
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2023) 20:119
https://doi.org/10.1007/s11554-023-01373-w

RESEARCH

Frappe: fast fiducial detection on low cost hardware

Simon Jones1  · Sabine Hauert1 

Received: 26 July 2023 / Accepted: 27 September 2023 / Published online: 24 October 2023
© The Author(s) 2023

Abstract
Square fiducial markers are widely used in robotics to easily obtain pose and other information about the world from camera
images. Processing the images to extract the markers is usually performed centrally with standard libraries but the code is
typically aimed at PC-level hardware. Platforms with constrained processing power have difficulty handling multiple camera
streams at real-time refresh rates. We introduce the Frappe (Fiducial Recognition Accelerated with Parallel Processing Ele-
ments) algorithm for detecting and decoding the popular ArUco tags. Designed to be implemented on the low cost hardware
of the Raspberry Pi Zero, we show tag detection and decoding on images of 640 × 480 resolution exceeding 60 Hz, five times
faster than the standard ArUco library, while maintaining similar detection performance and using much less energy. Using
Frappe, we demonstrate improved real-world performance on a visual navigation task with our DOTS robot.

Keywords  Image processing · Fiducial tags · Robot vision · Embedded processing · GPU acceleration

1  Introduction

Scaling up robot numbers in real-world environments
requires both lowering the cost of robots, and improving
their ability to perceive and interact with the world. One
approach uses cheap vision hardware and augments the envi-
ronment with markers. Square fiducial markers consisting
of a grid with a binary pattern are widely used in robotics
vision systems as a way of providing pose and navigation
information from a camera image feed without the complex-
ity and processing cost of full image comprehension tech-
niques such as Visual SLAM. The popular ArUco library
is widely used, but the processing cost is still significant in
resource constrained robot systems, limiting the resolution
and update rate that is possible, hindering the performance
of real-time robot navigation.

The Raspberry Pi series of educational Single Board
Computers (SBCs) has enabled many projects needing
a small, cheap computer running Linux. Well supported,
they have a camera interface supporting several models of

camera. A Raspberry Pi Zero and OV5241 camera module
can be purchased for around £16, providing 1080p60 stream-
ing video. What is not widely utilised is the surprisingly
capable Graphics Processing Unit (GPU) that all Pi models
have, with around 24 GFLOPs processing power.

We design an image processing algorithm, called Frappe,
Fiducial Recognition Accelerated with Parallel Process-
ing Elements, to use the Raspberry Pi (RPi) Zero GPU
for as much processing as possible. As proof-of-concept,
we implement Frappe on our swarm of DOTS [1] robots
designed for intralogistics applications. By re-engineering
the visual navigation system of the DOTS, enabling higher
detection frame-rates and resolutions than were previously
possible, we enhance performance at a visual navigation
task.

We make available an implementation of the algorithm
and a complete Docker-based development environment1.
This brings together the required specialised toolchains and
provides a virtual environment for compiling GPU appli-
cations targeting the Raspberry Pi Zero. We provide this
framework for others to make use of this underutilised pro-
cessing power for visual processing and other edge process-
ing applications.

This paper is organised as follows; Section 2 covers back-
ground and related material, Sect. 3 details the algorithm
and its implementation, Sect. 4 compares the performance

 *	 Simon Jones
	 simon2.jones@bristol.ac.uk

	 Sabine Hauert
	 sabine.hauert@bristol.ac.uk

1	 Department of Engineering Mathematics, University
of Bristol, Bristol, UK 1  https://​bitbu​cket.​org/​simon​j23/​frappe/​src/​master/.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-023-01373-w&domain=pdf
http://orcid.org/0000-0002-7184-8477
http://orcid.org/0000-0003-0341-7306
https://bitbucket.org/simonj23/frappe/src/master/

	 Journal of Real-Time Image Processing (2023) 20:119

1 3

119  Page 2 of 13

of Frappe and ArUco on Raspberry Pi Zero hardware, before
using Frappe in a larger robot system for enhanced perfor-
mance, and Sect. 5 concludes the paper.

2 � Background

Fiducial markers or tags are visually distinct objects placed
in the environment to convey information or position or
both. In robotics, what is often desired is to extract pose
and position from a camera feed, in this case the fiducial
must convey both accurate position and unique identity. The
most common form is a monochrome square region with
an internal bit pattern, an early system was ARToolKit [2],
widely used examples include AprilTag [3, 4], ARTag [5],
and ArUco, with [6] showing generation of dictionaries
with near-optimal intermarker distance, and [7] acceler-
ating detection. Circular forms are also common, such as
InterSense [8], STag [9], and CCTag [10]. CCTag is also
designed to be resistant to occlusion and motion blur. For
widely used square tags such as ArUco, AprilTag, and
ARTag, there has been work on blur resistant decoders with
conventional [11] and machine learning approaches [12,
13]. See [14] for a recent review and examination of the
comparative detection performance and resilience of some
different tag systems. Although not directly comparable with
our results, they show detection rates of 95% for ArUco in
their test data. They don’t directly report processing time,
but do say that 640x480 detection at 20 Hz on a Raspberry
Pi 3 was possible for ARTag and ArUco, but AprilTag was
too computationally intensive. Regarding the speed of vari-
ous detectors, [4] report AprilTag2 at 78 ms for a 640x480
image on an Intel Xeon E5-2640, [7] report ArUco at 0.9 ms
for 640x480 on an Intel Core i7-4700HQ.

This work specifically addresses accelerating ArUco
tag detection on low cost hardware, due to our exist-
ing systems and software using this tag. Figure 1 shows
an example ArUco fiducial from the standard dictionary
ARUCO_MIP_36h12, generated as described in [6]. It

shows the 8x8 region of a marker, consisting of an outer
perimeter of always black cells, with an inner 6x6 region
containing the data payload. Each of the 250 unique symbols
in the dictionary have a minimum Hamming distance of 12
from all other symbols, meaning that up to 6 erroneous bits
out of the 36 can be corrected (Fig. 2).

Our DOTS swarm robots [1], shown in Fig. 3, are
designed to enable research into swarm intralogistics. They
are low cost, capable of fast agile movement, able to carry
loads, and have a ROS2-based control system running on
RockPi 4 SBC. 250 mm in diameter, they are equipped with
four cameras for 360◦ vision. Although recent trends in robot
vision have moved towards high speed event cameras [15]
and deep learning, the cost and computational requirements
are still considerable, and way beyond our price point—we
attempt to maximise the capabilities of very cheap com-
modity consumer electronics. Hence each camera is a low
cost OV5241 module with a wide-angle lens attached to a
Raspberry Pi Zero (Fig. 2) and streams video to the central
RockPi 4 SBC, shown in Fig. 7. This architecture was cho-
sen based on both cost, and the possibility of performing
embedded image processing as described in this work.

