eliminating false positives which 
might occur in regions which closely resemble the visual 
structure of bag-breakup patterns and are difficult even 
for experts to discriminate from a single image. Section 4 
reports the experimental results, providing both quantitative 

and qualitative assessment and finally Sect. 5 concludes the 
paper.

2 � Bag‑breakup

2.1 � Motivation for the automatic detection 
of the bag‑breakup phenomenon

In recent years, global warming and air pollution have 
become international problems [1, 21]. Automobile emis-
sions contain not only greenhouse gases such as CO2 , but 
also NOX (nitrogen oxides), HC (hydrocarbons), CO (carbon 
monoxide), PM (particulate matter) and other harmful sub-
stances which pollute the air. Due to this fact, regulations 
on automobile emissions are becoming more stringent every 
year.

To reduce the amount of hazardous substances contained 
in emissions, it is important to burn fuel at a theoretical 
air–fuel ratio of (14.7 : 1), which is the ratio of air to fuel 
that allows the fuel to burn without excess or deficiency. 
To achieve this theoretical air–fuel ratio, O2 sensors are 
installed in the exhaust pipes of automobiles. The O2 sensor 
detects the oxygen concentration in the exhaust gas and pre-
cisely controls the air–fuel ratio to be close to the theoretical 
air–fuel ratio.

The temperature of the exhaust pipe wall is also lower in 
winter due to the lower ambient air temperature. When hot 
exhaust gas containing water vapor flows into the exhaust 
pipe, the water vapor is cooled and condensates on the 
exhaust pipe wall, causing water to accumulate inside the 
pipe. This condensate is released into the atmosphere as it 
is dispersed by the exhaust gas, and its adhesion to the O2 
sensor described above leads to deterioration of its control 
response performance, or in the worst case, damage to the 
sensor. In addition, in contrast to the case of condensate 
dispersing to the O2 sensor, if the condensate does not dis-
perse but accumulates in the exhaust pipe, due to freezing 
under sub-zero conditions, the exhaust pipe will not be able 
to carry away exhaust gases properly. For these reasons, 
it is important to elucidate the mechanism of condensate 
dispersion.

2.2 � Experimental setting for the image acquisition

In our current research, we are using the experimental 
apparatus shown in Fig. 1 to take experimental images 
under various experimental conditions (wind speed, pipe 
shape, etc.) and visually confirm the frequency of droplet 
dispersal. However, droplet scattering occurs in only about 
1∕1000 ∼ 1∕10000 of the experimental images, and hav-
ing to visually inspect a huge number of images to detect 
droplet scattering is very time-consuming and burdensome. 
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Therefore, it is important to develop and implement a system 
that can automatically detect droplet scattering on behalf of 
the researcher. In this study, we attempt to solve this problem 
using an object detection method based on deep learning.

There are four types of scattering phenomena: liga-
ment, bag-breakup, multimode, and impact. In this study, 
we concentrate on bag-breakup detection. An example of a 
bag-breakup is shown in Fig. 2. A bag-breakup is formed 

when the liquid film is subjected to inertial forces from the 
gas phase, and the droplet expands like a balloon and then 
breaks up. It is called a bag-breakup because at the moment 
when the balloon breaks, it looks like a bag.

3 � Problems and solutions for object 
detection in special domains

Here, we will describe the most common problems and chal-
lenges which practitioners would likely have to deal with 
when applying object detection methods in special domains 
(where the images and task constraints differ significantly 
from the natural images case), and will also show how these 
can be overcome using corresponding practices and archi-
tecture decisions (summarized in Fig. 3) developed in recent 
state-of-the-art methods in the object detection field.

