
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2023) 20:120
https://doi.org/10.1007/s11554-023-01376-7

RESEARCH

Performance analysis of optimized versatile video coding software
decoders on embedded platforms

Anup Saha1  · Wassim Hamidouche2,3  · Miguel Chavarrías1  · Fernando Pescador1  · Ibrahim Farhat2 

Received: 9 May 2023 / Accepted: 4 October 2023 / Published online: 31 October 2023
© The Author(s) 2023

Abstract
In recent years, the global demand for high-resolution videos and the emergence of new multimedia applications have created
the need for a new video coding standard. Therefore, in July 2020, the versatile video coding (VVC) standard was released,
providing up to 50% bit-rate savings for the same video quality compared to its predecessor high-efficiency video coding
(HEVC). However, these bit-rate savings come at the cost of high computational complexity, particularly for live applica-
tions and on resource-constrained embedded devices. This paper evaluates two optimized VVC software decoders, named
OpenVVC and Versatile Video deCoder (VVdeC), designed for low resources platforms. These decoders exploit optimization
techniques such as data-level parallelism using single instruction multiple data (SIMD) instructions and functional-level
parallelism using frame, tile, and slice-based parallelisms. Furthermore, a comparison of decoding runtime, energy, and
memory consumption between the two decoders is presented while targeting two different resource-constraint embedded
devices. The results showed that both decoders achieve real-time decoding of full high-definition (FHD) resolution on the
first platform using 8 cores and high-definition (HD) real-time decoding for the second platform using only 4 cores with
comparable results in terms of the average energy consumed: around 26 J and 15 J for the 8 cores and 4 cores platforms,
respectively. Furthermore, OpenVVC showed better results regarding memory usage with a lower average maximum memory
consumed during runtime than VVdeC.

1  Introduction

A new era of information and communication technologies
is emerging, where video communication plays an essential
role in internet traffic. In particular, the significant increase
in video traffic, supported by emerging video formats and
applications, has led to the development of a new video cod-
ing standard named versatile video coding (VVC)/H.266.
The latter was standardized in July 2020 by the Joint Video
Experts Team (JVET) of the ITU-T Video Coding Experts
Group (VCEG) and the Motion Picture Experts Group
(MPEG) of ISO/IEC JTC 1/SC 29 [1]. VVC enables bit-rate
savings of up to 50% [15] with respect to the previous stand-
ard High Efficiency Video Coding (HEVC)/H.265 [2] for the
same video quality. However, this achievement comes at the
cost of 8× and 2× more complexity compared to HEVC for
the reference encoder and decoder, respectively [3]. In this
scenario, the main challenge is to develop real-time VVC
codecs, either a hardware or software solution for video
encoding or decoding, that consider resource-constrained
consumer devices frequently used in consumer electronics
based on embedded platforms.

This work was supported by both the Energy Efficient Enhanced
Media Streaming (3EMS) project funded by the Brittany Region
and TALENT project (PID2020-116417RB-C41), funded by the
Spanish Ministerio de Ciencia y Innovación.

 *	 Miguel Chavarrías
	 miguel.chavarrias@upm.es

	 Anup Saha
	 anup.saha@upm.es

	 Wassim Hamidouche
	 wassim.hamidouche@insa-rennes.fr;

wassim.hamidouche@tii.ae

	 Fernando Pescador
	 fernando.pescador@upm.es

	 Ibrahim Farhat
	 ibrahm.farhat@insa-rennes.fr

1	 CITSEM at Universidad Politécnica de Madrid, Madrid,
Spain

2	 Univ. Rennes, INSA Rennes, CNRS, IETR—UMR,
6164 Rennes, France

3	 Technology Innovation Institute (TII), P.O.Box: 9639,
Masdar City Abu Dhabi, UAE

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-023-01376-7&domain=pdf
https://orcid.org/0000-0003-2268-3642
https://orcid.org/0000-0002-0143-1756
https://orcid.org/0000-0003-0280-3440
https://orcid.org/0000-0002-3610-4296
https://orcid.org/0000-0002-5478-7799

	 Journal of Real-Time Image Processing (2023) 20:120

1 3

120  Page 2 of 13

Each coding standard is released with a reference soft-
ware implementation available to the scientific community.
These solutions incorporate all the standard features but
offer minimal speed performance. For example, in the case
of VVC, the reference software is VVC test model (VTM)
[4]. Taking this as a starting point, research groups and com-
panies develop their own real-time software and hardware
solutions. These solutions mainly exploit the intrinsic par-
allelism of the algorithms, both at the data and functional
levels, to enhance their performance in terms of speed and
energy consumption. In the first case, some data operations
included in the source code are optimized using instructions
of type single instruction multiple data (SIMD) [5]. Here,
vectorized operations perform mathematical operations with
more than one operator using a single processor instruction.
The other potential optimization route is to take advantage
of the intrinsic parallelism of the independent processing of
pictures [6] or smaller parts of the picture, such as slices [7]
or tiles [8]. In the latter case, it is necessary that the cod-
ing is done by activating these normative tools that break
dependencies between adjacent regions.

In this work, two open-source VVC decoders are evalu-
ated and compared against each other. These solutions,
named OpenVVC [9, 10] and Versatile Video deCoder
(VVdeC) [11] decoders, are optimized using data and func-
tional-level parallelism techniques. This paper evaluates
their performance in decoding runtime, power consump-
tion, and memory usage targeting two different embedded
platforms. The results showed that both decoders achieved
15 to 34 frame per second (fps) for ultra-high-definition
(UHD) sequences with quantization parameter (QP) 27 and
37 and achieved real-time decoding of full high-definition
(FHD) and high definition (HD) sequences over the first tar-
get platform using 8 cores. Furthermore, 16 to 28 fps have
been obtained for FHD sequences with QPs 27 and 37, and
real-time decoding has been achieved for all HD sequences
by OpenVVC and VVdeC when targeting the second embed-
ded platform with 4 cores. Regarding energy consumption
and maximum memory usage, the experimental results
showed that VVdeC requires 2× more memory compared
to OpenVVC on both target platforms. On the other hand,
OpenVVC consumed the same energy as VVdeC on the
embedded system-on-chip (ESoC)1 platform with 8 cores
and around 1.25× VVdeC’s energy consumption when tar-
geting the ESoC2 embedded platform with 4 cores.

The remainder of the paper is structured as follows. First,
Sect. 2 briefly introduces the VVC standard. Then, Sect. 3
describes the optimizations included in VVC decoders using
specific parallelization techniques along with the state-of-
the-art of VVC decoders, followed by a brief description of
open-source VVC decoders in Sect. 4. Next, Sect. 5 details
the proposed optimization techniques in the OpenVVC
decoder. The results obtained and the comparison between

the performance of OpenVVC and VVdeC are provided in
Sect. 6. Finally, Sect. 7 concludes the paper.

2 � Introduction to VVC

This section briefly describes the VVC decoder and related
codec optimizations in scientific literature. Like its predeces-
sors, VVC was designed based on a hybrid coding scheme
using intra-/inter-prediction and transform coding. Figure 1
presents the block diagram of the VVC decoding process.
Here, the encoded bit-stream is the input, the decoded video
is the output, and blocks present the decoding stages.