Extracting real-time pose information from the camera
feeds using techniques such as Visual Simultaneous Locali-
sation and Mapping (SLAM) is computationally expensive,
running e.g. ORB-SLAM [16] or LSD-SLAM [17] is beyond

Fig. 1   Example of an ArUco
fiducial marker from the
ARUCO_MIP_36h12 diction-
ary, showing the full 8x8 region,
with the outer cells always
black, and the inner 6x6 36 bit
data payload

8x8 fiducial region

6x6 data payload

Fig. 2   Raspberry Pi Zero with attached camera, costing around £16
and capable of streaming up to 1080p60 video

Fig. 3   DOTS robot, fast moving and low cost with 360◦ vision, ena-
bling research into swarm intralogistics

Journal of Real-Time Image Processing (2023) 20:119	

1 3

Page 3 of 13  119

the reach of the computational ability of the DOTS, so we
use ArUco tags and library [7] for navigation and world
comprehension, chosen as the fastest available library. Even
so, processing four camera feeds on the central RockPi SBC
necessitated limiting the resolution to 320 × 240 and frame
rate to 15 Hz. In this work, we focus specifically on achiev-
ing a system capability of 640 × 480 pixels with a frame
rate of 30 Hz over all four cameras, an eight-fold increase in
the aggregate pixel processing rate, by delegating fiducial
recognition to the RPi Zeros.

The Raspberry Pi [18] series are small SBCs based on
Broadcom System-On-Chips (SoCs), initially aimed at edu-
cation. They have become immensely popular with mak-
ers, in education and academia, with hobbyists, and also in
industry, due to the low cost and good support, both from
the Raspberry Pi Foundation and from the large user com-
munity [19–25] . The support and longevity has meant that
a large ecosystem of peripherals and applications has grown
up around them. There are more powerful SBCs, but they are
often short-lived, with poor support from the manufactur-
ers. The RPi Zero, shown in Fig. 2, is of particular interest
to makers and roboticists because of its small form factor
and low cost.

The Broadcom SoC is typical of many that were aimed at
the mobile phone market, in that it includes a camera image
processing pipeline, and a OpenGLES2-compliant GPU. All
the Pi series except for the RPi 4 use the same processing
block; the VideoCore IV, or VC4. This contains two major
subsystems, the Vector Processing Unit (VPU); a dual core
vector processor for running system code and handling 2D
image and video data, and the GPU; 12 parallel Quad Pro-
cessing Units (QPU) and support blocks for handling 3D
rendering. Attached to the VC4 block are one or more ARM
CPUs, in the case of the RPi Zero a single ARM1176 core.
A simplified view of the architecture is shown in Fig. 4.

Although some documentation was released by Broad-
com [26], this only covered the QPUs of the 3D core. Since
then, much work has been done to reverse engineer details
of the VPU instruction set [27], and develop tools and appli-
cations; a QPU assembler [28], open source VPU firmware
[29], a port of the GCC compiler to the VPU [30], and
optimised FFT library GPU_LIB on the QPUs [31], a QPU
programming language QPULib [32], use of the QPUs for
basic image processing [33], and other information about the
hardware architecture [34, 35].

Despite this, there are few works within the formal lit-
erature making use of this processing power. The language
QPULib is used in [36] implement a simple convolution
and demonstrate 27x speedup and 35x less energy usage
compared to a CPU-only implementation, and in [37] to
implement part of a vision algorithm in the QPUs. The
performance trade-offs of running FFTs on the QPUs or

CPUs of a Raspberry Pi 3B for a cross-correlation task are
investigated in [38]. We can find no works using the VPU
at all, which motivates the design and implementation of
Frappe as a complete demonstration application, and the
making of this, and a collated set of development tools,
freely available.

3 � Materials and methods

The Frappe algorithm is relatively conventional in image
processing terms, but each part has been chosen such
that they can be optimised using the available process-
ing blocks of the VideoCore processor, if possible. The
principles underlying the optimisation are these: CPU pro-
cessing is relatively slow, and should be used only where
operations cannot be performed on the QPUs or the VPU,
and memory traffic should be minimised. We favour con-
stant-time operations wherever possible.

We now detail the GPU hardware and how it can be
used, then describe the algorithm and the specifics of
implementation on the RPi Zero.

3.1 � GPU hardware

The VPU is focussed mainly towards general purpose
and 2D image processing. It consists of two scalar cores,
a shared vector processing core, and two vector register

VC4

Slice 2

TMU0

QPU 0,0

QPU 0,1

QPU 0,2

QPU 0,3

TMU1

Slice 1

TMU0

QPU 0,0

QPU 0,1

QPU 0,2

QPU 0,3

TMU1

Slice 0

QPU 0,0

QPU 0,1

QPU 0,2

QPU 0,3TMU1

TMU0

Uniform
cache

QPU
Scheduler

VPU

VRF
64x64Bytes

L2 Cache 128KB
VPM 12KB

DMA

Mbox
ARM
CPU

QPU
FIFO

SDRAM

Fig. 4   Raspberry Pi CPU and VC4 subsystems. The ARM CPU on
the left communicates with the VPU via the mailbox interface and
with the QPUs via the QPU FIFO. The VPU and the 12 QPUs oper-
ate autonomously and in parallel with the CPU

	 Journal of Real-Time Image Processing (2023) 20:119

1 3

119  Page 4 of 13

files. In normal operation of the RPi, it is responsible for
booting the system from firmware, then starting the Linux
kernel on the ARM core. It is then responsible for provid-
ing services such as OpenGLES2, video codecs, camera,
and video composition. There is a documented2 mailbox
interface from the ARM CPU to the VPU firmware which
includes a method to directly execute user code on the
VPU.