3.1 � Detection speed

In many industrial or scientific application settings, it is nec-
essary to process an enormous volume of data given only 
a limited time span for processing, so detection speed is 
a crucial requirement for success in such cases. Generally, 
object detection methods can be divided into two groups: 
(a) two-stage object detection models, such as Faster-RCNN 
[16], in which a first region proposal stage (during which 
candidate object bounding boxes are generated) is separated 
from the second stage (during which a classification and 
regression tasks are performed in order to obtain object’s 
class and corresponding bounding box); and (b) one-stage 

Fig. 1   The experimental equip-
ment used for image acquisi-
tion from the droplet dispersal 
experiments [14]

Fig. 2   An example of a bag-breakup (the bag can be seen moving 
from right to left)
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object detection models, such as SSD [13], YOLO [15, 17], 
EfficientDet [18] or recent transformer-based methods like 
[23], in which the objects’ class and bounding boxes are 
predicted directly from the input images without the neces-
sity of a preliminary region proposal stage. Because of the 
additional time required to compute the region proposals 
in two-stage models, one-stage models are generally much 
faster and therefore are a natural choice for applications like 
the current one, where detection speed is crucial.

Another area of research that has been active in recent 
years is module-level re-parameterization [4], where the 
multi-branch structure used during training is substituted 
by equivalent simpler modules during inference, thereby 
reducing memory access costs and speeding up the infer-
ence process. This approach is used in the state-of-the-art 
YOLOv7 model [19], and we will compare it in this study 
with the popular and widely used RetinaNet model [10], 
used as a baseline model here. RetinaNet is a simple but 
conceptually mature one-stage model, consisting of a back-
bone feature pyramid network (FPN) [9] and sub-networks 
for object classification and box regression. YOLOv7 is a 
one-stage model that utilizes various recent architectural 
design and learning techniques (using ELAN [20] as a back-
bone), which has shown superior performance to previous 
object detection models, both in terms of detection speed 
and accuracy.

3.2 � Class imbalance

A challenge specific to the problem we deal in this paper 
(and industrial/scientific applications with similar settings) 
is that the object which needs to be detected represents a 
rare class/phenomenon, which can be observed only in a 
very small subset of all images, i.e., the predominant part 
of the images do not contain any target at all (i.e., represent 
the background class) and images on which the target can be 
seen contain usually only a single instance (a single object). 
This is very different from the typical case where the target 
objects (like cars, faces, etc.) appear in natural scenes. In 

the latter case, usually a single image contains a multitude 
of objects and generally there are plenty of training images 
available (as it is easy to obtain and label them).

Since in our case most of the regions in a single image 
represent the background class, they would dominate the 
training, leading to the class imbalance problem, which can 
make the learning process difficult and unreliable. This prob-
lem is mitigated in the case of a two-stage detector because 
most of the background regions are eliminated during the 
region proposal stage, but it must be addressed in the case 
of a one-stage detector. A typical solution to this problem 
is the Focal Loss proposed by Lin et al. [10]. Focal Loss is 
defined by the following equation:

By multiplying the usual Cross-Entropy Loss by (1 − pt)
� , 

the loss for samples with high confidence (corresponding 
to the predominant background class) becomes small, and 
training of the difficult samples (belonging to the target class 
which has much less training samples) can be emphasized. 
In this way, using the Focal Loss, RetinaNet although being 
a one-stage detector is able to achieve the same accuracy 
as a two-stage detector (but at the same time retaining the 
advantage of being much faster).

3.3 � Small‑size data sets

Another problem which needs to be addressed is that train-
ing of deep learning-based object detection methods typi-
cally requires huge training data sets, while for our task (in 
contrast with the general case where natural scene images 
are used) it is difficult to secure a large amount of anno-
tated data, since only experts can provide the annotations, 
making this process very costly and thus impractical. To 
achieve high object detection accuracy while still training 
the model with only a small amount of data, fine-tuning is 
generally performed on the target data set, using weights 
that have been pre-trained on some large data set (usually 

FL(pt) = −(1 − pt)
� log(pt).