2.1 � Entropy decoding

Bit-stream decoding begins with entropy decoding rely-
ing on enhanced context adaptive binary arithmetic coding
(CABAC) [12]. An updated multi-hypothesis probability
estimation model was adapted, and the computed look-up
table in HEVC was removed to enhance the accuracy. In
addition, the coefficient coding has been improved by allow-
ing 1 ×16, 2 × 8, 8 × 2, 2 × 4, 4 × 2, and 16× 1 coefficients group
size for TX block size.

2.2 � Inverse quantization and transform

The spatial domain coefficients are retrieved from the fre-
quency domain by inverse quantization and inverse trans-
formation. VVC introduces multiple transform selection
(MTS) [13] tool used to encode the residual inter- and intra-
coding blocks. MTS allows three transforms of the rectangle
blocks with the height and width of ≤ 64 for discrete cosine
transform (DCT)-II, ≤ 32 for DCT-VIII and discrete sine
transform (DST)-VII. Furthermore, the coefficients of high
frequency are zeroed when the height and width are equal to
64 for DCT-II and 32 for DCT-VIII and DST-VII.

Fig. 1   Block diagram of a VVC decoder

Journal of Real-Time Image Processing (2023) 20:120	

1 3

Page 3 of 13  120

2.3 � Intra‑prediction

In VVC intra-prediction module, 32 additional directional
intra-prediction modes are added to those in HEVC. Moreo-
ver, the intra-prediction allows wide-angle intra-modes for
rectangular blocks, improving prediction accuracy. In addi-
tion, the matrix-weighted intra-prediction tool is used as
a new intra-prediction mode by taking the above and left
neighboring lines of the prediction block. Further, VVC
adapted the cross component linear model tool [14], which
was applied to predict the chroma components from the luma
components.

2.4 � Inter‑prediction

Inter-prediction takes advantage of the temporal redundancy
of the video by removing the correlation in the temporal
domain [15]. The motion compensation estimates the current
coding unit samples according to the samples recorded in the
decoded picture buffer. In addition, an 8-tap filter is used for
luma samples to create motion-compensated prediction, and
an 8-tap filter is used for chroma samples for interpolation.
Furthermore, VVC achieved improved prediction accuracy
using decoder-side motion vector refinement [16] and bi-
directional optical flow prediction refinement [16].

2.5 � Luma mapping with chroma scaling

Forward luma mapping with chroma scaling (LMCS) is a
new tool introduced in VVC that comes after inter-prediction
stage. It has two parts: luma mapping (LMP), used to modify
predicted luma samples, and chroma scaling (CSP), used to
modify chroma residues. LMP makes the most use of the
range of luma code values and provides an efficient real-
location process of luma code values in the coding domain.
Therefore, CSP changes the value of the residual chroma
samples in the chroma coding block to mitigate the defect
that arises from the interaction between luma and corre-
sponding chroma signals [17].

2.6 � In‑loop filters

VVC in-loop filters consist of inverse luma mapping chroma
scaling (ILMCS) [18], deblocking filter (DBF), sample
adaptive offset (SAO) filter, and adaptive loop filter (ALF).
First, ILMCS is a new tool in VVC, which enhances decod-
ing performance by inversely mapping the luma code to the
reconstructed block. DBF and SAO in VVC are very similar
to HEVC [19]. DBF is used to detect and filter the artifacts
of pixels at the boundary of the block, and SAO is used to
minimize the distortion of the sample over the pixels filtered
by DBF. Furthermore, unlike HEVC, VVC includes ALF
[18] to reduce the mean square error of the decoded pixels.

Therefore, undesired artifacts obtained by the previous
decoding modules, including blurring, blocking, flickering,
ringing, and color shift, are mitigated using in-loop filters.

3 � Optimized and real‑time software
decoders

Two levels of parallelism can be exploited to speed up the
video decoding process: coarse-grained and fine-grained. In
this section, we describe first some general concepts related
to the parallelization methos used to accelerate video codecs.
Later both coarse-grained and fine-grained parallelisms are
presented.

3.1 � Codec optimizations

Various parallelization methods have been used to acceler-
ate video codecs on central processing unit (CPU), graphics
processing unit (GPU), and the hybrid architectures. Yan
et al. [20] accelerated a HEVC decoder by ×4 compared to
HM 4.0 using SIMD technologies on an x86 processor. The
authors in [21] and [22] proposed a GPU-based implementa-
tion of HEVC decoder that satisfied real-time requirements
for the decoding of UHD 4k sequences. S. Gudumas et al.
[7] discussed various optimization techniques to implement
VVC using multiple CPU cores on heterogeneous platforms
to achieve real-time decoding. Here, the decoding tasks
were redesigned and parallelized with task parallelization
based on load balancing and data parallelization at the cod-
ing tree unit (CTU) level. The authors of [23] presented a
GPU-based motion compensation system to accelerate the
VVC decoder that takes advantage of partitioning differ-
ent coding unit (CU) threads and proper organization. Fur-
thermore, Wieckowski et al. in [24] described an optimized
VVC decoder that achieved real-time decoding on general-
purpose CPUs. Here, SIMD operations-based optimization
and multithreading-based optimization were adopted. The
authors in [25] demonstrated an optimized real-time VVC
decoder that takes advantage of SIMD instruction exten-
sions on x86-based CPU. Moreover, the authors discussed
the implementation of the frame, CTU, sub-CTU, and task-
level parallelizations. An optimized VVC software decoder
for mobile platforms is presented in [26]. This decoder is
based on VTM−11.0 reference software, and achieves real-
time decoding for HD video sequences using SIMD and
multi-threading on ARM [19] based platform. Finally, in
[40] the authors present an heterogenous CPU + GPU imple-
mentation of a VVC decoder where the ALF filtering was
migrated to the GPU cores.

	 Journal of Real-Time Image Processing (2023) 20:120

1 3

120  Page 4 of 13

3.2 � Coarse‑grained parallelism

Frame-level parallelism: Simultaneous processing of mul-
tiple frames is performed in frame-level parallelism while
dependencies of motion compensation are also satisfied. The
range of the motion vector is, in this case, the determin-
istic factor [7]. Video sequences with large motion would
imply large dependencies between frames, possibly creating
a significant bottleneck for frame-level parallelism. Hence,
sequences in the all-intra configuration are the most profited
by frame-level parallelism since there are no motion com-
pensation dependencies. Moreover, a single thread should
allocate additional memory for global (i.e., picture) and local
buffers in frame-level parallelism, requiring more memory
than in sequential decoding.

Wave-front parallel processing: Wave-front parallel pro-
cessing (WPP) allows virtual picture partitioning into CTU
rows [7]. WPP removes the above right-coding intra-predic-
tion dependency during the picture partitioning while the
entropy engine is initialized at the start of each CTU line.
Therefore, at the beginning of each CTU row, the CABAC
context is reinitialized, and it depends on the data from first
CTU of the previous row. As a result, the row decoding
dependency slightly limits the parallelization efficiency of
WPP.

Tiles parallelism: VVC supports tiles of rectangular
shape consisting of CTUs [15]. An example of tile parti-
tion is shown in Fig. 2. Here, four tiles are labeled with A,
B, C, and D. Tiles are separated by boundaries, eliminat-
ing the prediction dependencies. Therefore, for all the tiles,
the entropy encoding step is reinitialized, which allows the
decoding of tiles independently. It allows for decoding a
picture concurrently using multiple threads. However, the
in-loop filtering, when enabled, can only be carried out at
the tile boundaries when pixels are reconstructed in the adja-
cent tiles.