The main power of the VPU comes from its vector core
and register files. Scalar and vector code can be freely inter-
mixed, the single vector core being transparently shared by
the two scalar cores. The vector core is a 16 lane SIMD,
with each lane being 32 bits, giving 16 operations per clock.
Operations are primarily integer. The Vector Register Files
(VRF) are 64 × 64 bytes and can be accessed in a flexible
2D fashion, with both horizontal and vertical slices of 8, 16,
and 32 bit words being unpacked and packed. Data can be
streamed into and out of the VRF at very high bandwidths,
reaching 70% of peak theoretical from SDRAM.3

The QPUs are focussed mainly on providing 3D graph-
ics. Each of the 12 QPUs is architecturally a 16 lane (4 lane
physical) dual-issue SIMD, with each lane 32 bits wide, with
64 registers, supporting 32 bit floating point and many pack
and unpack operand modes to facilitate e.g. 8-bit integer
to 32 bit floating point conversion. The QPUs are organ-
ised as three slices of four, with each slice sharing some
special purpose hardware. Maximum parallelism across the
QPUs is thus 96 operations per clock. Memory access on the
QPUs is suited to their intended purpose as GPU processing
engines. There are two Texture Memory Units (TMUs) per
slice, shared by four QPUs. These provide read-only access
to 2D texture buffers, with pixel interpolation and format
conversion. They also allow direct memory access of 16
arbitrary addresses per request from a QPU, with up to four
requests per QPU allowed in flight at any time. The Vertex
Pipe Memory (VPM), shared by all QPUs, is a 12 KByte
block of memory that has Direct Memory Access (DMA)
engines to read and write main memory. The QPU can
access sequential rows or columns of the VPM, but has no
direct access to main memory. A stream of uniforms, 32 bit
constants automatically fetched from memory, is available
to read from within a QPU program invocation. Programs
are executed by submitting program descriptors to the QPU
scheduler 16 entry queue, which allocates programs to the
next available QPU.

The RPi SoC has a unified memory architecture, meaning
both the CPU and GPU can see the same memory without
need to copy data from one to the other. In order to have
parts of the algorithm executing on different functional
blocks, we make use of kernel-supported4 zero-copy Vide-
oCore Shared Memory (VCSM) buffers. In this way, we can
freely access a memory buffer from both CPU and GPU with
zero copy cost, provided we pay attention to cache mainte-
nance issues.

In order to best achieve parallelism, any algorithm should
ensure that the 12 QPUs are each operating on different areas
of data simultaneously, and that processing of data overlaps
the storage of previous results and the loading of the next
inputs.

3.2 � Frappe algorithm

To detect square fiducials, we find contiguous borders that
have exactly four corners, perspective correct, extract and
binarise the information payload, then look up the value in a
dictionary of valid fiducials. The process we use is outlined
in Algorithm 1, along with functional unit and approximate
time percentage per algorithm step, and is illustrated in
Figs. 5, 6. Parameter values are shown in Table 1.

One of the insights of the ArUco paper [7] is that when
operating on video, frames are often similar, so if a large
fiducial was detected in one frame, later frames can be scaled
down for performance increases from processing fewer pix-
els while still being able to detect similarly sized fiducials. In
step 1, ADAPTIVE_SCALE, we look at the smallest fiducial
edge length lmin detected in the previous frame and use that
as the basis for setting the scale factor rscale = �∕lmin , where
� is the target size of the scaled fiducial in pixels. To handle
the situation where a smaller fiducial enters a frame already

Algorithm 1   Frappe

2  https://​github.​com/​raspb​errypi/​firmw​are/​wiki/​Mailb​ox-​prope​rty-​
inter​face.
3  LPDDR2 32 bit @450 MHz = 3.6 GB/s, VPU block read of 4
MBytes takes 1.65 ms = 2.5 GB/s.

4  Up until kernel 5.4.83.

https://github.com/raspberrypi/firmware/wiki/Mailbox-property-interface
https://github.com/raspberrypi/firmware/wiki/Mailbox-property-interface

Journal of Real-Time Image Processing (2023) 20:119	

1 3

Page 5 of 13  119

containing a larger one, we set a maximum number of scaled
down frames that can be processed contiguously nmax _scaled.

In step 2, CANNY_SHI_TOMASI, we scale down the
input image by rscale , and then perform Canny [39] edge
detection and Shi-Tomasi [40] corner detection. These
operations are performed as two passes with the QPUs
over the input image. Processing on the QPUs is organised
as follows, illustrated in Fig. 5: Each QPU is allocated 256
bytes of the VPM memory, corresponding to 64 pixels.
The output of a pass is organised as 64 × 32 pixel tiles,
each of which is processed by a single QPU program invo-
cation issued to the QPU scheduler in raster order. There
are a total of 150 tiles for a full 640 × 480 image, with each
invocation having associated uniforms specifying source
and destination buffer addresses and strides, and, for scal-
ing, fractional accumulation buffers and increments. The
tile size of 64 × 32 was chosen empirically for best per-
formance but represents the largest tile geometry possible
while ensuring the tile data for the 12 QPUs fits within the
128 KByte L2 cache.

Processing is performed on 16 pixel wide parallel
slices, with the pixels corresponding to the 3 × 3 neigh-
bourhood region ( 66 × 34 pixels in total) being fetched
from the TMU. The cost of fetches outside the boundary

of a tile are hidden by the L2 cache. Each 16 pixel result is
written to the VPM, after a complete tile row of 64 pixels
has been calculated, the VPM DMA is triggered to write
the data to main memory. TMU reads for future rows are
arranged to take place during computation of current rows
to minimises stalls.

Pass 1 fetches input pixels to the QPUs with locations
chosen to achieve the required scaling factor, no interpolation
is used, making scaling essentially a free operation.
Within a 3 × 3 window on the fetched pixel data, we apply the
Sobel [41] kernel in both x, and y directions to the image I to

obtain gradients and gradient angle: gx =
⎡⎢⎢⎣

1 0 − 1

2 0 − 2

1 0 − 1

⎤⎥⎥⎦
∗ I ,

gy =

⎡⎢⎢⎣

1 2 1

0 0 0

−1 − 2 − 1

⎤⎥⎥⎦
∗ I   , g =

√
g2
x
+ g2

y
  ,

� =
�

4
round

(
4

�
tan−1

gy

gx

)
 . The gradient angle � is discretised

into four possible directions (horizontal, vertical, 45◦ , 135◦ ) for
the edge-thinning stage of the Canny algorithm. gx,gy,g, and �
are output to memory as 8-bit components of 32-bit pixels.

Pass 2 performs the Canny edge-thinning using the gra-
dient angle to examine gradient magnitudes either side of
candidate edge pixels, suppressing all but the maximum.

r0c0 r0c1 r0c2 r0c3 r0c4
r1c1 r1c2 r1c3 r1c4r1c0

r2c0 r2c1 r2c2 r2c3 r2c4
0
1
2
3

28
29
30
31 Tile

0 16 32 48 63

Tile and register
arrangement

R
G
B
A

Pixel
neighbourhood

8 bit
components

32 bit
float

1st QPU pass
Sobel, gradient

magnitude, gradient
angle discretisation

2nd QPU pass
Canny edge maxima,

threshold

2nd QPU pass, only if edge:
Shi-Tomasi corner,

threshold

Intermediates
to main
memory

Final edge and
corner results

to memory

0,0 0,9

1,0

14,0 14,9

0
0

639

479

Image buffer tiles

Fig. 5   Data layout for QPU processing passes. Data is organised as
64x32 pixel tiles, operated on independently and in parallel by the
QPUs. Pass 1 fetches pixels, takes intensity information and produces

gradients and discretised gradient angles. Pass 2 completes the Canny
edge and Shi-Tomasi corner detector stages