Detection
speed

Class
imbalance

Small-size
dataset

one-stage object
detection model
re-parameterization

Focal Loss

Fine-tuning with
pre-trained model

Data augmentation

Problems Solutions

Fig. 3   Illustration of some of the most common problems and challenges which practitioners need to overcome when dealing with object detec-
tion in special domains and the general solutions attempted in the context of the present task (see main text for the details)
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using readily available annotated images representing natu-
ral scenes) as initial values.

Data augmentation is also very effective for training with 
small data sets. In addition to the usual augmentation meth-
ods, such as image rotation, flipping, etc., recently special 
augmentation methods such as mosaic augmentation [2] 
have been used to combine multiple training images.

3.4 � Utilizing information from neighboring frames

Although the strategies described above can be used suc-
cessfully in most of the general problem settings targeted 
in this paper (i.e., in special domain applications where the 
images are very different from those taken in natural scenes), 
many specific problems might have additional information, 
which can be utilized to further improve the accuracy of 
detection. Here, we propose a novel method, which although 
being conceptually simple, using additional information spe-
cific to our target application (bag-breakup detection) is able 
to achieve higher accuracy than a state-of-the-art method 
like YOLOv7 used in the conventional way.

Our method is based on the observation that bag-breakup 
occurs across several consecutive frames and information 
from neighboring frames might be useful to detect difficult 
instances of bag-breakups which might be hard to detect 
from just a single frame (sometimes even human experts 
might not be able to accurately detect such difficult cases 
from a single image).

The main idea is illustrated in Fig. 4. Instead of training 
a model to detect a bag-breakup from a single image (say 
T-th frame in a sequence of images, as shown in the figure), 
as is the conventional way, we consider the 2i + 1 frames in 
the interval (T − i,… , T + i) . We randomly select (N − 1)∕2 
frames among the frames in the interval (T − i,… , T − 1) 

and also randomly select (N − 1)∕2 frames among the frames 
in the interval (T + 1,… ,T + i) and stack them together with 
the T-th frame across the channel dimension. Note that N is 
an odd number and Fig. 4 illustrates the case for N = 3 , i.e., 
a single frame somewhere before the T-th frame and a single 
frame somewhere after the T-th frame are stacked together 
with it. In order not to increase the channel dimension too 
much (and since color is not very informative for our task) 
we first convert the color images into grayscale. In this way, 
we obtain an input sequence of N images (or a single data 
sample consisting of N channels) which is input in the model 
(either RetinaNet or YOLOv7 in our case) and the model 
is trained or fine-tuned to detect all the bag objects in the 
image corresponding to the T-th frame.

The random selection of frames in the interval 
(T − i,… ,T + i) is used while training the model to make 
the method more robust to the different speeds of motion of 
the bags across different experiments (since it is necessary 
to detect bag-breakups in fluid flows moving at different 
speeds, e.g., when the wind speed is changed across differ-
ent experiments).

In the next section, we show that our method significantly 
improves the detection accuracy compared with the conven-
tional use of pre-trained state-of-the-art models and even 
enables a modified version of RetinaNet using our method 
to outperform YOLOv7 on our task.

4 � Experimental results

4.1 � Dataset

Previous studies have reported that droplets have differ-
ent morphologies depending on conditions such as the 

Fig. 4   Overview of the proposed method to use information from 
neighboring frames. To detect an object of interest in the T-th frame, 
we randomly select N − 1 frames among the frames in the interval 
(T − i,… ,T + i) and stack them together with the T-th frame across 
the channel dimension. The figure illustrates the case for (N = 3) , i.e., 

a single frame before the T-th frame and a single frame after the T-th 
frame are stacked together with it and features are extracted simulta-
neously from all the stacked frames. The random selection is needed 
to make the method more robust to the different speeds of motion of 
the bags across different experiments
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magnitude and variation of wind velocity, and that they 
scatter randomly in time and space. Thus, they need to be 
statistically processed [14]. For the experiments reported 
below we used images from 72 different movies taken under 
21 different experimental conditions (for example, differ-
ent wind speed, etc.). All images were of size 1024 × 1024 
pixels, and only 824 annotated frames were used for training 
and validation (since the annotation process is very time-
consuming and costly).