3.3 � Fine‑grained parallelism

Single instruction multiple data: SIMD is a data-level paral-
lel processing technique that loads multiple data in a single
register. The x86-based architectures offer streaming SIMD
extensions (SSE) and advanced vector extensions (AVX)-
based SIMD intrinsics. Embedded general purpose processor
(EGPP)-based platforms support ARM Neon suite instead
of SSE- and AVX-based SIMD intrinsic. ARM Neon is an
advanced SIMD technology designed for mobile devices that
support up to 128-bit register. Neon-based SIMD technol-
ogy can be used in the following ways [27]: a) using Neon
intrinsics, b) Neon-enabled libraries, c) compiler auto-vec-
torization, and d) hand-coded Neon assembler.

4 � Open‑source VVC decoders

A few open-source software decoders are available that com-
ply with the VVC standard. First, the reference test model
VVC mentioned above, or VTM. Second, VVdeC [11], an
implementation proposed by the Fraunhofer Institute, is an
optimized decoder based on VTM. It includes SIMD and
multi-threads parallelization for optimal decoding perfor-
mance. Finally, OpenVVC is a lightweight open-source soft-
ware decoder available in [9]. OpenVVC decoder targets
different operating systems and hardware architectures. Sim-
ilarly to VVdeC, OpenVVC uses data and functional-level
parallelism to optimize the decoding performance. For more
details on VVC codecs, Sullivan [28] provides a complete
list of available VVC encoder and decoder implementations.

4.1 � Introduction to OpenVVC

OpenVVC is an open-source software VVC decoder writ-
ten in C programming language. It is compiled as a cross-
platform library, compatible with most-used operating sys-
tems, and optimized for x86 and ARM processors. The last
version of the decoder is compatible with the VVC Main
profile. In addition, the decoder was integrated with VLC
[29], GPAC [30], and FFplay [31] video players. OpenVVC
provides high decoding speed with a low memory footprint.
It takes advantage of tile- and frame-based parallelization on
multi-core CPU along with SIMD optimizations for acceler-
ating the decoding process. The OpenVVC decoding process
starts by parsing the sequence parameters. The reconstruc-
tion tasks, including inverse quantization and transform
(TX), LMCS, inter-prediction (EP), and intra-prediction (IP)
decoding blocks, are performed at the CU level. Then DBF
is performed immediately after the reconstruction process is
completed at the level of CTU. This approach helps optimize
memory usage by avoiding massive storage of quantization
parameter map and CU dimension required for the DBF Fig. 2   Illustration of tile partitioning in VVC decoder

Journal of Real-Time Image Processing (2023) 20:120	

1 3

Page 5 of 13  120

process. Finally, ALF is applied after the SAO at the level
of CTU line before delivering the decoded frame as output.

4.2 � Introduction to versatile video decoder

VVdeC [11] is an open-source software VVC decoder opti-
mized for x86 architectures and developed by Fraunhofer
Institute for Telecommunications, Heinrich Hertz Institute
(HHI). Unlike OpenVVC, VVdeC has been developed from
VTM reference software [32]. It supports the VVC Main 10
profile, enabling to decode all conformance VVC bitstreams
[33]. In addition, VVdeC comes with SIMD optimizations
and multi-threading parallelization for ARM and x86 archi-
tectures. The parallelization of VVdeC decoding begins
by parsing multiple frames concurrently. Therefore, in the
reconstruction process, tasks are split based on CTU lines
and CTUs. Here, a stage is given to each CTU for tracking
the following stage and process tasks in parallel after the
dependencies are satisfied. It allows task coordination where
a task worker is assigned to each CTU. A thread pool sched-
ules the task workers assigning the available tasks. VVdeC
has achieved decoding time reduction up to 90% [24] with
respect to VTM.

5 � Decoder optimizations

In previous work [34], VVdeC V0.2 was optimized for ARM
architectures using Neon-based SIMD parallelisms. The
source code is openly available in [35]. Moreover, the opti-
mization of VVdeC V1.3 is similar. Therefore, this section
mainly focuses on implementing frames, tiles, and Neon-
based SIMD parallelisms in OpenVVC over EGPP-based
platforms.

5.1 � Frames and tiles parallelization in OpenVVC

In frame-level parallelism of OpenVVC, a main thread is
used to parse the picture parameter set (PSP), sequence
parameter set (SPS), picture/slice header and schedule
decoding threads with a thread pool. Then the main thread
provides the data and updates the internal structure of the
available threads in the thread-pool for decoding the frame.
Therefore, motion compensation synchronization between
threads is performed for sequences with inter-coding con-
figuration after starting the decoding process. In fact, this
latter is the most challenging step in frame-level parallelism,
where the available thread has to wait for motion compensa-
tion before starting the pixel processing. When the pixels
are ready, the available thread is able to perform the decod-
ing process. This process is applied at the CTU line level
since OpenVVC performs decoding and in-loop filtering at
CTU line basis. Once the decoding process is completed, the

decoding threads signal their availability to the main thread
and return to the thread-pool.

On the other hand, tiles level parallelism is applied at a
portion of a frame. In fact, every frame is decomposed into
rectangular regions of the picture containing multiple CTUs
[15]. The main challenge of tile level parallelism is that tiles
could have different runtime complexities. Therefore, the
time required to finish one frame is the time to finish the
longest tile. In this case, at a certain processing time, some
threads are free, without a task, waiting to finish processing
the current frame. For more details about this issue, a qual-
ity-driven dynamic frame partitioning for efficient parallel
processing is explained by Amestoy et al. in [6]. A dynamic
tile and rectangular slice partitioning solution enables the
best partitioning configuration that minimizes the trade-off
between multi-thread encoding time and quality loss. This is
performed by taking into account both spatial texture of the
content and encoding times of previously encoded frames.
Experiments prove that the proposed solution, compared to
uniform partitioning, significantly decreases multi-thread
encoding time, with slightly better quality.

The proposed solution integrated into OpenVVC aims
to efficiently activate all threads at all times. To do so, it
applies a thread pipelining technique that overlooks frames
and focuses only on tiles. Figure 3 illustrates tile pipelining.
The tile partitioning forms a 2 × 2 grid. They are labeled A,
B, C, and D for the first frame and A’, B’, C’, and D’ for
the second frame and delimited by thicker black lines. Pre-
diction dependencies across tile boundaries are broken and
entropy encoding state is reinitialized for each tile. These
restrictions ensure that tiles are independently decoded,
allowing several threads to decode simultaneously the same
picture. As it can be observed, regardless of the tile posi-
tion, as soon as a thread is available from the thread pool,

Fig. 3   Illustration of tile pipelining in OpenVVC decoder

	 Journal of Real-Time Image Processing (2023) 20:120

1 3

120  Page 6 of 13

the tile is processed. Thread 2, for example, does not work
on any tiles of the second frame since it takes the entire
time working on tile D of the first frame. This fact does not
restraint threads 0 and 1 from working on the tiles of the
second frame. However, adopting this technique creates a
type of combination between frame and tile parallelism, as
a result, dependencies between frames for inter-prediction
and motion compensation should be taken into account. This
latter is handled by OpenVVC. Moreover, since OpenVVC
processes tiles independently of their frame affiliation, tile
size, and load optimization at the encoder side do not actu-
ally impact the performance of OpenVVC. At the end, tiles
are pipelined regardless of their size or load without waiting
to finish processing the current frame.

