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Abstract
Square fiducial markers are widely used in robotics to easily obtain pose and other information about the world from camera 
images. Processing the images to extract the markers is usually performed centrally with standard libraries but the code is 
typically aimed at PC-level hardware. Platforms with constrained processing power have difficulty handling multiple camera 
streams at real-time refresh rates. We introduce the Frappe (Fiducial Recognition Accelerated with Parallel Processing Ele-
ments) algorithm for detecting and decoding the popular ArUco tags. Designed to be implemented on the low cost hardware 
of the Raspberry Pi Zero, we show tag detection and decoding on images of 640 × 480 resolution exceeding 60 Hz, five times 
faster than the standard ArUco library, while maintaining similar detection performance and using much less energy. Using 
Frappe, we demonstrate improved real-world performance on a visual navigation task with our DOTS robot.

Keywords Image processing · Fiducial tags · Robot vision · Embedded processing · GPU acceleration

1 Introduction

Scaling up robot numbers in real-world environments 
requires both lowering the cost of robots, and improving 
their ability to perceive and interact with the world. One 
approach uses cheap vision hardware and augments the envi-
ronment with markers. Square fiducial markers consisting 
of a grid with a binary pattern are widely used in robotics 
vision systems as a way of providing pose and navigation 
information from a camera image feed without the complex-
ity and processing cost of full image comprehension tech-
niques such as Visual SLAM. The popular ArUco library 
is widely used, but the processing cost is still significant in 
resource constrained robot systems, limiting the resolution 
and update rate that is possible, hindering the performance 
of real-time robot navigation.

The Raspberry Pi series of educational Single Board 
Computers (SBCs) has enabled many projects needing 
a small, cheap computer running Linux. Well supported, 
they have a camera interface supporting several models of 

camera. A Raspberry Pi Zero and OV5241 camera module 
can be purchased for around £16, providing 1080p60 stream-
ing video. What is not widely utilised is the surprisingly 
capable Graphics Processing Unit (GPU) that all Pi models 
have, with around 24 GFLOPs processing power.

We design an image processing algorithm, called Frappe, 
Fiducial Recognition Accelerated with Parallel Process-
ing Elements, to use the Raspberry Pi (RPi) Zero GPU 
for as much processing as possible. As proof-of-concept, 
we implement Frappe on our swarm of DOTS [1] robots 
designed for intralogistics applications. By re-engineering 
the visual navigation system of the DOTS, enabling higher 
detection frame-rates and resolutions than were previously 
possible, we enhance performance at a visual navigation 
task.

We make available an implementation of the algorithm 
and a complete Docker-based development environment1. 
This brings together the required specialised toolchains and 
provides a virtual environment for compiling GPU appli-
cations targeting the Raspberry Pi Zero. We provide this 
framework for others to make use of this underutilised pro-
cessing power for visual processing and other edge process-
ing applications.

This paper is organised as follows; Section 2 covers back-
ground and related material, Sect. 3 details the algorithm 
and its implementation, Sect. 4 compares the performance 
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of Frappe and ArUco on Raspberry Pi Zero hardware, before 
using Frappe in a larger robot system for enhanced perfor-
mance, and Sect. 5 concludes the paper.

2  Background

Fiducial markers or tags are visually distinct objects placed 
in the environment to convey information or position or 
both. In robotics, what is often desired is to extract pose 
and position from a camera feed, in this case the fiducial 
must convey both accurate position and unique identity. The 
most common form is a monochrome square region with 
an internal bit pattern, an early system was ARToolKit [2], 
widely used examples include AprilTag [3, 4], ARTag [5], 
and ArUco, with [6] showing generation of dictionaries 
with near-optimal intermarker distance, and [7] acceler-
ating detection. Circular forms are also common, such as 
InterSense [8], STag [9], and CCTag [10]. CCTag is also 
designed to be resistant to occlusion and motion blur. For 
widely used square tags such as ArUco, AprilTag, and 
ARTag, there has been work on blur resistant decoders with 
conventional [11] and machine learning approaches [12, 
13]. See [14] for a recent review and examination of the 
comparative detection performance and resilience of some 
different tag systems. Although not directly comparable with 
our results, they show detection rates of 95% for ArUco in 
their test data. They don’t directly report processing time, 
but do say that 640x480 detection at 20 Hz on a Raspberry 
Pi 3 was possible for ARTag and ArUco, but AprilTag was 
too computationally intensive. Regarding the speed of vari-
ous detectors, [4] report AprilTag2 at 78 ms for a 640x480 
image on an Intel Xeon E5-2640, [7] report ArUco at 0.9 ms 
for 640x480 on an Intel Core i7-4700HQ.

This work specifically addresses accelerating ArUco 
tag detection on low cost hardware, due to our exist-
ing systems and software using this tag. Figure 1 shows 
an example ArUco fiducial from the standard dictionary 
ARUCO_MIP_36h12, generated as described in [6]. It 

shows the 8x8 region of a marker, consisting of an outer 
perimeter of always black cells, with an inner 6x6 region 
containing the data payload. Each of the 250 unique symbols 
in the dictionary have a minimum Hamming distance of 12 
from all other symbols, meaning that up to 6 erroneous bits 
out of the 36 can be corrected (Fig. 2).