	 Journal of Real-Time Image Processing (2023) 20:119

1 3

119  Page 6 of 13

This is thresholded using a single value, ethr , unlike the
original Canny two threshold approach, which would have
required another stage of processing. Provided this pixel
is an edge, we form the structure matrix A for Shi-Tomasi

corner detection A =

[
I2
x

IxIy
IxIx I2

y
,

]
 by multiplying gradients

appropriately then performing a box filter on the 3 × 3
neighbourhood, then we solve for the the smallest eigen-
va l u e �min  , w h i c h r e p r e s e n t s c o r n e r n e s s .
Let a =

A11

2
, b = A12, c =

A22

2
 , �min = a + c −

√
(a − c)2 + b2

This is also thresholded, with cthr . Edge and corner values
are output as 8-bit R and B components of 32-bit pixels,
with the G, and A components left at zero.

Step 3 of the algorithm, FIND_EMPTY_TILES, uses the
VPU to scan 16 × 16 blocks of pixels to see if they have any
edges in them and generate a mask. Empty blocks can then
be skipped by the contour tracing step. This is very well
suited to the VPU, costing about 1 ms to scan a complete
frame. The benefits are substantial, on a typical image we
save more than 5 ms in contour tracing.

Steps 4–9 generates candidate quadrilaterals by tracing
the contours in the image formed by edge pixels. This the
most processing-intensive part and cannot be easily per-
formed on the QPUs or the VPU. The image is scanned
raster-style (step 4), skipping empty blocks, and edges are
traced (step 5 TRACE_CONTOUR) with the Suzuki algo-
rithm [42] using a modified version of the OpenCV find-
Contour function. As each edge is followed we keep track
of the pixels on it that qualify as corners, typically between 1
and 4 pixels on an edge near a corner will have been marked
as such. If a traced edge forms a closed contour, we cluster
all corner pixels within Euclidean distance of 4 pixels of
each other and keep contours that have exactly four corner
clusters (step 6 GOOD_CANDIDATE).

Step 10, CORNER_REFINE uses the standard OpenCV
function cornerSubPix to refine the locations of candi-
date corners with subpixel accuracy. This has been shown
[43] to give accurate corner locations to around 0.17 pix-
els. Corners are also sorted to ensure they have a consistent
clockwise winding order.

Then in step 11 candidate quadrilaterals undergo
PERSPECTIVE_WARP to remove the effect of perspective
on potential fiducials and turn each into a square 16 × 16
pixel region to attempt decoding. For each candidate, we use
OpenCV getPerspectiveTransform to obtain the
perspective correction matrix from the refined corner coor-
dinates, then use one QPU invocation per candidate to apply
the matrix giving 256 sample points. These are fetched from
the original input image using the TPUs to give hardware
accelerated bilinear pixel interpolation for the warping pro-
cess. Interpolated regions are written to a fixed target buffer
of 128 × 64 pixels, sufficient for 32 post-warp candidates.

Finally at step 12, BINARISE_DECODE, we use the
VPU to binarise each candidate by taking the minimum and
maximum pixel values pmin, pmax within the 6x6 informa-
tion bearing region of the fiducial, corresponding to pixel
locations x, y ∈ {2..13} , and establishing a threshold of
pthr = pmin +

1

2
(pmax − pmin) . The 2x2 pixel region of each

4 0 >5 >5 >50 0
104 0 11 10Invalid Invalid Invalid

E
F

A

B

C

D

G

Fig. 6   Illustration of the stages of processing. A Input image after
edge (grey) and corner (black) detection. B Good candidates after
contour tracing. C Perspective warping into 16x16 pixel regions. D
Binarisation for decoding. E Hamming distance from a valid symbol.
F Decoded ID of symbol if valid. G Annotated input

Table 1   Frappe algorithm parameter values

Parameter Symbol Value

Edge threshold ethr 0.27
Corner threshold cthr 0.19
Maximum error correction hthr 5 bits
Scaled fiducial size � 28 pixels
Maximum scaled frames nmax _scaled 5

Journal of Real-Time Image Processing (2023) 20:119	

1 3

Page 7 of 13  119

fiducial bit is averaged and the threshold applied to give a
binary string. This simple approach proved just as effec-
tive as Otsu’s method [44] and faster. Each binary string
is manipulated to give four variants for the four possible
rotational orientations, and these are checked for Hamming
distance against the dictionary of valid symbols. The symbol
in the dictionary with the lowest Hamming distance that is
at or below the threshold value hthr is regarded as a correctly
decoded symbol.

Parameter values, shown in Table 1, were chosen empiri-
cally across different source material. The edge, corner, and
error correction thresholds apply to both operating modes.
Edge threshold ethr represents a trade-off between speed
and sensitivity since edge-tracing is the most expensive
single part of the algorithm. It was chosen such that sen-
sitivity was broadly similar to the ArUco library. Corner
threshold cthr was rather insensitive and placed mid way
between values where detection reliability fell. Given the
inter-symbol minimum Hamming distance of 12 bits of the
ARUCO_MIP_36h12 dictionary, we chose a correction
threshold of hthr = 5 bits to maximise sensitivity while still
providing some buffer against wrong symbol identification.
Relevant only for mode ASCALE, the scaled fiducial size
� at 28 pixels represents the minimum fiducial size that
could reliably be detected, and nmax _scaled = 5 a compromise
between responsiveness to changes in scene and framerate
gain.

Implementation of the algorithm was in C++ for the main
code running on the CPU, with QPU code written in assem-
bly and hand-optimised, and VPU code a combination of
C++ and hand-optimised assembly. Optimisation was aided
by the use of hardware performance counters detailed in [26]
to find data starvation issues. Classes were implemented to
encapsulate zero-copy buffers and pass these between CPU,
QPU, and VPU parts of the implementation. The detector
code was compiled to a library to be linked against appli-
cations. We also packaged a complete fiducial detection
application using the Frappe library together with a minimal
Linux to enable booting of the RPI Zero over USB without
the need for an SD card.

3.3 � Development environment

Developing the Frappe algorithm for the RPi Zero requires
the VC4 GCC toolchain [30], the VC4 QPU assembler
[28], and the OpenCV libraries compiled from source with
appropriate optimisations for the ARM1176 CPU. Given
the low performance of the CPU, and the limited amount
of RAM (512 Kbytes), compiling directly on the RPi Zero
is extremely slow. We created a Docker-based development
environment, which we make freely available for use, with
all the necessary cross compilers, QPU assembler, and build

scripts. This allows the full power of a host PC to be used to
cross compile and link code ready-to-run on the target RPi
Zero far faster than possible natively.