5.2 � SIMD optimization in OpenVVC

In this study, ARM Neon-based SIMD optimizations were
adapted to accelerate OpenVVC targeting EGPP-based plat-
forms. First, the x86 architecture-based SIMD intrinsics
used in OpenVCC are replaced by the ARM Neon-based
SIMD intrinsics. Therefore, additional adjustment was
adapted due to the fact that Neon-based intrinsics are not as
powerful and complete as compared to SSE or AVX intrin-
sics. In particular, for some cases, one SIMD instruction for
x86-based was replaced with multiple Neon-based SIMD
instructions. For instance, two Neon intrinsics vmull_s16
for multiply operation and vpaddq_s32 for add operation are
needed to replace madd_epi16.

ESoCs used in this study support up to 128-bit SIMD
registers. A 128-bit register can be loaded with 16 8-bit, 8
16-bit, 4 32-bit, or 2 64-bit data. This fact allows concurrent
data processing to achieve a theoretical speedup of up to
×16 on 8-bit data. In this study, Neon-based SIMD instruc-
tions are used to optimize the high computational demand-
ing VVC decoder modules presented in Table 1 by adapting
the SIMD [36] library. Here, DST-VII, DCT-II, DCT-VIII,
inter-component transform and low-frequency non-separable
transform (LFNST) module of TX block of VVC decoder
was accelerated using SIMD registers. TX involves sev-
eral matrix operations including matrix multiplication for
the inverse transformations. These matrix operations were
tackled using SIMD intrinsics based on logical and math-
ematical operations: vand, veor, vadd, and vmul. The most
benefiting modules of EP block by SIMD parallelization are
luma 8-tap filters, chroma 4-tap filters, bi-directional optical
flow, decoder side motion vector refinement, and predic-
tion refinement with optical flow. These functions contain
various mathematical and clipping operations which were
handled by vadd, vsub, vmin, and vmax instructions. In
addition, loading and storing data in larger SIMD registers
helped to accelerate EP, because the prediction informa-
tion of the pixels is needed multiple times in different EP

functions. Then the pixel prediction inside the picture of IP
block was effectively managed by storing masks, clipped,
and offset value using SIMD intrinsics. Further, the edge and
band filter of SAO use vceq, vadd, and vsub instructions to
handle mathematical operations. Finally, ALF filters are par-
allelized by concurrently storing filter parameters using shuf-
fle intrinsic. Moreover, it exploits the full capacity of SIMD
register of 128 bit using load and store intrinsic instructions.

6 � Experimental results

In this section, the experimental setup, test bench used in this
study, and the experimental results obtained are presented
for two open-source optimized decoders VVdeC V1.3 and
OpenVVC V1.0 on two EGPP-based embedded platforms.

6.1 � Experimental setup

This study focusses on low-cost mobile embedded hetero-
geneous platforms. Therefore, two ESoC platforms, ESoC1
[37] and ESoC2 [38] have been used. ESoC1 processor con-
sists of 8 EGPP cores running with a maximum clock speed
of 2.26 GHz and 512 embedded GPU (EGPU) cores run-
ning with a maximum clock speed of 1.37 GHz. In addition,
ESoC1 has 8MB of L2 cache memory, 4MB of L3 cache
memory, and 32MB 256 bit random access memory with
137 GB/s speed. ESoC2 has 4 EGPP cores and 128 EGPU
cores running with a maximum clock speed of 1.48GHz
and 0.92 GHz, respectively. Moreover, it has 2MB L2 cache
memory and 4MB 64 bit random access memory with

Table 1   Main functions optimized with SIMD

VVC Block Module

TX DST-VII, DCT-II, DCT-VIII
Inter-component transform
Low-frequency non-separable transform

EP Luma 8-tap filters
Chroma 4-tap filters
Bi-directional optical flow
Decoder side motion vector refinement
Prediction refinement with optical flow

IP DC, Planar
Cross-component linear model
Matrix-based intra-prediction module

In-loop filters Edge and band filter of SAO
ALF 7 × 7 diamond shape filters for the luma

component
ALF 5 × 5 diamond shape filters for the chroma

component
Block classification of ALF

Journal of Real-Time Image Processing (2023) 20:120	

1 3

Page 7 of 13  120

25.6 GB/s speed. This work is only based on EGPP cores,
and GPU cores could be used in future works to further
speedup the decoder. In both platforms, a gcc compiler ver-
sion 7.5 with -O3 flag activated and Cmake version 3.16.5
have been used alongside an Ubuntu 18.04 operating sys-
tem. Thus, this work comprehensively covers the design of
applications based on this type of platforms including both,
an embedded platform with limited performance, adjusted
to hardware-constrained use cases, but also an embedded
platform with a high computing power profile.

6.2 � Test video sequences

Table 2 presents the different features of the 15 JVET com-
mon test sequences [39] used in this study. The following
sequences, grouped by resolution classes, have been encoded
by the VTM−11.0 reference software with 10-bit random
access and 4 × 3 tile configuration at two QP 27 and 37. As
it can be seen, only A- and B-class sequences have been
included. Lower resolution class sequences were discarded
as in most cases the performance obtained with them would
be above the real time, following the trends proportional to
the results observed with the chosen test set.

6.3 � Results and analyses

Since this study focusses on analyzing the decoding perfor-
mance over embedded platforms, the average energy con-
sumption and the maximum memory usage have been also
measured. To do so, two open-source optimized VVC decod-
ers: VVdeC and OpenVVC over the two already mentioned
platforms have been used.

6.3.1 � Decoding performance

First, the decoding performance of OpenVVC has been stud-
ied for five combinations of frame–tile parallelization by
taking advantage of the eight physical cores integrated in
the ESoC1 architecture:

–	 8-frame and 0-tile per frame in parallel (f8/t0) (only
frame parallelism without tiles parallelism).

–	 1-frame and 8-tile per frame in parallel (f1/t8).
–	 2-frame and 4-tile per frame in parallel (f2/t4).
–	 4-frame and 2-tile per frame in parallel (f4/t2).
–	 2-frame and 8-tile per frame in parallel (f2/t8).

The default OpenVVC configuration chooses the best com-
binations of frame–tile parallelization. However, different
configurations were presented in the study to present the
performance differently for different configurations. This
study has been performed to do a fair comparison between
the default (best) configuration of OpenVVC and the default
configuration of VVdeC frame–tile parallelization.

Figure 4 shows the average decoding performance in
frames per second (fps) for HD and FHD test sequences
with QP27 and QP37 on ESoC1 using OpenVVC decoder.