Our DOTS swarm robots [1], shown in Fig.  3, are 
designed to enable research into swarm intralogistics. They 
are low cost, capable of fast agile movement, able to carry 
loads, and have a ROS2-based control system running on 
RockPi 4 SBC. 250 mm in diameter, they are equipped with 
four cameras for 360◦ vision. Although recent trends in robot 
vision have moved towards high speed event cameras [15] 
and deep learning, the cost and computational requirements 
are still considerable, and way beyond our price point—we 
attempt to maximise the capabilities of very cheap com-
modity consumer electronics. Hence each camera is a low 
cost OV5241 module with a wide-angle lens attached to a 
Raspberry Pi Zero (Fig. 2) and streams video to the central 
RockPi 4 SBC, shown in Fig. 7. This architecture was cho-
sen based on both cost, and the possibility of performing 
embedded image processing as described in this work.

Extracting real-time pose information from the camera 
feeds using techniques such as Visual Simultaneous Locali-
sation and Mapping (SLAM) is computationally expensive, 
running e.g. ORB-SLAM [16] or LSD-SLAM [17] is beyond 

Fig. 1  Example of an ArUco 
fiducial marker from the 
ARUCO_MIP_36h12 diction-
ary, showing the full 8x8 region, 
with the outer cells always 
black, and the inner 6x6 36 bit 
data payload

8x8 fiducial region

6x6 data payload

Fig. 2  Raspberry Pi Zero with attached camera, costing around £16 
and capable of streaming up to 1080p60 video

Fig. 3  DOTS robot, fast moving and low cost with 360◦ vision, ena-
bling research into swarm intralogistics
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the reach of the computational ability of the DOTS, so we 
use ArUco tags and library [7] for navigation and world 
comprehension, chosen as the fastest available library. Even 
so, processing four camera feeds on the central RockPi SBC 
necessitated limiting the resolution to 320 × 240 and frame 
rate to 15 Hz. In this work, we focus specifically on achiev-
ing a system capability of 640 × 480 pixels with a frame 
rate of 30 Hz over all four cameras, an eight-fold increase in 
the aggregate pixel processing rate, by delegating fiducial 
recognition to the RPi Zeros.

The Raspberry Pi [18] series are small SBCs based on 
Broadcom System-On-Chips (SoCs), initially aimed at edu-
cation. They have become immensely popular with mak-
ers, in education and academia, with hobbyists, and also in 
industry, due to the low cost and good support, both from 
the Raspberry Pi Foundation and from the large user com-
munity [19–25] . The support and longevity has meant that 
a large ecosystem of peripherals and applications has grown 
up around them. There are more powerful SBCs, but they are 
often short-lived, with poor support from the manufactur-
ers. The RPi Zero, shown in Fig. 2, is of particular interest 
to makers and roboticists because of its small form factor 
and low cost.

The Broadcom SoC is typical of many that were aimed at 
the mobile phone market, in that it includes a camera image 
processing pipeline, and a OpenGLES2-compliant GPU. All 
the Pi series except for the RPi 4 use the same processing 
block; the VideoCore IV, or VC4. This contains two major 
subsystems, the Vector Processing Unit (VPU); a dual core 
vector processor for running system code and handling 2D 
image and video data, and the GPU; 12 parallel Quad Pro-
cessing Units (QPU) and support blocks for handling 3D 
rendering. Attached to the VC4 block are one or more ARM 
CPUs, in the case of the RPi Zero a single ARM1176 core. 
A simplified view of the architecture is shown in Fig. 4.

Although some documentation was released by Broad-
com [26], this only covered the QPUs of the 3D core. Since 
then, much work has been done to reverse engineer details 
of the VPU instruction set [27], and develop tools and appli-
cations; a QPU assembler [28], open source VPU firmware 
[29], a port of the GCC compiler to the VPU [30], and 
optimised FFT library GPU_LIB on the QPUs [31], a QPU 
programming language QPULib [32], use of the QPUs for 
basic image processing [33], and other information about the 
hardware architecture [34, 35].

Despite this, there are few works within the formal lit-
erature making use of this processing power. The language 
QPULib is used in [36] implement a simple convolution 
and demonstrate 27x speedup and 35x less energy usage 
compared to a CPU-only implementation, and in [37] to 
implement part of a vision algorithm in the QPUs. The 
performance trade-offs of running FFTs on the QPUs or 

CPUs of a Raspberry Pi 3B for a cross-correlation task are 
investigated in [38]. We can find no works using the VPU 
at all, which motivates the design and implementation of 
Frappe as a complete demonstration application, and the 
making of this, and a collated set of development tools, 
freely available.

3  Materials and methods

The Frappe algorithm is relatively conventional in image 
processing terms, but each part has been chosen such 
that they can be optimised using the available process-
ing blocks of the VideoCore processor, if possible. The 
principles underlying the optimisation are these: CPU pro-
cessing is relatively slow, and should be used only where 
operations cannot be performed on the QPUs or the VPU, 
and memory traffic should be minimised. We favour con-
stant-time operations wherever possible.