The full source of the Frappe library, together with sim-
ple applications for performance measurement and head-
less streaming of camera images with detected fiducials
are included within this environment to provide concrete
examples for others who wanting to make use of the parallel
processing abilities of the RPi Zero for other image process-
ing or edge applications.

3.4 � Test methodology

The aim of developing the Frappe algorithm was to improve
the visual navigation capabilities of our DOTS robots, which
requires real-time pose information. We performed two sets
of evaluations. Firstly we measured the standalone algo-
rithm speed, accuracy, and energy efficiency compared to
ArUco when running on the same hardware, by using two
recorded video sequences on a Raspberry Pi Zero. Secondly,
we looked at robot system performance, comparing the
original ArUco-based DOTS visual navigation system with
a re-engineered Frappe-based version, delegating fiducial
detection to the four camera RPi Zeros. We use a task rel-
evant to intralogistics applications whereby a robot is placed
at multiple starting locations in an arena and has to find,
navigate to, then accurately manoeuvre under a cargo carrier.

3.5 � Algorithm performance

Two sets of video footage were used. The first, Office, was
recorded using a mobile phone in an office environment
under varying lighting conditions with fiducials attached to
the walls around the space. Also attached to one wall was
the complete ArUco camera calibration target, providing a
dense set of 24 fiducials. The second, Arena, was recorded
from a camera on one of our DOTS robots while it was mov-
ing around within a purpose-built arena, within which large
(225 mm) fiducials were attached to the walls, and small (45
mm) fiducials were attached to the four sides of cargo carri-
ers. Each sequence was scaled to 640x480 pixels resolution
and was run with each detector under varying parameters on
an RPi Zero. We used ArUco version 3.1.15 and OpenCV
version 4.5.2, in both cases compiled specifically for the RPi
Zero with appropriate optimisations. Fiducials used were
from the standard recommended ArUco fiducial diction-
ary ARUCO_MIP_36h12, which has 250 unique symbols
encoded on a 6x6 grid within an 8x8 area, with a minimum
Hamming distance of 12 bits between each symbol.

The standard ArUco library offers three modes of opera-
tion; DM_NORMAL, with adaptive thresholding, DM_FAST,
with fixed thresholding, and DM_VIDEO_FAST, with fixed
thresholding and adaptive input scaling. Parameters were left

	 Journal of Real-Time Image Processing (2023) 20:119

1 3

119  Page 8 of 13

at their default values except for the Hamming error correc-
tion rate, which we set to 0.42 in order to achieve a maximum
of 5 bits of error correction for the ARUCO_MIP_36h12
dictionary. We operate the Frappe algorithm in two regimes;
NORMAL, with no scaling, and ASCALE, with adaptive input
scaling based on previous frames. Hamming correction was
set to a maximum of 5 bits.

For speed, we measure the time taken t to process each
frame of video across both detectors in all modes, using
an RPi Zero. We define the sensitivity s of a detector as
the proportion of all true positive detections Dtextall . Since
we have no ground truth, we assume a similar detection
by both Frappe and ArUco is a true positive, then verify
the small number of non-intersecting fiducial detections in
each sequence for correctness by hand. To examine corner
accuracy we look at how our detector differs from ArUco
with the set of all intersecting detections and find the Mean
Absolute Error (MAE) ē for the corner locations in pixels.

To characterise the energy efficiency of the algorithm,
we use two metrics, the total energy used to process each
frame epf, and the energy used for each frame in excess of
the idle energy use Δepf  . The RPi Zero was allowed to boot
and reach steady state with no applications running and aver-
age power consumption Pidle measured over a 60 s period.
Every tenth frame of each sequence was loaded and each
decoder run continuously on the frame while average power
Pprocess was measured over a 2 s period. During this period,
the average frame time tframe was also measured to give
epf = Pprocess ⋅ tframe , and Δepf = (Pprocess − Pidle) ⋅ tframe . The
maximum power consumption Pmax of each sequence was
also recorded. Only non-video modes (ArUco DM_NORMAL,
DM_FAST, and Frappe NORMAL), representing the worst
case processing load, were tested since we are presenting
the same frame repeatedly.

3.6 � System performance

The original DOTS visual system is detailed on the left in Fig-
ure 7. Each camera feed is compressed to MJPEG by its RPi
Zero and sent to the RockPi 4 over USB for processing, where
it is decompressed and ArUco tag recognition performed. The
corner locations of each tag, together with their known size and
the camera intrinsic parameters are used to estimate the relative
pose between camera and tag, made available to the ROS trans-
form tree for navigation. Transforms are acquired continuously.
The Frappe version of the system extracts the corner locations
and IDs of fiducials on the RPi Zeros and sends this information
directly to the pose extraction step. The same camera calibra-
tion intrinsics are used in both cases.

The navigation task, illustrated in Fig. 8, is for a robot
in multiple possible starting positions (1), to locate the car-
rier fiducial, move to a predock location (2) in front of the

fiducial, pausing to capture more accurate pose information,
then move accurately to the dock location under the carrier
(3). Docking is successful if the robot stops within 50 mm
of the correct location.

Each move is only possible if there is a valid transform,
i.e. a carrier tag has been recognised. The carrier is located
with its fiducial at arena location (0, 0). The robot is auto-
matically placed at starting poses on a 0.1m grid in range
x ∈ {0.35, 0.45.., 1.95} , y ∈ {−1.0,−0.9, .., 1.0} facing in the
−x direction and attempts the task. Ground truth feedback
from an Optitrack motion capture system is used to navigate
to the starting point, then the navigation task is completed

RPI0 RPI0 RPI0 RPI0

USB

MJPEG MJPEG MJPEG MJPEG

MJPEG MJPEG MJPEG MJPEG

ArUco

Pose extraction

RPI0 RPI0 RPI0 RPI0

USB

Frappe

Pose extraction

Frappe Frappe Frappe

RockPi 4 RockPi 4

Fig. 7   DOTS vision system with four cameras. Left: original system
with video compressed and streamed over USB to the central SBC for
decompression and ArUco library detection. Right: New system with
Frappe detection running locally on Raspberry Pi Zeros and fiducial
positions streamed over USB

1. Start
position

2. Predock

3. Dock

Fig. 8   System test. Robot starts from many different starting positions
and must successfully navigate under the carrier using information
from the vision system

Journal of Real-Time Image Processing (2023) 20:119	

1 3

Page 9 of 13  119

entirely using pose information from the visual system and
odometry. There are a total of 357 grid points, covering a
floor area of 3.57 m2 . Each starting grid point is tested at
least 5 times for both ArUco and Frappe, giving a success
rate r for each point.