It can be seen from Fig. 4 that the least performing con-
figuration among all configurations with tiles parallelism
is f1/t8 and the best performing configuration is f4/t2 for
all QPs, HD, and FHD sequences. f4/t2 configuration has
achieved in average ×1.4 and ×1.3 fps compared to the f1/
t8 configuration for FHD and HD sequences, respectively.
These results mainly illustrate the gain brought consid-
ering both frame and tile parallelism compared to only
frame parallelism which is constrained by the inter coding
dependency. Furthermore, the configuration with only frame

Table 2   Features of the
considered VVC test sequences

Class Sequence Resolution # Frames Bitdepth Framerate

A1 Tango2 3840×2160 294 10 60
FoodMarket4 3840×2160 300 10 60
Campfire 3840×2160 300 10 30

A2 CatRobot1 3840×2160 300 10 60
DaylightRoad2 3840×2160 300 10 60
ParkRunning3 3840×2160 300 10 50

B MarketPlace 1920×1080 300 10 60
RitualDance 1920×1080 300 10 60
Cactus 1920×1080 300 10 50
BasketballDrive 1920×1080 300 10 50
BQTerrace 1920×1080 300 10 60
ArenaOfValor 1920×1080 300 10 60

E FourPeople 1280×720 300 10 60
Johnny 1280×720 300 10 60
KristenAndSara 1280×720 300 10 60

	 Journal of Real-Time Image Processing (2023) 20:120

1 3

120  Page 8 of 13

parallelism without tiles parallelism, f8/t0 obtained less fps
than the frame and tiles parallelism-based least performing
configuration, f1/t8 for all QPs, HD, and FHD sequences.

Figure 5 presents the average decoding performance
in fps obtained over ESoC2 for HD sequences using both
QPs. ESoC2 has four physical cores. For this reason, only
four combinations of frame–title parallelization have been
studied. Here, all results that have not reached the real-time
decoding target have been omitted.

–	 4-frame and 0-tile per frame in parallel (f4/t0) (only
frame parallelism without tiles parallelism).

–	 1-frame and 4-tile per frame in parallel (f1/t4).
–	 2-frame and 2-tile per frame in parallel (f2/t2).
–	 2-frame and 4-tile per frame in parallel (f2/t4).

In this case, and as shown in Fig. 5, the f2/t2 configura-
tion has achieved 62.6 fps for QP27 and 74.5 fps for QP37,
which is higher on average by 8.1 fps and 3.4 fps than f1/

t4 and f2/t4 configurations for HD sequences, respectively.
Moreover, the only frame parallelism-based configuration,
f4/t0 obtained average 40% less fps than the low-perform-
ing frame–tile parallelism-based configuration f1/t4.
Therefore, in the following parts of the article, only frame
and tile parallelism-based configurations are presented.

The decoding performance and speedup of VVdeC
and f4/t2 configuration of OpenVVC decoders for QPs 27
and 37 over ESoC1 are presented in Table 3 for all video
sequences considered. It can be seen that the decoding
speed obtained by both VVdeC and OpenVVC decoders
is close to real-time for the UHD sequences and achieves
real-time for all the FHD and HD sequences over ESoC1
using 8 cores. Therefore, the experiment for the FHD and
HD sequences is presented in the following part of this
study, which achieves real-time over ESoC1. Moreover,
it can be seen that VVdeC has obtained slightly better
fps than OpenVVC on single core configuration for all
sequences at different quantification parameters QPs.
However, speedup shows that OpenVVC has provided
better parallelism compared to VVdeC when the number
of threads has increased, which compensates for the first
limitation.

In Table 4, the decoding performance of the decod-
ers VVdeC and OpenVVC (f2/t2 configuration) for all the
FHD and HD sequences with QPs 27 and 37 on the ESoC2
platform is shown. Here, both VVdeC and OpenVVC
decoders have achieved real-time for HD sequences over
ESoC2 using 4 cores. Therefore, in the next part of this
study, the results are presented for HD sequences over
ESoC2.

The average decoding performance with respect to the
number of cores is presented in Fig. 6. Here, the decod-
ing frame rates have been recorded for the OpenVVC
and VVdeC decoders over ESoC1 and ESoC2. For both
QPs, the average results in fps of OpenVVC and VVdeC
are similar for one to four cores over ESoC2. Moreover,
VVdeC has reached ×1.08 fps with respect to OpenVVC
on ESoC1 and has reached the saturation point with 7
cores for HD sequences. However, for FHD sequences, the
performance results of OpenVVC and VVdeC are compa-
rable to ESoC1. The performance results follow the same
pattern for both considered QPs. The impact of decoding
sequences without tiles versus those with tiles, in which
case this feature is deactivated in the decoder, has been
compared and results in an average performance loss of
8%.

6.3.2 � Memory usage

Memory usage is one of the most limiting factors and a
likely bottleneck for video decoding over resource-con-
strained embedded hardware. This part of the study presents

Fig. 4   Average decoding performance (fps) of OpenVVC for QP 27
and 37 sequences on the ESoC1 platform

Fig. 5   Average decoding performance (fps) of the OpenVVC decoder
for QPs 27 and 37 sequences on the ESoC2 platform

Journal of Real-Time Image Processing (2023) 20:120	

1 3

Page 9 of 13  120

the maximum memory (in MB) consumed by OpenVVC and
VVdeC over ESoC1 and ESoC2 for the FHD/HD sequences
with two QPs (27, 37). In Fig. 7, the average maximum
memory usage for different OpenVVC configurations and
VVdeC is shown. Here, for both FHD and HD sequences, f1/
t8 and f2/t8 configurations have used the least and the most
memory, respectively. This behavior is expected that with
the increase of the number of frames decoded in parallel,

the memory usage increases since the large part memory
of the decoder is related to the decoded frame. However,
VVdeC requires in average ×2.1 more memory for HD
sequences and ×2.7 more memory for FHD sequences than
the OpenVVC f2/t8 configuration over ESoC1. In addition,
the scenario is the same over ESoC2 platform where f2/t4
configuration requires in average a maximum memory of
59.7MB for HD sequences. Furthermore, VVdeC requires

Table 3   Decoding performance (fps) for the test sequences considered in QP27 (top) and QP37 (bottom) on the ESoC1 platform with 1, 2, 4, 6
and 8 cores