We now detail the GPU hardware and how it can be 
used, then describe the algorithm and the specifics of 
implementation on the RPi Zero.

3.1  GPU hardware

The VPU is focussed mainly towards general purpose 
and 2D image processing. It consists of two scalar cores, 
a shared vector processing core, and two vector register 

VC4
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Fig. 4  Raspberry Pi CPU and VC4 subsystems. The ARM CPU on 
the left communicates with the VPU via the mailbox interface and 
with the QPUs via the QPU FIFO. The VPU and the 12 QPUs oper-
ate autonomously and in parallel with the CPU
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files. In normal operation of the RPi, it is responsible for 
booting the system from firmware, then starting the Linux 
kernel on the ARM core. It is then responsible for provid-
ing services such as OpenGLES2, video codecs, camera, 
and video composition. There is a documented2 mailbox 
interface from the ARM CPU to the VPU firmware which 
includes a method to directly execute user code on the 
VPU.

The main power of the VPU comes from its vector core 
and register files. Scalar and vector code can be freely inter-
mixed, the single vector core being transparently shared by 
the two scalar cores. The vector core is a 16 lane SIMD, 
with each lane being 32 bits, giving 16 operations per clock. 
Operations are primarily integer. The Vector Register Files 
(VRF) are 64 × 64 bytes and can be accessed in a flexible 
2D fashion, with both horizontal and vertical slices of 8, 16, 
and 32 bit words being unpacked and packed. Data can be 
streamed into and out of the VRF at very high bandwidths, 
reaching 70% of peak theoretical from SDRAM.3

The QPUs are focussed mainly on providing 3D graph-
ics. Each of the 12 QPUs is architecturally a 16 lane (4 lane 
physical) dual-issue SIMD, with each lane 32 bits wide, with 
64 registers, supporting 32 bit floating point and many pack 
and unpack operand modes to facilitate e.g. 8-bit integer 
to 32 bit floating point conversion. The QPUs are organ-
ised as three slices of four, with each slice sharing some 
special purpose hardware. Maximum parallelism across the 
QPUs is thus 96 operations per clock. Memory access on the 
QPUs is suited to their intended purpose as GPU processing 
engines. There are two Texture Memory Units (TMUs) per 
slice, shared by four QPUs. These provide read-only access 
to 2D texture buffers, with pixel interpolation and format 
conversion. They also allow direct memory access of 16 
arbitrary addresses per request from a QPU, with up to four 
requests per QPU allowed in flight at any time. The Vertex 
Pipe Memory (VPM), shared by all QPUs, is a 12 KByte 
block of memory that has Direct Memory Access (DMA) 
engines to read and write main memory. The QPU can 
access sequential rows or columns of the VPM, but has no 
direct access to main memory. A stream of uniforms, 32 bit 
constants automatically fetched from memory, is available 
to read from within a QPU program invocation. Programs 
are executed by submitting program descriptors to the QPU 
scheduler 16 entry queue, which allocates programs to the 
next available QPU.

The RPi SoC has a unified memory architecture, meaning 
both the CPU and GPU can see the same memory without 
need to copy data from one to the other. In order to have 
parts of the algorithm executing on different functional 
blocks, we make use of kernel-supported4 zero-copy Vide-
oCore Shared Memory (VCSM) buffers. In this way, we can 
freely access a memory buffer from both CPU and GPU with 
zero copy cost, provided we pay attention to cache mainte-
nance issues.

In order to best achieve parallelism, any algorithm should 
ensure that the 12 QPUs are each operating on different areas 
of data simultaneously, and that processing of data overlaps 
the storage of previous results and the loading of the next 
inputs.

3.2  Frappe algorithm

To detect square fiducials, we find contiguous borders that 
have exactly four corners, perspective correct, extract and 
binarise the information payload, then look up the value in a 
dictionary of valid fiducials. The process we use is outlined 
in Algorithm 1, along with functional unit and approximate 
time percentage per algorithm step, and is illustrated in 
Figs. 5, 6. Parameter values are shown in Table 1.

One of the insights of the ArUco paper [7] is that when 
operating on video, frames are often similar, so if a large 
fiducial was detected in one frame, later frames can be scaled 
down for performance increases from processing fewer pix-
els while still being able to detect similarly sized fiducials. In 
step 1, ADAPTIVE_SCALE, we look at the smallest fiducial 
edge length lmin detected in the previous frame and use that 
as the basis for setting the scale factor rscale = �∕lmin , where 
� is the target size of the scaled fiducial in pixels. To handle 
the situation where a smaller fiducial enters a frame already 

Algorithm 1  Frappe

2 https:// github. com/ raspb errypi/ firmw are/ wiki/ Mailb ox- prope rty- 
inter face.
3 LPDDR2 32 bit @450 MHz = 3.6 GB/s, VPU block read of 4 
MBytes takes 1.65 ms = 2.5 GB/s.