4 � Results and discussion

Table 2 shows that the detection sensitivity of Frappe
is very similar to that of ArUco, differing by only a few
percent. Frappe NORMAL mode is slightly better on the
Office sequence but slightly worse on Arena than ArUco.
Frappe ASCALE mode is substantially the same detection

performance as ArUco DM_VIDEO_FAST. For both detec-
tors, the adaptive scaling modes are slightly worse than
the static modes. False positive detections were very low;
zero for all ArUco modes, and a maximum of 4 for Frappe
ASCALE on Arena. Corner accuracy MAE is less than 0.16
pixels in all cases, which is what we would expect from the
results in [43]. It is important to note that we are looking at
the differences between the detectors, rather than assuming
that one is ‘correct’; both ArUco and Frappe use OpenCV
cornerSubPix to perform the position refinement.

In all cases, Frappe is substantially faster than ArUco,
with the slowest Frappe mode 4.8x faster than the fastest
ArUco mode (Fig. 9). The ArUco DM_FAST modes are
slower than DM_NORMAL mode. Examining individual

Table 2   Performance on two
video sequences, best results
bold

n number of detections, s sensitivity, f false positives, ē corner Mean Absolute Error (MAE), x̄ frame time,
Pmax worst case power consumption, epf energy usage per frame, Δepf energy usage per frame in excess of
idle

Sequence Arena Office

Information

nframes 1252 1499
True positives |Dall| 1918 7078
Positives per frame 1.53 4.72
Detection n s f n s f
Aruco DM_NORMAL 1628 0.85 0 5961 0.84 0
Aruco DM_FAST 1703 0.89 0 5925 0.84 0
Aruco DM_VIDEO_FAST 1543 0.80 0 5883 0.83 0
Frappe NORMAL 1649 0.86 2 6364 0.90 2
Frappe ASCALE 1533 0.80 4 5782 0.82 3
Corner MAE (pixels) ē � ē �

Frappe NORMAL 0.108 0.26 0.105 0.37
Frappe ASCALE 0.164 0.26 0.098 0.54
Frame time (ms) x̄ � fps x̄ � fps
Aruco DM_NORMAL 64.3 9.3 15.6 90.8 32 11.0
Aruco DM_FAST 119 120 8.39 169 130 5.91
Aruco DM_VIDEO_FAST 116 120 8.65 164 130 6.11
Frappe NORMAL 13.1 2.3 76.3 18.8 4.0 53.1
Frappe ASCALE 10.6 4.3 94.2 14.3 6.3 69.8
Power (W) Pmax Pmax

Aruco DM_NORMAL 1.76 1.77
Aruco DM_FAST 1.85 1.87
Frappe NORMAL 2.08 2.00
Pidle (W) 1.19
Energy (mJ) epf � epf �

Aruco DM_NORMAL 101 11 142 48
Aruco DM_FAST 190 200 274 220
Frappe NORMAL 22.4 2.8 31.0 5.9
Net energy (mJ) Δepf � Δepf �

Aruco DM_NORMAL 32.0 3.2 43.8 13
Aruco DM_FAST 59.7 63 85.6 69
Frappe NORMAL 8.66 0.87 11.2 1.8

	 Journal of Real-Time Image Processing (2023) 20:119

1 3

119  Page 10 of 13

frame results show very slow times for frames with no
visible fiducials, we speculate because the detector in this
mode tries up to three fixed thresholds per frame if there is
no detection, costing more than the single adaptive thresh-
old of DM_NORMAL. Although maximum power usage for
the ArUco modes is slightly lower, the speed of Frappe
means that Frappe uses considerably less energy to perform
detection, at an average of 31 mJ per frame for the Office
sequence, it is less than a quarter of the best performing
ArUco mode.

We now consider the real-time performance, which we
define as frame processing time never exceeding the camera
frame rate of 30 Hz. In Fig. 10 we show how the frame times
vary over both sequences when running Frappe in NORMAL
mode. In no case does the time per frame exceed 33 ms,
meeting our aim of 30 Hz from four cameras at 640x480
resolution. The QPU stages are almost constant time, and
the VPU stages are a fairly small fraction. It is clear that the
variation in frame times is dominated by CPU1, the contour

Fig. 9   Detector speed of ArUco and Frappe over all modes

Fig. 10   Contribution of processing stages to frame times of Frappe
in NORMAL mode. Below are sample frames from the Arena and
Office sequences, with detected contours shown in cyan. QPU1:
CANNY_SHI_TOMASI pass 1, QPU2: CANNY_SHI_TOMASI
pass 2, VPU1: FIND_EMPTY_TILES, CPU1: TRACE_CONTOUR,
CPU2: CORNER_REFINE, QPU3: PERSPECTIVE_WARP, VPU2:

BINARISE_DECODE. The contour tracing stage is generally more
expensive in the Office sequence, due to the more cluttered envi-
ronment having more edges to trace around. Processing in the QPU
stages and first VPU stage is virtually constant, and VPU2 decode
stage showing an increase with the dense set of fiducials in the first
Office sample frame

Journal of Real-Time Image Processing (2023) 20:119	

1 3

Page 11 of 13  119

tracing stage, and the Office sequence spends much more
time on this. Examination of intermediate outputs showed
that this was mainly due to the Office environment having
more clutter and high contrast edges. The data in Table 2
show that running in Frappe ASCALE achieves better than
60 Hz framerate, but this is an average—every fifth frame
is forced to be processed at full resolution, giving the same
frame times as shown in Fig. 10. Thus additional aggregate
performance is available from this mode, provided the appli-
cation can handle this greater variation of individual frame
processing times.

Although the implementation of Frappe described here
has a fixed resolution of 640 × 480 pixels, there is no reason
this could not be extended to other resolutions, limited by the
maximum hardware texture size supported of 2048 × 2048
pixels. Assuming constant pixel processing rate, XGA reso-
lution 1024 × 768 could be processed at 27 fps and HD reso-
lution 1920 × 1080 could be processed at 10 fps.

Also of interest in Fig. 10 is the fact that there is only a
weak dependence of frame processing times on the num-
ber of fiducials. The worst case is Office, around frames
300–450, where the camera calibration target is in frame,
shown in the third image along the bottom. The 24 fiducials
result in a visible increase in CPU2—CORNER_REFINE
and VPU2— BINARISE_DECODE. Another observation
are the occasional dips in frame time, with no CPU2, QPU3,
or VPU2 usage, e.g around frame 550 in Arena. Examination
of these frames show this was due to fast panning causing
blurring, resulting in few edges that could be traced, and no
good candidates for decode.