Seq.:QP VVdeC (fps)/speedup OpenVVC (fps)/speedup

cores 1 2 4 6 8 1 2 4 6 8

Tango2:27 3.3 6.3/1.9 12.4/3.8 18.1/5.6 22.8/7.0 3.1 6.1/2.0 12.1/3.9 17.9/5.8 22.7/7.4
FoodMarket4:27 3.3 5.9/1.8 12.4/3.8 18.2/5.6 23.0/7.0 3.0 6.1/2.0 12.0/4.0 17.6/5.8 22.6/7.5
Campfire:27 3.7 6.8/1.9 13.6/3.7 19.5/5.3 24.0/6.5 3.5 7.5/2.1 14.7/4.2 21.7/6.2 27.3/7.8
Average 3.4 6.4/1.9 12.8/3.8 18.6/5.5 23.3/6.8 3.2 6.6/2.0 12.9/4.0 19.0/6.0 24.2/7.6
CatRobot1:27 3.3 6.4/1.9 12.7/3.8 18.5/5.5 23.3/7.0 3.2 6.3/2.0 12.4/3.9 18.1/5.7 22.9/7.2
DaylightRoad2:27 3.1 6.0/1.9 11.7/3.8 17.2/5.5 21.5/7.0 2.8 5.7/2.0 11.2/4.0 16.4/5.9 20.9/7.5
ParkRunning3:27 2.4 4.3/1.8 8.5/3.6 12.4/5.2 15.7/6.7 2.1 4.1/2.0 8.1/3.9 11.9/5.7 15.1/7.3
Average 2.9 5.6/1.9 11.0/3.7 16.0/5.5 20.2/6.9 2.7 5.3/2.0 10.5/3.9 15.5/5.8 19.7/7.3
MarketPlace:27 12.5 23.8/1.9 46.0/3.7 66.5/5.3 82.7/6.6 11.1 21.8/2.0 43.2/3.9 63.3/5.7 79.6/7.2
RitualDance:27 13.9 26.3/1.9 51.3/3.7 73.2/5.2 91.0/6.5 13.0 25.2/1.9 49.8/3.8 73.7/5.7 90.4/7.0
Cactus:27 16.6 30.7/1.8 59.0/3.6 85.1/5.1 103.0/6.2 15.4 29.6/1.9 57.9/3.8 82.6/5.4 94.3/6.1
BasketballDrive:27 12.2 22.5/1.8 43.7/3.6 63.5/5.2 77.5/6.4 11.1 21.5/1.9 42.8/3.9 63.2/5.7 79.6/7.2
BQTerrace:27 12.9 24.3/1.9 47.4/3.7 68.7/5.3 82.6/6.4 11.7 23.1/2.0 45.7/3.9 67.4/5.8 85.2/7.3
ArenaOfValor:27 15.5 28.5/1.8 55.0/3.6 79.2/5.1 96.8/6.3 14.0 27.3/1.9 53.8/3.8 78.9/5.6 96.8/6.9
Average 13.9 26.0/1.9 50.4/3.6 72.7/5.2 88.9/6.4 12.7 24.7/1.9 48.9/3.8 71.5/5.6 87.6/6.9
FourPeople:27 52.2 98.7/1.9 185.5/3.6 257.1/4.9 271.0/5.2 45.8 88.8/1.9 175.4/3.8 252.1/5.5 285.7/6.2
Johnny:27 54.3 104.4/1.9 196.7/3.6 272.2/5.0 288.2/5.3 48.9 92.6/1.9 180.7/3.7 238.1/4.9 252.1/5.2
KristenAndSara:27 52.0 97.3/1.9 184.0/3.5 257.5/5.0 294.4/5.7 47.6 89.6/1.9 177.5/3.7 250.0/5.3 272.7/5.7
Average 52.8 100.1/1.9 188.8/3.6 262.3/5.0 284.5/5.4 47.5 90.3/1.9 177.9/3.7 246.7/5.2 270.2/5.7
Tango2:37 4.1 8.2/2.0 16.0/3.9 23.2/5.6 29.7/7.2 4.1 8.2/2.0 15.1/3.7 23.7/5.8 30.0/7.3
FoodMarket4:37 4.0 7.9/2.0 15.8/3.9 22.9/5.7 29.2/7.2 3.9 7.8/2.0 15.3/3.9 22.5/5.7 28.2/7.2
Campfire:37 4.8 9.0/1.9 17.8/3.7 25.8/5.4 31.9/6.7 4.7 9.7/2.0 19.0/4.0 28.1/5.9 34.3/7.2
Average 4.3 8.4/1.9 16.5/3.8 24.0/5.6 30.3/7.0 4.3 8.6/2.0 16.5/3.9 24.8/5.8 30.8/7.2
CatRobot1:37 4.1 8.2/2.0 16.1/3.9 23.3/5.7 29.4/7.1 4.2 8.3/2.0 16.2/3.9 23.8/5.7 30.0/7.2
DaylightRoad2:37 4.1 8.0/2.0 16.0/3.9 23.4/5.7 29.6/7.2 3.8 7.8/2.0 15.4/4.0 22.6/5.9 28.5/7.4
ParkRunning3:37 3.0 5.8/1.9 11.5/3.8 16.9/5.6 21.3/7.1 2.8 5.5/2.0 10.8/3.9 16.1/5.8 20.6/7.4
Average 3.8 7.3/2.0 14.5/3.9 21.2/5.6 26.8/7.1 3.6 7.2/2.0 14.2/3.9 20.8/5.8 26.4/7.3
MarketPlace:37 16.9 33.2/2.0 64.3/3.8 92.6/5.5 109.9/6.5 16.0 31.0/1.9 61.2/3.8 89.8/5.6 107.1/6.7
RitualDance:37 18.0 34.9/1.9 67.2/3.7 97.0/5.4 119.8/6.6 16.6 32.4/1.9 64.7/3.9 95.8/5.8 117.2/7.0
Cactus:37 21.7 40.3/1.9 77.3/3.6 111.0/5.1 133.0/6.1 20.5 39.5/1.9 76.9/3.8 111.1/5.4 124.0/6.0
BasketballDrive:37 14.7 28.1/1.9 55.0/3.7 79.6/5.4 98.2/6.7 13.7 26.6/1.9 52.9/3.9 77.5/5.6 97.1/7.1
BQTerrace:37 15.8 30.6/1.9 59.7/3.8 87.4/5.5 104.1/6.6 15.5 30.3/2.0 60.1/3.9 88.2/5.7 109.1/7.0
ArenaOfValor:37 19.9 38.5/1.9 74.4/3.7 106.6/5.4 128.7/6.5 19.1 37.9/2.0 74.6/3.9 108.3/5.7 130.4/6.8
Average 17.8 34.3/1.9 66.3/3.7 95.7/5.4 115.6/6.5 16.9 33.0/1.9 65.1/3.8 95.1/5.6 114.2/6.7
FourPeople:37 59.2 116.7/2.0 219.1/3.7 299.4/5.1 314.5/5.3 55.5 108.3/2.0 211.3/3.8 306.1/5.5 344.8/6.2
Johnny:37 64.2 123.2/1.9 231.5/3.6 319.5/5.0 355.0/5.5 57.8 113.2/2.0 219.0/3.8 297.0/5.1 319.1/5.5
KristenAndSara:37 60.0 115.4/1.9 217.5/3.6 302.1/5.0 338.2/5.6 52.9 103.8/2.0 204.1/3.9 294.1/5.6 322.6/6.1
Average 61.1 118.4/1.9 222.7/3.6 307.0/5.0 335.9/5.5 55.4 108.4/2.0 211.4/3.8 299.1/5.4 328.9/5.9

	 Journal of Real-Time Image Processing (2023) 20:120

1 3

120  Page 10 of 13

on average ×2.4 more memory for HD sequences than the
OpenVVC f2/t4 configuration on ESoC2 platform. It can be

concluded from the results that OpenVVC requires notably
less memory compared to VVdeC. That fact is attributed to
both its carefully designed local structure (as presented in
[10], Section III-C) and the efficient management of the pic-
ture buffer pool, also outlined in [10], Section III-B. There-
fore, OpenVVC provides a great advantage and is suitable
for resource-constrained embedded platforms.