4 Up until kernel 5.4.83.

https://github.com/raspberrypi/firmware/wiki/Mailbox-property-interface
https://github.com/raspberrypi/firmware/wiki/Mailbox-property-interface
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containing a larger one, we set a maximum number of scaled 
down frames that can be processed contiguously nmax _scaled.

In step 2, CANNY_SHI_TOMASI, we scale down the 
input image by rscale , and then perform Canny [39] edge 
detection and Shi-Tomasi [40] corner detection. These 
operations are performed as two passes with the QPUs 
over the input image. Processing on the QPUs is organised 
as follows, illustrated in Fig. 5: Each QPU is allocated 256 
bytes of the VPM memory, corresponding to 64 pixels. 
The output of a pass is organised as 64 × 32 pixel tiles, 
each of which is processed by a single QPU program invo-
cation issued to the QPU scheduler in raster order. There 
are a total of 150 tiles for a full 640 × 480 image, with each 
invocation having associated uniforms specifying source 
and destination buffer addresses and strides, and, for scal-
ing, fractional accumulation buffers and increments. The 
tile size of 64 × 32 was chosen empirically for best per-
formance but represents the largest tile geometry possible 
while ensuring the tile data for the 12 QPUs fits within the 
128 KByte L2 cache.

Processing is performed on 16 pixel wide parallel 
slices, with the pixels corresponding to the 3 × 3 neigh-
bourhood region ( 66 × 34 pixels in total) being fetched 
from the TMU. The cost of fetches outside the boundary 

of a tile are hidden by the L2 cache. Each 16 pixel result is 
written to the VPM, after a complete tile row of 64 pixels 
has been calculated, the VPM DMA is triggered to write 
the data to main memory. TMU reads for future rows are 
arranged to take place during computation of current rows 
to minimises stalls.

Pass 1 fetches input pixels to the QPUs with locations 
chosen to achieve the required scaling factor, no interpolation 
is used, making scaling essentially a free operation. 
Within a 3 × 3 window on the fetched pixel data, we apply the 
Sobel [41] kernel in both x, and y directions to the image I to 

obtain gradients and gradient angle: gx =
⎡⎢⎢⎣

1 0 − 1

2 0 − 2

1 0 − 1

⎤⎥⎥⎦
∗ I , 
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∗ I  ,  g =

√
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 , 
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(
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)
 . The gradient angle � is discretised 

into four possible directions (horizontal, vertical, 45◦ , 135◦ ) for 
the edge-thinning stage of the Canny algorithm. gx,gy,g, and � 
are output to memory as 8-bit components of 32-bit pixels.

Pass 2 performs the Canny edge-thinning using the gra-
dient angle to examine gradient magnitudes either side of 
candidate edge pixels, suppressing all but the maximum. 
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Fig. 5  Data layout for QPU processing passes. Data is organised as 
64x32 pixel tiles, operated on independently and in parallel by the 
QPUs. Pass 1 fetches pixels, takes intensity information and produces 

gradients and discretised gradient angles. Pass 2 completes the Canny 
edge and Shi-Tomasi corner detector stages
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This is thresholded using a single value, ethr , unlike the 
original Canny two threshold approach, which would have 
required another stage of processing. Provided this pixel 
is an edge, we form the structure matrix A for Shi-Tomasi 

corner detection A =

[
I2
x

IxIy
IxIx I2

y
,

]
 by multiplying gradients 

appropriately then performing a box filter on the 3 × 3 
neighbourhood, then we solve for the the smallest eigen-
va l u e  �min  ,  w h i c h  r e p r e s e n t s  c o r n e r n e s s . 
Let a =

A11

2
, b = A12, c =

A22

2
 , �min = a + c −

√
(a − c)2 + b2 

This is also thresholded, with cthr . Edge and corner values 
are output as 8-bit R and B components of 32-bit pixels, 
with the G, and A components left at zero.

Step 3 of the algorithm, FIND_EMPTY_TILES, uses the 
VPU to scan 16 × 16 blocks of pixels to see if they have any 
edges in them and generate a mask. Empty blocks can then 
be skipped by the contour tracing step. This is very well 
suited to the VPU, costing about 1 ms to scan a complete 
frame. The benefits are substantial, on a typical image we 
save more than 5 ms in contour tracing.

Steps 4–9 generates candidate quadrilaterals by tracing 
the contours in the image formed by edge pixels. This the 
most processing-intensive part and cannot be easily per-
formed on the QPUs or the VPU. The image is scanned 
raster-style (step 4), skipping empty blocks, and edges are 
traced (step 5 TRACE_CONTOUR) with the Suzuki algo-
rithm [42] using a modified version of the OpenCV find-
Contour function. As each edge is followed we keep track 
of the pixels on it that qualify as corners, typically between 1 
and 4 pixels on an edge near a corner will have been marked 
as such. If a traced edge forms a closed contour, we cluster 
all corner pixels within Euclidean distance of 4 pixels of 
each other and keep contours that have exactly four corner 
clusters (step 6 GOOD_CANDIDATE).