4.2 � Evaluation metrics

Average precision (AP) was used as an evaluation metric 
for the experimental results. AP is obtained by interpolating 
the precision–recall (PR) curve of the detection results and 
calculating the area of the region below it.

First, each detected object area which has a higher Inter-
section over Union (IoU) score (overlap ratio between 
detected and ground truth bounding boxes) than a pre-set 
threshold � is matched with the corresponding ground truth 
bounding box. Next, the detected region with the highest 
confidence (among all detected regions associated with a 
certain ground truth bounding box) is then counted as a 
true positive (TP) if its confidence level is higher than some 
confidence threshold � , while all other detected regions are 
counted as false positives (FP). Therefore, each detection 
is either TP or FP, and by counting their number, a preci-
sion–recall curve can be obtained while varying the confi-
dence threshold � . Finally, AP is calculated as the area under 
the precision–recall curve obtained in this way.

4.3 � Model training

For our task, we trained two representative one-stage object 
detection models: the recently proposed YOLOv7 [19], rep-
resentative of the current state-of-the-art in object detection, 
and the widely used RetinaNet [10] as a baseline. The data 
from all available source videos was divided into train, vali-
dation and test sets for evaluation. The number of images for 
train, validation and test were 597, 65 and 146 respectively. 
The images were resized to 800 × 800 pixels during training 
and validation.

In RetinaNet, Adam [8] was used as the optimization 
method. The learning rate was set to 1 × 10−5 , while �1 and 
�2 were set to �1 = 0.9, �2 = 0.999 . The batch size was set to 
8. For data augmentation, vertical flip and color jitter were 
used.

In YOLOv7, only horizontal flip was changed to vertical 
flip for the data augmentation, while all other default set-
tings were kept unchanged. Both models were trained for 
100 epochs.

4.4 � Experimental results

4.4.1 � Model comparison

To prepare training data for object detection tasks, it is 
necessary that human annotators describe the exact loca-
tion (i.e., provide the coordinates of the bounding box) of 
the objects of interest in the training images. Because bag-
breakups can have very complex shapes (in terms of both 
texture patterns and visual appearance), unlike objects in 
natural scene images, it is difficult to determine the exact 
bounding box and there are large differences in annotations 
among individual annotators. For example, in natural scene 
images, all human annotators would agree what are the cor-
rect boundaries of a car or an animal, etc., while in the case 
of images like those we have to deal with in the present task, 
the boundaries of the bag-breakup objects are not precisely 
defined and different annotators would typically annotate 
the same object not exactly in the same way. Figure 5 shows 
an example where although the prediction of the model is 
very good, the Intersection over Union (IoU) score (i.e., the 
overlap ratio between detected and ground truth bounding 
boxes) between the bounding box predicted by the model 
and the annotated ground truth is quite low. For this reason, 
even though a typical value of the IoU threshold � for natural 
scene images is 0.5, we also consider a lower one of 0.2, 
which might be sufficient for our task. The reason for this 
is that for the detection of objects in natural scene images 
usually a high overlap between a detection and ground truth 
of a car is natural to expect, in our case due to the large 

Fig. 5   Bag-breakup detection in an image, showing an example 
where even though the detection is very good, IoU is low. Model’s 
prediction is shown in red and the ground truth annotation in blue. 
The number above the detected bounding box is the model’s confi-
dence
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differences in annotations among individual annotators it is 
not reasonable (or necessary) to expect such a high overlap.