6.3.3 � Energy consumption

Energy consumption is another important factor for video
processing operation over embedded platforms. The char-
acterization of the impact of the software on hardware is
essential to obtain models that allow the identification of
the optimal working points of video decoders [41]. In this
study, the energy consumption was calculated as follows:
1) the power consumption is taken (in mW) after decoding
each frame using the built-in power monitor of both ESoC,
2) the average power consumption of the entire sequence
is multiplied by the total time in seconds spent decoding
the sequence. The average energy consumption in J with
different configurations of OpenVVC and VVdeC decod-
ers is shown in Fig. 8. Here, OpenVVC and VVdeC have
consumed comparable average energy in ESoC1 for all con-
figurations. VVdeC has consumed on average ×1.17 higher
energy for the HD sequences and ×1.04 higher energy for

Table 4   Decoding performance
(in fps) for the considered HD
and FHD test sequences at
QP27 (top) and QP37 (bottom)
on the ESoC2 platform with 1,
2, 3, and 4 cores

Seq.:QP VVdeC (fps) OpenVVC (fps)

cores 1 2 3 4 1 2 3 4

MarketPlace:27 4.6 8.8 12.9 16.5 4.3 8.2 12.0 15.5
RitualDance:27 5.4 10.0 14.6 18.7 5.0 9.7 14.1 18.2
Cactus:27 6.4 11.6 17.0 21.5 5.8 11.3 16.4 21.0
BasketballDrive:27 4.6 8.6 12.5 16.2 4.3 8.5 12.4 16.1
BQTerrace:27 4.8 9.0 13.2 17.1 4.6 8.9 13.0 16.7
ArenaOfValor:27 6.0 10.9 15.9 20.1 5.5 10.7 15.7 20.0
Average 5.3 9.8 14.3 18.4 4.9 9.6 13.9 17.9
FourPeople:27 21.3 39.0 56.4 69.4 18.3 35.4 50.9 64.4
Johnny:27 21.9 40.4 57.9 71.4 18.1 34.7 50.5 63.2
KristenAndSara:27 20.7 38.1 55.1 68.3 18.0 34.8 50.3 64.0
Average 21.3 39.2 56.5 69.7 18.1 34.9 50.6 63.8
MarketPlace:37 6.3 12.1 17.6 22.5 5.9 11.5 16.9 21.7
RitualDance:37 7.0 13.1 17.7 24.5 6.4 12.4 18.0 23.1
Cactus:37 8.2 15.4 22.5 28.4 7.7 14.9 21.4 27.6
BasketballDrive:37 5.6 10.7 15.7 20.3 5.2 10.3 14.9 19.2
BQTerrace:37 5.9 11.4 16.6 21.4 5.8 11.4 16.6 21.4
ArenaOfValor:37 7.8 14.7 21.4 26.1 7.5 14.5 21.0 26.7
Average 6.8 12.9 18.6 23.9 6.4 12.5 18.1 23.3
FourPeople:37 24.8 46.2 65.7 80.9 21.8 42.1 61.0 77.3
Johnny:37 25.6 48.1 68.6 83.6 21.9 42.3 60.9 76.9
KristenAndSara:37 23.8 44.5 63.8 77.9 20.6 39.6 57.0 72.6
Average 24.7 46.2 66.0 80.8 21.4 41.3 59.6 75.6

Fig. 6   Average decoding performance (in fps) of OpenVVC, in
brown QP 27 and blue QP 37, and VVdeC, in black QP27 and red
QP37, for 1 to 8 cores

Journal of Real-Time Image Processing (2023) 20:120	

1 3

Page 11 of 13  120

the FHD sequences with respect to the f4/t2 configuration of
OpenVVC consumption on ESoC1 platform. Similar to the
implementation over ESoC1, the f2/t2 configuration has used
the least amount of average energy over ESoC2. Furthermore,
the average energy consumption of OpenVVC is slightly higher
than VVdeC consumption in comparison to ESoC2.

6.3.4 � Comparison between OpenVVC and VVdeC decoders

Both open-source optimized video decoders OpenVVC and
VVdeC have reached real-time for FHD and HD sequences
over ESoC1 using 8 cores. In addition, both solutions
present results close to real-time performance for UHD
sequences on ESoC1 platform. Furthermore, the OpenVVC
and VVdeC decoders achieved an average of 22 fps for QP27
and 28.5 fps for QP37 using 8 cores. Tables 5 and 6 show
the average performance (in fps) of OpenVVC and VVdeC
using different number of threads on ESoC1 and ESoC2.
OpenVVC introduces slightly more runtime complexity
compared to VVdeC: 3% for UHD, 5% for FHD and 12%
for HD sequences in both platforms.

To summarize, there are three important parameters
to take into consideration to select a video decoder for an
embedded platform with limited hardware resources: the

performance (fps), the energy consumed to decode a video,
and the memory used. The performance of the decoders
compared in this paper (VVdeC and OpenVVC) is very
similar and only a small improvement is achieved in VVdeC
while the number of cores remains low. The energy con-
sumed to decode a sequence is also very similar between
both decodes. Finally, OpenVVC consumes less memory
than VVdeC with a factor greater than ×2.11 . This sig-
nificant reduction makes the OpenVVC decoder a suitable
option to implement a VVC conformant video decoder in a
multi-core platform with limited resources.

7 � Conclusion

This paper presents two open-source VVC decoders:
OpenVVC and VVdeC, optimized for low-cost resource-
constrained embedded platforms. Here, OpenVVC and
VVdeC have been optimized at the level of data processing
using SIMD operations. In addition, tile- and frame-based
parallelizations have been implemented in OpenVVC. Both
decoders have achieved 15 to 34 fps for UHD sequences
with QP 27 and 37, and achieved real-time decoding for all
configurations of FHD and HD sequences over ESoC1 using

Fig. 7   Average maximum memory (in MB) used for QPs 27 and 37
sequences over ESoC1 (top) and ESoC2 (bottom)

Fig. 8   Average energy (J) consumed for QP 27 and 37 sequences on
ESoC1 (top) and ESoC2 (bottom) platforms

	 Journal of Real-Time Image Processing (2023) 20:120

1 3

120  Page 12 of 13

8 cores. Furthermore, 16 to 28 fps have been obtained for
FHD sequences for QPs 27 and 37, and real-time decoding
has been obtained for all HD sequences by OpenVVC and
VVdeC on ESoC2 using 4 cores. Furthermore, the exper-
imental results for the two most important factors of the
embedded platform: the average energy consumption and
maximum memory usage of both decoders were presented
for ESoC1 and ESoC2. VVdeC has consumed on average
×2.74 and ×2.96 memory compared to the OpenVVC f4/
t2 configuration on ESoC1 and the f2/t2 configuration on
ESoC2, respectively. For average energy usages, VVdeC
consumed on average ×1.11 energy with respect to the
OpenVVC f4/t2 configuration on ESoC1 and ×0.83 energy
with respect to the OpenVVC f2/t2 configuration on ESoC2.

Funding  Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature.