For the robot navigation task, Fig. 11 shows the success
rate r for each grid starting point for ArUco and Frappe.
The area covered where the r > 0.5 for ArUco is 0.43 m2
(12%) vs Frappe at 1.52 m2 (43%), 3.5 times better. Frappe

is clearly able to perceive fiducials from a further distance,
likely due to the higher resolution of 640 × 480 vs 320 × 240
pixels, but also increasing the frame rate will increase the
likelihood of a good detection.

5 � Conclusion

The Raspberry Pi Zero has capable but underused process-
ing ability which is of interest for low-cost edge computing
and image processing applications. We demonstrate how
this can be used to accelerate a common robotics vision
task of recognising square fiducial markers, designing and
implementing the Frappe algorithm to specifically target
this processing ability. We show greatly improved speed
over the standard ArUco library, running nearly five times
faster on the same hardware, while using less than a quar-
ter of the energy per frame.

Integrating the Frappe detector into our DOTS robot,
we apply this additional performance to enable the vision
system collectively to process camera feeds at four times
the resolution, and twice the framerate of the previous sys-
tem. This results in much better visual navigation abilities,
with the robot able to perceive and navigate to targets over
substantially greater distances.

There are several ways the algorithm and implementa-
tion could be improved which we intend to explore. Firstly,
there is very little overlap of the use of the GPU hardware
and the CPU. For example, pipelined operation could have
the CPU performing the costly contour tracing of the cur-
rent frame while the QPU was working on initial process-
ing steps of the next frame. This would result in similar
overall frame latency but support higher framerates. The
current fixed resolution restriction could be removed. Con-
tour tracing could potentially be accelerated on the VPU as
a parallel connected-component labelling operation [45].
Adding greater resilience to motion blur is an area we
intend to explore.

We look forward to developing other applications, such
as implementations of alternate fiducial tag systems, and
even potentially some computationally efficient CNN
models. We make this software freely available to spread
knowledge of the potential of the Raspberry Pi Zero paral-
lel processing hardware and to encourage the use of this
resource.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s11554-​023-​01373-w.

Acknowledgements  SJ and SH are funded by UKRI Grant 10038942
and EU Grant 101070918.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long

Fig. 11   Successful docking trials for different starting positions out
of five attempts. Target is at location (0,0). Area from which docking
attempt is likely successful is 3.5 times higher for the Frappe system
(1.52m2 vs 0.43m2)

https://doi.org/10.1007/s11554-023-01373-w

	 Journal of Real-Time Image Processing (2023) 20:119

1 3

119  Page 12 of 13

as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Jones, S., Milner, E., Sooriyabandara, M. and Hauert, S.: DOTS:
An Open Testbed for Industrial Swarm Robotic Solutions. 2022.
https://​arxiv.​org/​abs/​2203.​13809

	 2.	 Kato, H. and Billinghurst, M.: Marker tracking and HMD calibra-
tion for a video-based augmented reality conferencing system.
In: Proceedings 2nd IEEE and ACM International Workshop on
Augmented Reality (IWAR’99). IEEE, pp. 85–94 (1999)

	 3.	 Olson, E.: AprilTag: a robust and flexible visual fiducial system.
IEEE Int. Conf. Robot. Autom. 2011, 3400–3407 (2011)

	 4.	 Wang, J. and Olson, E.: AprilTag 2: efficient and robust fiducial
detection. In: 2016 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS). IEEE, pp. 4193–4198 (2016)

	 5.	 Fiala, M.: ARTag, a fiducial marker system using digital tech-
niques. In: 2005 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR’05), vol. 2. IEEE,
pp. 590–596 (2005)

	 6.	 Garrido-Jurado, S., Munoz-Salinas, R., Madrid-Cuevas, F.J.,
Marin-Jimenez, M.J.: Automatic generation and detection of
highly reliable fiducial markers under occlusion. Pattern Recogn.
47(6), 2280–2292 (2014)

	 7.	 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.:
Speeded up detection of squared fiducial markers. Image Vis.
Comput. 76, 38–47 (2018)

	 8.	 Naimark, L. and Foxlin, E.: Circular data matrix fiducial system
and robust image processing for a wearable vision-inertial self-
tracker. In: Proceedings. International Symposium on Mixed and
Augmented Reality. IEEE, pp. 27–36 (2002)

	 9.	 Benligiray, B., Topal, C., Akinlar, C.: STag: a stable fiducial
marker system. Image Vis. Comput. 89, 158–169 (2019)

	10.	 Calvet, L., Gurdjos, P., Griwodz, C. and Gasparini, S.: Detection
and accurate localization of circular fiducials under highly chal-
lenging conditions. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 562–570 (2016)

	11.	 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.:
Tracking fiducial markers with discriminative correlation filters.
Image Vis. Comput. 107, 104094 (2021)

	12.	 Li, B., Wu, J., Tan, X., and Wang, B.: Aruco marker detection
under occlusion using convolutional neural network. In: 2020 5th
International Conference on Automation, Control and Robotics
Engineering (CACRE). IEEE, pp. 706–711 (2020)

	13.	 Mondéjar-Guerra, V., Garrido-Jurado, S., Muñoz-Salinas, R.,
Marín-Jiménez, M.J., Medina-Carnicer, R.: Robust identification
of fiducial markers in challenging conditions. Expert Syst. Appl.
93, 336–345 (2018)

	14.	 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead,
C., Vitzilaios, N.: Fiducial markers for pose estimation. J. Intell.
Robot. Syst. 101(4), 1–26 (2021)

	15.	 Gallego, G., Delbrück, T., Orchard, G., Bartolozzi, C., Taba, B.,
Censi, A., Leutenegger, S., Davison, A.J., Conradt, J., Daniilidis,

K., et al.: Event-based vision: a survey. IEEE Trans. Pattern Anal.
Mach. Intell. 44(1), 154–180 (2020)

	16.	 Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a ver-
satile and accurate monocular SLAM system. IEEE Trans. Robot.
31(5), 1147–1163 (2015)

	17.	 Engel, J., Schöps, T. and Cremers, D.: LSD-SLAM: large-scale
direct monocular SLAM. In: European conference on computer
vision. Springer, pp. 834–849 (2014)

	18.	 Severance, C.: Eben upton: raspberry Pi. Computer 46(10), 14–16
(2013)

	19.	 Parham, K.E., Ferri, A.M., Fan, S., Murray, M.P., Lahr, R.A.,
Grguric, E., Swamiraj, M., Meyers, E.: Critical making with a
raspberry Pi—towards a conceptualization of librarians as makers.
Proc. Am. Soc. Inf. Sci. Technol. 51(1), 1–4 (2014)

	20.	 Jolles, J.W.: Broad-scale applications of the Raspberry Pi: a
review and guide for biologists. Methods Ecol. Evolut. 12(9),
1562–1579 (2021)