The evaluation results showing the average precision (AP) 
for each model are shown in Table 1. For this experiment, 
the RetinaNet model uses ResNet-34-FPN as a backbone, 
while the YOLOv7 model uses the regular YOLOv7 imple-
mentation [19]. The results in Table 1 show that changing 
the IoU threshold during evaluation improved APs by 10.1% 
for RetinaNet and 4.9% for YOLOv7. Also, as expected, in 
this experiment the state-of-the-art YOLOv7 model signifi-
cantly outperforms RetinaNet by 8.9% for � = 0.5 , which is 

reduced to 3.7% for the lower IoU threshold of � = 0.2 . This 
indicates that the IoU threshold may need to be lowered dur-
ing the evaluation of data such as those used in this study, 
where it is difficult to determine the exact bounding box of 
the target object and the differences among annotators are 
large.

More detailed evaluation results including the preci-
sion–recall curve and showing how precision, recall, and 
the F1 metric (which summarizes simultaneously both preci-
sion and recall) change as a function of each model’s con-
fidence are shown in Fig. 6. Figure 6 shows that YOLOv7 
achieves higher accuracy in both precision and recall than 
RetinaNet and also has smaller changes in accuracy when 
the IoU threshold is changed. This may be due to the fact 
that YOLOv7 includes the loss related to IoU in the loss 
for the bounding box regression, while RetinaNet only uses 
smooth L1 Loss in that loss. However, from this figure, it can 
be seen that if the IoU threshold is lowered, as we suggest 
for this task (and similar tasks) the difference between using 

Table 1   Average precision 
(AP) obtained for both models 
for different values of the IoU 
threshold �

Model AP

RetinaNet (IoU=0.5) 0.817
RetinaNet (IoU=0.2) 0.918
YOLOv7 (IoU=0.5) 0.906
YOLOv7 (IoU=0.2) 0.955

Fig. 6   Evaluation results showing the precision–recall curve and how precision, recall, and the F1 metric change as a function of each model’s 
confidence (see text for details)
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a state-of-the-art model and a popular baseline as RetinaNet 
can be significantly reduced.

4.4.2 � Learning from scratch

Although the data set used in this study is very small (about 
800 images), by fine-tuning on our data set the pre-trained 
versions of YOLOv7 and RetinaNet we were able to achieve 
an Average Precision of more than 0.9 on the test data. To 

Table 2   Results for YOLOv7 
when trained from scratch with 
or without mosaic augmentation

Mosaic AP

✓ 0.905
0.721

Table 3   Results for RetinaNet with two different backbones when 
trained from scratch with and without mosaic augmentation, and with 
and without using the DIoU loss

Backbone Mosaic DIoU AP

ResNet-18-FPN 0.621
ResNet-18-FPN ✓ ✓ 0.708
ResNet-34-FPN 0.654
ResNet-34-FPN ✓ ✓ 0.681

Table 4   Influence of focal loss 
to mitigate the class imbalance 
problem

Focal loss AP

0.873
✓ 0.918

Table 5   Influence of 
re-parameterization on inference 
speed

Re-parameter-
ization

Inference speed

10.2 ms
✓ 9.2 ms

Fig. 7   Example of YOLOv7 
detection. Predictions are shown 
in red boxes and correct labels 
in blue boxes. a, b Examples 
of successful detection; c An 
example of false positives at the 
edge of the image; d An exam-
ple of false detection of an area 
with similar texture, but not a 
bag-breakup
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investigate which training strategies and components of the 
models are more effective for a small-sized data set, as the 
one used in our task, we performed additional experiments 
by training from scratch the two models under various condi-
tions and evaluated the resulting change in accuracy.

Table 2 shows the experimental results obtained when 
training YOLOv7 from scratch. The training was performed 
for 3000 epochs and converged in about 1000–2000 epochs. 
The table shows that YOLOv7 is able to achieve a very high 
AP of over 0.9 even without pre-training on a much larger 
data set. However, when the mosaic augmentation [2] used 
for training YOLOv7 was removed, the AP decreased by 
about 0.2 points. This indicates that the mosaic augmenta-
tion is very effective for training on small-sized data in this 
domain.