Step 10, CORNER_REFINE uses the standard OpenCV 
function cornerSubPix to refine the locations of candi-
date corners with subpixel accuracy. This has been shown 
[43] to give accurate corner locations to around 0.17 pix-
els. Corners are also sorted to ensure they have a consistent 
clockwise winding order.

Then in step 11 candidate quadrilaterals undergo 
PERSPECTIVE_WARP to remove the effect of perspective 
on potential fiducials and turn each into a square 16 × 16 
pixel region to attempt decoding. For each candidate, we use 
OpenCV getPerspectiveTransform to obtain the 
perspective correction matrix from the refined corner coor-
dinates, then use one QPU invocation per candidate to apply 
the matrix giving 256 sample points. These are fetched from 
the original input image using the TPUs to give hardware 
accelerated bilinear pixel interpolation for the warping pro-
cess. Interpolated regions are written to a fixed target buffer 
of 128 × 64 pixels, sufficient for 32 post-warp candidates.

Finally at step 12, BINARISE_DECODE, we use the 
VPU to binarise each candidate by taking the minimum and 
maximum pixel values pmin, pmax within the 6x6 informa-
tion bearing region of the fiducial, corresponding to pixel 
locations x, y ∈ {2..13} , and establishing a threshold of 
pthr = pmin +

1

2
(pmax − pmin) . The 2x2 pixel region of each 

4 0 >5 >5 >50 0
104 0 11 10Invalid Invalid Invalid

E
F

A

B

C

D

G

Fig. 6  Illustration of the stages of processing. A Input image after 
edge (grey) and corner (black) detection. B Good candidates after 
contour tracing. C Perspective warping into 16x16 pixel regions. D 
Binarisation for decoding. E Hamming distance from a valid symbol. 
F Decoded ID of symbol if valid. G Annotated input

Table 1  Frappe algorithm parameter values

Parameter Symbol Value

Edge threshold ethr 0.27
Corner threshold cthr 0.19
Maximum error correction hthr 5 bits
Scaled fiducial size � 28 pixels
Maximum scaled frames nmax _scaled 5
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fiducial bit is averaged and the threshold applied to give a 
binary string. This simple approach proved just as effec-
tive as Otsu’s method [44] and faster. Each binary string 
is manipulated to give four variants for the four possible 
rotational orientations, and these are checked for Hamming 
distance against the dictionary of valid symbols. The symbol 
in the dictionary with the lowest Hamming distance that is 
at or below the threshold value hthr is regarded as a correctly 
decoded symbol.

Parameter values, shown in Table 1, were chosen empiri-
cally across different source material. The edge, corner, and 
error correction thresholds apply to both operating modes. 
Edge threshold ethr represents a trade-off between speed 
and sensitivity since edge-tracing is the most expensive 
single part of the algorithm. It was chosen such that sen-
sitivity was broadly similar to the ArUco library. Corner 
threshold cthr was rather insensitive and placed mid way 
between values where detection reliability fell. Given the 
inter-symbol minimum Hamming distance of 12 bits of the 
ARUCO_MIP_36h12 dictionary, we chose a correction 
threshold of hthr = 5 bits to maximise sensitivity while still 
providing some buffer against wrong symbol identification. 
Relevant only for mode ASCALE, the scaled fiducial size 
� at 28 pixels represents the minimum fiducial size that 
could reliably be detected, and nmax _scaled = 5 a compromise 
between responsiveness to changes in scene and framerate 
gain.

Implementation of the algorithm was in C++ for the main 
code running on the CPU, with QPU code written in assem-
bly and hand-optimised, and VPU code a combination of 
C++ and hand-optimised assembly. Optimisation was aided 
by the use of hardware performance counters detailed in [26] 
to find data starvation issues. Classes were implemented to 
encapsulate zero-copy buffers and pass these between CPU, 
QPU, and VPU parts of the implementation. The detector 
code was compiled to a library to be linked against appli-
cations. We also packaged a complete fiducial detection 
application using the Frappe library together with a minimal 
Linux to enable booting of the RPI Zero over USB without 
the need for an SD card.

3.3  Development environment

Developing the Frappe algorithm for the RPi Zero requires 
the VC4 GCC toolchain [30], the VC4 QPU assembler 
[28], and the OpenCV libraries compiled from source with 
appropriate optimisations for the ARM1176 CPU. Given 
the low performance of the CPU, and the limited amount 
of RAM (512 Kbytes), compiling directly on the RPi Zero 
is extremely slow. We created a Docker-based development 
environment, which we make freely available for use, with 
all the necessary cross compilers, QPU assembler, and build 

scripts. This allows the full power of a host PC to be used to 
cross compile and link code ready-to-run on the target RPi 
Zero far faster than possible natively.

The full source of the Frappe library, together with sim-
ple applications for performance measurement and head-
less streaming of camera images with detected fiducials 
are included within this environment to provide concrete 
examples for others who wanting to make use of the parallel 
processing abilities of the RPi Zero for other image process-
ing or edge applications.