	21.	 Taheri Tajar, A., Ramazani, A., Mansoorizadeh, M.: A lightweight
Tiny-YOLOv3 vehicle detection approach. J. Real-Time Image
Process. 18(6), 2389–2401 (2021)

	22.	 Rubino, E.M., Álvares, A.J., Marín, R., Sanz, P.J.: Real-time rate
distortion-optimized image compression with region of interest
on the arm architecture for underwater robotics applications. J.
Real-Time Image Process. 16, 193–225 (2019)

	23.	 Paull, L., Tani, J., Ahn, H., Alonso-Mora, J., Carlone, L., Cap, M.,
Chen, Y.F., Choi, C., Dusek, J., Fang, Y. et al.: Duckietown: an
open, inexpensive and flexible platform for autonomy education
and research. In: 2017 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, pp. 1497–1504 (2017)

	24.	 Millard, A.G., Joyce, R.A., Hilder, J.A., Fleseriu, C., Newbrook,
L., Li, W., McDaid, L. and Halliday, D.M.: The Pi-puck extension
board: a Raspberry Pi interface for the e-puck robot platform.
In: Maciejewski, T., (ed.) IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2017), Vancouver, Canada:
IEEE (2017)

	25.	 Alhafnawi, M., Hunt, E.R., Lemaignan, S., O’Dowd, P. and
Hauert, S.: MOSAIX: a swarm of robot tiles for social human-
Swarm interaction. In: 2022 International Conference on Robotics
and Automation (ICRA). IEEE, pp. 6882–6888 (2022)

	26.	 Broadcom, VideoCore IV 3D Architecture Reference Manual,
Broadcom, 2013. [Online]. Available: https://​docs.​broad​com.​
com/​doc/​12358​545

	27.	 Hermitage; H., et al.: VideoCore IV Programmers Manual, 2012.
Available: https://​github.​com/​herma​nherm​itage/​video​coreiv/​wiki/​
Video​Core-​IV-​Progr​ammers-​Manual

	28.	 Müller, M.: vc4asm - Macro assembler for Broadcom VideoCore
IV. 2014. . Available: https://​github.​com/​maazl/​vc4asm

	29.	 Brooks, K.: Minimal Raspberry Pi VPU firmware. 2016. Avail-
able: https://​github.​com/​chris​tinaa/​rpi-​open-​firmw​are

	30.	 Brown, J.: VC4 GCC toolchain. 2016. Available: https://​github.​
com/​itszor/​vc4-​toolc​hain

	31.	 Holme, A.: GPU FFT. 2014. Available: http://​www.​aholme.​co.​uk/​
GPU_​FFT/​Main.​htm

	32.	 ‘mn416’ and Rijnders, V.: QPULib. 2016. Available: https://​
github.​com/​mn416/​QPULib

	33.	 Seneral. VideoCore IV Computer Vision framework. 2020. Avail-
able: https://​github.​com/​Sener​al/​VC4CV

	34.	 “VC4 caches,” 2019. Available: https://​forums.​raspb​errypi.​com/​
viewt​opic.​php?​ t=​234167#​p1432​851

	35.	 “VPU information,” 2020. Available: https://​forums.​raspb​errypi.​
com/​viewt​opic.​php?​ t=​287399#​p1738​410

	36.	 Polat, A., Bayar, S.: A fast and energy efficient parallel image
filtering implementation on Raspberry Pi’s GPU. Eur. J. Tech.
(EJT) 10(2), 322–330 (2020)

	37.	 Li, Y., Huang, D., Huang, S., Huang, S., Li, Y., Zhou, X., et al.:
Sub-pixel gear parameter measurement based on Zemike moment.

http://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2203.13809
https://docs.broadcom.com/doc/12358545
https://docs.broadcom.com/doc/12358545
https://github.com/hermanhermitage/videocoreiv/wiki/%20VideoCore-IV-Programmers-Manual
https://github.com/hermanhermitage/videocoreiv/wiki/%20VideoCore-IV-Programmers-Manual
https://github.com/maazl/vc4asm
https://github.com/christinaa/rpi-open-firmware
https://github.com/itszor/vc4-toolchain
https://github.com/itszor/vc4-toolchain
http://www.aholme.co.uk/GPU_FFT/Main.htm
http://www.aholme.co.uk/GPU_FFT/Main.htm
https://github.com/mn416/QPULib
https://github.com/mn416/QPULib
https://github.com/Seneral/VC4CV
https://forums.raspberrypi.com/viewtopic.php?%20t=234167#p1432851
https://forums.raspberrypi.com/viewtopic.php?%20t=234167#p1432851
https://forums.raspberrypi.com/viewtopic.php?%20t=287399#p1738410
https://forums.raspberrypi.com/viewtopic.php?%20t=287399#p1738410

Journal of Real-Time Image Processing (2023) 20:119	

1 3

Page 13 of 13  119

In: 2019 IEEE International Conference on Mechatronics and
Automation (ICMA). IEEE, pp. 2336–2341 (2019)

	38.	 Faerman, V., Shvetsov, M., and Tsavnin, A.: Computations of
cross-correlation functions on a single board Raspberry Pi com-
puter. In: Journal of Physics: Conference Series, vol. 1615, no. 1.
IOP Publishing, p. 012004 (2020)

	39.	 Canny, J.: A computational approach to edge detection. IEEE
Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)

	40.	 Shi, C., Jianbo; Tomasi. Good Features to Track. In: 1994 Pro-
ceedings of IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, pp. 593–600 (1994)

	41.	 Sobel, I. and Feldman, G.: An Isotropic 3x3 Image Gradient
Operator,” Stanford AI Project (1968)

	42.	 Suzuki, S., et al.: Topological structural analysis of digitized
binary images by border following. Comput. Vis. Graph. Image
Process. 30(1), 32–46 (1985)

	43.	 Kallwies, J., Forkel, B., and Wuensche, H.-J.: Determining and
improving the localization accuracy of AprilTag detection. In:
2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, pp. 8288–8294 (2020)

	44.	 Otsu, N.: A threshold selection method from Gray-level histo-
grams. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

	45.	 He, L., Ren, X., Gao, Q., Zhao, X., Yao, B., Chao, Y.: The con-
nected-component labeling problem: a review of state-of-the-art
algorithms. Pattern Recogn. 70, 25–43 (2017)

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Frappe: fast fiducial detection on low cost hardware
	Abstract
	1 Introduction
	2 Background
	3 Materials and methods
	3.1 GPU hardware
	3.2 Frappe algorithm
	3.3 Development environment
	3.4 Test methodology
	3.5 Algorithm performance
	3.6 System performance

	4 Results and discussion
	5 Conclusion
	Anchor 14
	Acknowledgements
	References