Next, Table 3 shows the experimental results for learning 
from scratch when the RetinaNet model was used with two 
different backbones (ResNet-18-FPN and ResNet-34-FPN). 
In comparison with the fine-tuning case, now the learning 
rate was increased 10 times to 1 × 10−4 , and the model was 
trained for 100 epochs. For both backbones training converged 
in about 50 epochs. For both ResNet-18-FPN and ResNet-
34-FPN the obtained APs were quite low at 0.621 and 0.654, 
respectively, which is more than 0.2 points less than the accu-
racy obtained with fine-tuning of the pre-trained model. This 
indicates that fine-tuning is crucial and the pre-trained weights 
provide good initial values for the model, even for the present 
data set, which is from a completely different domain than the 
natural scene images used for the pre-training.

Additionally, we performed further experiments by add-
ing mosaic augmentation, which was important in the case 
of YOLOv7, and also adding the DIoU loss [22] to the loss 
function. This improved the accuracy by 8.7% and 2.7% 
for ResNet-18-FPN and ResNet-34-FPN, respectively, but 
the accuracy was still lower than that of YOLOv7 without 
mosaic augmentation.

4.4.3 � Influence of the loss function on the class imbalance 
problem

Since the data set used for our task has a more serious class 
imbalance between foreground and background than is typi-
cal for natural scene images, we measured the change in 
accuracy resulting when training with and without using the 
focal loss (a typical countermeasure for mitigating the class 
imbalance problem). Table 4 shows that the use of focal loss 
improves the AP by 4.5%, indicating that it is very effective 
for the data used in our task.

4.4.4 � Inference speed

To measure the effect of re-parameterization used in 
YOLOv7, we compared the inference speed with and with-
out re-parameterization. We used an Intel Xeon W-2223 
CPU and an NVIDIA GeForce RTX 3090 GPU to test the 
inference speed. The image size for inference was 800 × 
800 pixels. The measurement results are shown in Table 5 
and indicate that YOLOv7 is capable of very fast inference 
without re-parameterization, but with re-parameterization 
it is 1.1 times faster, and real-time processing is possible if 
a GPU is available.

4.4.5 � Qualitative assessment of bag‑breakup detection 
results

Several representative examples of bag-breakup detection 
when using the YOLOv7 model are shown in Fig. 7. Pre-
dictions are shown in red bounding boxes and ground truth 
annotations in blue boxes. The upper panel of Fig. 7 shows 
examples of successfully detected bag-breakups, while in 
the lower row are shown examples of false positives ( areas 
that do not represent a real bag-breakup).

The most common examples of false positives are as 
those shown in (c), where a small area at the edge of the 
image is detected incorrectly, and (d), where the texture of 
the image is very similar to that of a bag-breakup. The for-
mer is considered to be due to the use of mosaic augmenta-
tion during training. When mosaic augmentation is used, a 
part of the bounding box may protrude from the image as 
shown in Fig. 8. In such a case, the remaining part of the 
bounding box is used as a target signal, which is likely to 
cause false positives at the edge of the image. Cases like this 

Fig. 8   False positives due to mosaic augmentation. If a box protrudes 
across the edge of the image, the remaining part inside the image can 
be wrongly used as a positive target signal
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can be easily rejected by eliminating small bounding boxes 
near the edge of the image during post-processing.

The latter example (in Fig. 7d) is difficult even for experts 
to judge just by looking at this image. False positives of 
this type can be handled by checking the information from 
the surrounding image frames, since difficult cases like this 
one are easier to detect if the sequence of events from the 
occurrence of a bag-breakup to its disappearance are also 
considered. In the following subsection, we show how the 
new method proposed in Sect. 3.4 and inspired by this obser-
vation can be used to handle such difficult cases.