3.4  Test methodology

The aim of developing the Frappe algorithm was to improve 
the visual navigation capabilities of our DOTS robots, which 
requires real-time pose information. We performed two sets 
of evaluations. Firstly we measured the standalone algo-
rithm speed, accuracy, and energy efficiency compared to 
ArUco when running on the same hardware, by using two 
recorded video sequences on a Raspberry Pi Zero. Secondly, 
we looked at robot system performance, comparing the 
original ArUco-based DOTS visual navigation system with 
a re-engineered Frappe-based version, delegating fiducial 
detection to the four camera RPi Zeros. We use a task rel-
evant to intralogistics applications whereby a robot is placed 
at multiple starting locations in an arena and has to find, 
navigate to, then accurately manoeuvre under a cargo carrier.

3.5  Algorithm performance

Two sets of video footage were used. The first, Office, was 
recorded using a mobile phone in an office environment 
under varying lighting conditions with fiducials attached to 
the walls around the space. Also attached to one wall was 
the complete ArUco camera calibration target, providing a 
dense set of 24 fiducials. The second, Arena, was recorded 
from a camera on one of our DOTS robots while it was mov-
ing around within a purpose-built arena, within which large 
(225 mm) fiducials were attached to the walls, and small (45 
mm) fiducials were attached to the four sides of cargo carri-
ers. Each sequence was scaled to 640x480 pixels resolution 
and was run with each detector under varying parameters on 
an RPi Zero. We used ArUco version 3.1.15 and OpenCV 
version 4.5.2, in both cases compiled specifically for the RPi 
Zero with appropriate optimisations. Fiducials used were 
from the standard recommended ArUco fiducial diction-
ary ARUCO_MIP_36h12, which has 250 unique symbols 
encoded on a 6x6 grid within an 8x8 area, with a minimum 
Hamming distance of 12 bits between each symbol.

The standard ArUco library offers three modes of opera-
tion; DM_NORMAL, with adaptive thresholding, DM_FAST, 
with fixed thresholding, and DM_VIDEO_FAST, with fixed 
thresholding and adaptive input scaling. Parameters were left 
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at their default values except for the Hamming error correc-
tion rate, which we set to 0.42 in order to achieve a maximum 
of 5 bits of error correction for the ARUCO_MIP_36h12 
dictionary. We operate the Frappe algorithm in two regimes; 
NORMAL, with no scaling, and ASCALE, with adaptive input 
scaling based on previous frames. Hamming correction was 
set to a maximum of 5 bits.

For speed, we measure the time taken t to process each 
frame of video across both detectors in all modes, using 
an RPi Zero. We define the sensitivity s of a detector as 
the proportion of all true positive detections Dtextall . Since 
we have no ground truth, we assume a similar detection 
by both Frappe and ArUco is a true positive, then verify 
the small number of non-intersecting fiducial detections in 
each sequence for correctness by hand. To examine corner 
accuracy we look at how our detector differs from ArUco 
with the set of all intersecting detections and find the Mean 
Absolute Error (MAE) ē for the corner locations in pixels.

To characterise the energy efficiency of the algorithm, 
we use two metrics, the total energy used to process each 
frame epf, and the energy used for each frame in excess of 
the idle energy use Δepf  . The RPi Zero was allowed to boot 
and reach steady state with no applications running and aver-
age power consumption Pidle measured over a 60 s period. 
Every tenth frame of each sequence was loaded and each 
decoder run continuously on the frame while average power 
Pprocess was measured over a 2 s period. During this period, 
the average frame time tframe was also measured to give 
epf = Pprocess ⋅ tframe , and Δepf = (Pprocess − Pidle) ⋅ tframe . The 
maximum power consumption Pmax of each sequence was 
also recorded. Only non-video modes (ArUco DM_NORMAL, 
DM_FAST, and Frappe NORMAL), representing the worst 
case processing load, were tested since we are presenting 
the same frame repeatedly.

3.6  System performance

The original DOTS visual system is detailed on the left in Fig-
ure 7. Each camera feed is compressed to MJPEG by its RPi 
Zero and sent to the RockPi 4 over USB for processing, where 
it is decompressed and ArUco tag recognition performed. The 
corner locations of each tag, together with their known size and 
the camera intrinsic parameters are used to estimate the relative 
pose between camera and tag, made available to the ROS trans-
form tree for navigation. Transforms are acquired continuously. 
The Frappe version of the system extracts the corner locations 
and IDs of fiducials on the RPi Zeros and sends this information 
directly to the pose extraction step. The same camera calibra-
tion intrinsics are used in both cases.

The navigation task, illustrated in Fig. 8, is for a robot 
in multiple possible starting positions (1), to locate the car-
rier fiducial, move to a predock location (2) in front of the 

fiducial, pausing to capture more accurate pose information, 
then move accurately to the dock location under the carrier 
(3). Docking is successful if the robot stops within 50 mm 
of the correct location.