4.4.6 � Quantitative and qualitative assessment 
of the detection results obtained by the method 
from Sect. 3.4

Finally, in this subsection we report the results obtained 
when using the new method introduced in Sect. 3.4. Table 6 
shows the average precision (AP) obtained by RetinaNet for 
different values of N (number of frames to stack together) 
and i (length of the intervals before and after the T-th frame, 
the frame at which detection is performed, see Fig. 4). As 
can be seen from Table 6, when using our method RetinaNet 
is able to outperform the conventional YOLOv7 by 1.5%, 
obtaining for N = 5, i = 4 the best AP (0.97) over all con-
ducted experiments. Table 7 shows the Average Precision 
(AP) obtained by YOLOv7 for different values of N and i. 
The result show that YOLOv7 also can improve its detection 
accuracy by using the proposed method, although in this 
case the improvement is not so big as in the case of Reti-
naNet (best AP of 0.961 achieved for N = 5, i = 3 , which 
is an 0.6% improvement over the best AP obtained when 
YOLOv7 is used in the conventional way).

Figure 9 shows several bag-breakup detection examples 
obtained by RetinaNet when using it as a conventional object 
detector (left column) and when using the proposed method 
from Sect. 3.4 with N = 5, i = 4 (right column). In the fig-
ure predictions are shown in red boxes and ground truth 
in blue boxes. The numbers above the boxes show model 
confidence and only detections with confidence above 0.4 
are shown. The images in the top row and the second row 
in Fig. 9 show examples where RetinaNet used as a con-
ventional object detector mistakenly detects a bag-breakup 

in areas of the images which closely resemble a bag. With-
out utilizing additional information from the neighboring 
frames, i.e., without looking at several consecutive frames, 
it is difficult even for human experts to determine whether 
these areas represent bags or not. However, using the pro-
posed method from Sect. 3.4 (as the corresponding results 
in the right column of Fig. 9 show) it is possible to eliminate 
these false positives. In the lack of such ambiguous regions 
in the images, as is the case in the images in the bottom row 
of Fig. 9, both methods perform equally well and there are 
no false positive detections.

5 � Conclusion

In this paper, we have shown that the task of automatic 
detection of bag-breakup in images of droplet scattering can 
be accomplished with very good accuracy and in real-time 
using state-of-the-art object detection methods, even though 
the available training images were less than 600 and the 
image texture for this fluid phenomenon has very different 
characteristics from those of natural scene images. We have 
addressed several important challenges which practitioners 
in scientific or industrial research settings might face in their 
special domain applications and have shown several strate-
gies which can be used successfully to improve accuracy in 
such settings, at the same time providing both quantitative 
and qualitative evaluations of their effects.

Additionally, we have proposed a new method, which 
by utilizing information from several consecutive frames 
further improves accuracy of detection by eliminating false 
positives which might occur in regions which closely resem-
ble the visual structure of bags and are difficult to discrimi-
nate  from a single image. We hope that the practical insights 
gained in this study can be of use to other researchers and 

Table 6   Average precision 
(AP) obtained by RetinaNet 
when using information from 
neighboring frames for different 
values of N and i 

i N − 1 N N + 1 N + 2

N

3 0.954 0.947 0.942 0.929
5 0.970 0.895 0.924 0.873
7 0.904 0.920 0.846 0.830

Table 7   Average precision 
(AP) obtained by YOLOv7 
when using information from 
neighboring frames for different 
values of N and i 

i N − 1 N N + 1 N + 2

N

3 0.941 0.961 0.958 0.956
5 0.927 0.894 0.942 0.910
7 0.854 0.909 0.930 0.871

Fig. 9   Several bag-breakup detection examples obtained by Reti-
naNet when using it as a conventional object detector (left column) 
and using the proposed method from Sect.  3.4 with N = 5, i = 4 
(right column). Predictions are shown in red boxes and ground truth 
in blue boxes. The number above the boxes show model confidence 
and only detections with confidence above 0.4 are shown. The images 
in the top two rows show examples where RetinaNet used as a con-
ventional object detector mistakenly detects non-existing bags, while 
these are successfully avoided when using the method from Sect. 3.4. 
See main text for further details

◂
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practitioners when targeting applications where the images 
differ greatly from natural images.
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