Each move is only possible if there is a valid transform, 
i.e. a carrier tag has been recognised. The carrier is located 
with its fiducial at arena location (0, 0). The robot is auto-
matically placed at starting poses on a 0.1m grid in range 
x ∈ {0.35, 0.45.., 1.95} , y ∈ {−1.0,−0.9, .., 1.0} facing in the 
−x direction and attempts the task. Ground truth feedback 
from an Optitrack motion capture system is used to navigate 
to the starting point, then the navigation task is completed 

RPI0 RPI0 RPI0 RPI0

USB

MJPEG MJPEG MJPEG MJPEG

MJPEG MJPEG MJPEG MJPEG

ArUco

Pose extraction

RPI0 RPI0 RPI0 RPI0

USB

Frappe

Pose extraction

Frappe Frappe Frappe

RockPi 4 RockPi 4

Fig. 7  DOTS vision system with four cameras. Left: original system 
with video compressed and streamed over USB to the central SBC for 
decompression and ArUco library detection. Right: New system with 
Frappe detection running locally on Raspberry Pi Zeros and fiducial 
positions streamed over USB

1. Start
position

2. Predock

3. Dock

Fig. 8  System test. Robot starts from many different starting positions 
and must successfully navigate under the carrier using information 
from the vision system
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entirely using pose information from the visual system and 
odometry. There are a total of 357 grid points, covering a 
floor area of 3.57 m2 . Each starting grid point is tested at 
least 5 times for both ArUco and Frappe, giving a success 
rate r for each point.

4  Results and discussion

Table  2 shows that the detection sensitivity of Frappe 
is very similar to that of ArUco, differing by only a few 
percent. Frappe NORMAL mode is slightly better on the 
Office sequence but slightly worse on Arena than ArUco. 
Frappe ASCALE mode is substantially the same detection 

performance as ArUco DM_VIDEO_FAST. For both detec-
tors, the adaptive scaling modes are slightly worse than 
the static modes. False positive detections were very low; 
zero for all ArUco modes, and a maximum of 4 for Frappe 
ASCALE on Arena. Corner accuracy MAE is less than 0.16 
pixels in all cases, which is what we would expect from the 
results in [43]. It is important to note that we are looking at 
the differences between the detectors, rather than assuming 
that one is ‘correct’; both ArUco and Frappe use OpenCV 
cornerSubPix to perform the position refinement.

In all cases, Frappe is substantially faster than ArUco, 
with the slowest Frappe mode 4.8x faster than the fastest 
ArUco mode (Fig. 9). The ArUco DM_FAST modes are 
slower than DM_NORMAL mode. Examining individual 

Table 2  Performance on two 
video sequences, best results 
bold

n number of detections, s sensitivity, f false positives, ē corner Mean Absolute Error (MAE), x̄ frame time, 
Pmax worst case power consumption, epf energy usage per frame, Δepf  energy usage per frame in excess of 
idle

Sequence Arena Office

Information

nframes 1252 1499
True positives |Dall| 1918 7078
Positives per frame 1.53 4.72
Detection n s f n s f
Aruco DM_NORMAL 1628 0.85 0 5961 0.84 0
Aruco DM_FAST 1703 0.89 0 5925 0.84 0
Aruco DM_VIDEO_FAST 1543 0.80 0 5883 0.83 0
Frappe NORMAL 1649 0.86 2 6364 0.90 2
Frappe ASCALE 1533 0.80 4 5782 0.82 3
Corner MAE (pixels) ē � ē �

Frappe NORMAL 0.108 0.26 0.105 0.37
Frappe ASCALE 0.164 0.26 0.098 0.54
Frame time (ms) x̄ � fps x̄ � fps
Aruco DM_NORMAL 64.3 9.3 15.6 90.8 32 11.0
Aruco DM_FAST 119 120 8.39 169 130 5.91
Aruco DM_VIDEO_FAST 116 120 8.65 164 130 6.11
Frappe NORMAL 13.1 2.3 76.3 18.8 4.0 53.1
Frappe ASCALE 10.6 4.3 94.2 14.3 6.3 69.8
Power (W) Pmax Pmax

Aruco DM_NORMAL 1.76 1.77
Aruco DM_FAST 1.85 1.87
Frappe NORMAL 2.08 2.00
Pidle (W) 1.19
Energy (mJ) epf � epf �

Aruco DM_NORMAL 101 11 142 48
Aruco DM_FAST 190 200 274 220
Frappe NORMAL 22.4 2.8 31.0 5.9
Net energy (mJ) Δepf � Δepf �

Aruco DM_NORMAL 32.0 3.2 43.8 13
Aruco DM_FAST 59.7 63 85.6 69
Frappe NORMAL 8.66 0.87 11.2 1.8
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frame results show very slow times for frames with no 
visible fiducials, we speculate because the detector in this 
mode tries up to three fixed thresholds per frame if there is 
no detection, costing more than the single adaptive thresh-
old of DM_NORMAL. Although maximum power usage for 
the ArUco modes is slightly lower, the speed of Frappe 
means that Frappe uses considerably less energy to perform 
detection, at an average of 31 mJ per frame for the Office 
sequence, it is less than a quarter of the best performing 
ArUco mode.

We now consider the real-time performance, which we 
define as frame processing time never exceeding the camera 
frame rate of 30 Hz. In Fig. 10 we show how the frame times 
vary over both sequences when running Frappe in NORMAL 
mode. In no case does the time per frame exceed 33 ms, 
meeting our aim of 30 Hz from four cameras at 640x480 
resolution. The QPU stages are almost constant time, and 
the VPU stages are a fairly small fraction. It is clear that the 
variation in frame times is dominated by CPU1, the contour 

Fig. 9  Detector speed of ArUco and Frappe over all modes

Fig. 10  Contribution of processing stages to frame times of Frappe 
in NORMAL mode. Below are sample frames from the Arena and 
Office sequences, with detected contours shown in cyan. QPU1: 
CANNY_SHI_TOMASI pass 1, QPU2: CANNY_SHI_TOMASI 
pass 2, VPU1: FIND_EMPTY_TILES, CPU1: TRACE_CONTOUR, 
CPU2: CORNER_REFINE, QPU3: PERSPECTIVE_WARP, VPU2: 

BINARISE_DECODE. The contour tracing stage is generally more 
expensive in the Office sequence, due to the more cluttered envi-
ronment having more edges to trace around. Processing in the QPU 
stages and first VPU stage is virtually constant, and VPU2 decode 
stage showing an increase with the dense set of fiducials in the first 
Office sample frame
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tracing stage, and the Office sequence spends much more 
time on this. Examination of intermediate outputs showed 
that this was mainly due to the Office environment having 
more clutter and high contrast edges. The data in Table 2 
show that running in Frappe ASCALE achieves better than 
60 Hz framerate, but this is an average—every fifth frame 
is forced to be processed at full resolution, giving the same 
frame times as shown in Fig. 10. Thus additional aggregate 
performance is available from this mode, provided the appli-
cation can handle this greater variation of individual frame 
processing times.

Although the implementation of Frappe described here 
has a fixed resolution of 640 × 480 pixels, there is no reason 
this could not be extended to other resolutions, limited by the 
maximum hardware texture size supported of 2048 × 2048 
pixels. Assuming constant pixel processing rate, XGA reso-
lution 1024 × 768 could be processed at 27 fps and HD reso-
lution 1920 × 1080 could be processed at 10 fps.

Also of interest in Fig. 10 is the fact that there is only a 
weak dependence of frame processing times on the num-
ber of fiducials. The worst case is Office, around frames 
300–450, where the camera calibration target is in frame, 
shown in the third image along the bottom. The 24 fiducials 
result in a visible increase in CPU2—CORNER_REFINE 
and VPU2— BINARISE_DECODE. Another observation 
are the occasional dips in frame time, with no CPU2, QPU3, 
or VPU2 usage, e.g around frame 550 in Arena. Examination 
of these frames show this was due to fast panning causing 
blurring, resulting in few edges that could be traced, and no 
good candidates for decode.

For the robot navigation task, Fig. 11 shows the success 
rate r for each grid starting point for ArUco and Frappe. 
The area covered where the r > 0.5 for ArUco is 0.43 m2 
(12%) vs Frappe at 1.52 m2 (43%), 3.5 times better. Frappe 

is clearly able to perceive fiducials from a further distance, 
likely due to the higher resolution of 640 × 480 vs 320 × 240 
pixels, but also increasing the frame rate will increase the 
likelihood of a good detection.

5  Conclusion

The Raspberry Pi Zero has capable but underused process-
ing ability which is of interest for low-cost edge computing 
and image processing applications. We demonstrate how 
this can be used to accelerate a common robotics vision 
task of recognising square fiducial markers, designing and 
implementing the Frappe algorithm to specifically target 
this processing ability. We show greatly improved speed 
over the standard ArUco library, running nearly five times 
faster on the same hardware, while using less than a quar-
ter of the energy per frame.

Integrating the Frappe detector into our DOTS robot, 
we apply this additional performance to enable the vision 
system collectively to process camera feeds at four times 
the resolution, and twice the framerate of the previous sys-
tem. This results in much better visual navigation abilities, 
with the robot able to perceive and navigate to targets over 
substantially greater distances.

There are several ways the algorithm and implementa-
tion could be improved which we intend to explore. Firstly, 
there is very little overlap of the use of the GPU hardware 
and the CPU. For example, pipelined operation could have 
the CPU performing the costly contour tracing of the cur-
rent frame while the QPU was working on initial process-
ing steps of the next frame. This would result in similar 
overall frame latency but support higher framerates. The 
current fixed resolution restriction could be removed. Con-
tour tracing could potentially be accelerated on the VPU as 
a parallel connected-component labelling operation [45]. 
Adding greater resilience to motion blur is an area we 
intend to explore.

We look forward to developing other applications, such 
as implementations of alternate fiducial tag systems, and 
even potentially some computationally efficient CNN 
models. We make this software freely available to spread 
knowledge of the potential of the Raspberry Pi Zero paral-
lel processing hardware and to encourage the use of this 
resource.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11554- 023- 01373-w.
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Fig. 11  Successful docking trials for different starting positions out 
of five attempts. Target is at location (0,0). Area from which docking 
attempt is likely successful is 3.5 times higher for the Frappe system 
(1.52m2 vs 0.43m2)
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as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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