Data availability  The data that support the findings of this study are
available from the first author and corresponding author, upon reason-
able request.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will

need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Versatile video coding, Recommendation ITU-T H.266 and ISO/
IEC 23090-3 (VVC), ITU-T and ISO/IEC JTC 1, Jul. (2020)

	 2.	 High efficiency video coding, Recommendation ITU-T H.265;
(2013)

	 3.	 Feldmann, C.: “Versatile video coding hits major milestone," Bit-
movin. Accessed on: May 27, (2022). [Online]. https://​bitmo​vin.​
com/​compr​ession-​stand​ards-​vvc-​2020

	 4.	 VVC test model. Accessed on: May 15, (2022), [Online]. https://​
mpeg.​chiar​iglio​ne.​org/​stand​ards/​mpeg-i/​versa​tile-​video-​coding/

	 5.	 Chi, C.C., Alvarez-Mesa, M., Bross, B., Juurlink, B., Schierl,
T.: “SIMD acceleration for HEVC decoding’’. IEEE Trans Circ.
Syst. Video Technol. 25(5), 841–855 (2015). https://​doi.​org/​10.​
1109/​TCSVT.​2014.​23644​13

	 6.	 Amestoy, T., Hamidouche, W., Bergeron, C., Menard, D.:
“Quality-driven dynamic VVC frame partitioning for efficient
parallel processing," in 2020 IEEE Int. Conf. Image Process.,
Abu Dhabi, United Arab Emirates, pp. 3129-3133, (2020).
https://​doi.​org/​10.​1109/​ICIP4​0778.​2020.​91909​28

	 7.	 Gudumasu, S., Bandyopadhyay, S., He, Y.: “Software-based
versatile video coding decoder parallelization," in Proc. 11th
ACM Multimedia Syst. Conf., New York, NY, USA, pp. 202-
212, (2020). https://​doi.​org/​10.​1145/​33398​25.​33918​71

	 8.	 Koziri, M., Papadopoulos, P. K., Tziritas, N., Dadaliaris, A.,
Loukopoulos, T., Khan, S. U., Xu, C-Z.: “Adaptive tile paral-
lelization for fast video encoding in HEVC," in 2016 IEEE Int.
Conf. Internet of Things and IEEE Green Computing and Com-
munications and IEEE Cyber, Physical and Social Computing
and IEEE Smart Data, pp. 738-743, (2016). https://​doi.​org/​10.​
1109/​iThin​gs-​Green​Com-​CPSCom-​Smart​Data.​2016.​156

Table 5   Average performance
(fps) of OpenVVC and VVdeC
decoders on ESoC1 platform
with 1 and 8 cores

VVdeC (fps) OpenVVC (fps) VVdeC/OpenVVC

cores 1 8 1 8 1 8

UHD:QP27 3.17 21.72 2.94 21.95 108% 99%
UHD:QP37 4.02 28.52 3.93 28.59 102% 100%
FHD:QP27 13.94 88.94 12.72 87.64 110% 101%
FHD:QP37 16.66 115.62 16.92 114.15 98% 101%
HD:QP27 52.81 284.53 47.45 270.18 111% 105%
HD:QP37 61.14 335.90 55.39 328.85 110% 102%

Table 6   Average performance
(fps) of OpenVVC and VVdeC
decoders on ESoC2 platform
with 1 and 4 cores

VVdeC (fps) OpenVVC (fps) VVdeC/OpenVVC

cores 1 4 1 4 1 4

UHD:QP27 1.20 4.29 1.15 4.20 104% 102%
UHD:QP37 1.51 5.49 1.49 5.43 101% 101%
FHD:QP27 5.29 18.36 4.93 17.92 107% 102%
FHD:QP37 6.81 23.85 6.43 23.31 106% 102%
HD:QP27 21.31 69.74 18.12 63.83 118% 109%
HD:QP37 24.72 80.78 21.43 75.63 115% 107%

http://creativecommons.org/licenses/by/4.0/
https://bitmovin.com/compression-standards-vvc-2020
https://bitmovin.com/compression-standards-vvc-2020
https://mpeg.chiariglione.org/standards/mpeg-i/versatile-video-coding/
https://mpeg.chiariglione.org/standards/mpeg-i/versatile-video-coding/
https://doi.org/10.1109/TCSVT.2014.2364413
https://doi.org/10.1109/TCSVT.2014.2364413
https://doi.org/10.1109/ICIP40778.2020.9190928
https://doi.org/10.1145/3339825.3391871
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2016.156
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2016.156

Journal of Real-Time Image Processing (2023) 20:120	

1 3

Page 13 of 13  120

	 9.	 OpenVVC software repository, Accessed on: Mar. 19, (2022).
[Online]. https://​github.​com/​OpenV​VC/​OpenV​VC

	10.	 Amestoy, T. , Cabarat, P., Gautier, G., Hamidouche, W., Menard,
D.: “OpenVVC: a lightweight software decoder for the versatile
video coding standard," arXiv preprint, arXiv:​2205.​12217, (2022)

	11.	 Fraunhofer HHI VVdeC software repository, Accessed on: Mar.
6, (2022). [Online]. https://​github.​com/​fraun​hofer​hhi/​vvdec

	12.	 Karwowski, D.: Precise probability estimation of symbols in
VVC CABAC entropy encoder. IEEE Access 9, 65361–65368
(2021). https://​doi.​org/​10.​1109/​ACCESS.​2021.​30758​75

	13.	 Zhao, X., Kim, S.-H., Zhao, Y., Egilmez, H.E., Koo, M., Liu, S.,
Lainema, J., Karczewicz, M.: Transform coding in the VVC stand-
ard. IEEE Trans. Circuits Syste. Video Technol. 31(10), 3878–3890
(2021). https://​doi.​org/​10.​1109/​TCSVT.​2021.​30877​06

	14.	 Ghaznavi-Youvalari, R., Lainema, J.: “Joint cross-component lin-
ear model for chroma intra prediction," in IEEE 22nd Int. Work-
shop Multimedia Signal Process., pp. 1-5, (2020). https://​doi.​org/​
10.​1109/​MMSP4​8831.​2020.​92871​67

	15.	 Bross, B., Wang, Y.-K., Ye, Y., Liu, S., Chen, J., Sullivan, G.J., Ohm,
J.-R.: Overview of the versatile video coding (VVC) standard and its
applications. IEEE Trans. Circ. Syst. Video Technol. 31(10), 3736–
3764 (2021). https://​doi.​org/​10.​1109/​TCSVT.​2021.​31019​53

	16.	 Yang, H., Chen, H., Chen, J., Esenlik, S., Sethuraman, S., Xiu,
X., Alshina, E., Luo, J.: Subblock-based motion derivation and
inter prediction refinement in the versatile video coding stand-
ard. IEEE Trans. Circ. Syst. Video Technol. 31(10), 3862–3877
(2021). https://​doi.​org/​10.​1109/​TCSVT.​2021.​31007​44

	17.	 Lu, T. , Pu, F., Yin, P., McCarthy, S., Husak, W., Chen, T., Francois, E.,
Chevance, C., Hiron, F., Chen, J., Liao, R.-L., Ye, Y., Luo, J.: “Luma
mapping with chroma scaling in versatile video coding," in 2020 Data
Compression Conf., Snowbird, UT, USA, pp. 193-202, (2020). https://​
doi.​org/​10.​1109/​DCC47​342.​2020.​00027

	18.	 Karczewicz, M., Hu, N., Taquet, J., Chen, C.-Y., Misra, K., Andersson,
K., Yin, P., Lu, T., François, E., Chenet, J.: VVC in-loop filters. IEEE
Trans. Circ. Syst. Video Technol. 31(10), 3907–3925 (2021). https://​
doi.​org/​10.​1109/​TCSVT.​2021.​30722​97

	19.	 Saha, A., Chavarrías, M., Pescador, F., Groba, Á.M., Chassaigne,
K., Cebrián, P.L.: Complexity analysis of a versatile video coding
decoder over embedded systems and general purpose processors.
Sensors 21, 3320 (2021). https://​doi.​org/​10.​3390/​s2110​3320

	20.	 Yan, L., Duan, Y., Sun, J., Guo, Z.: “Implementation of HEVC
decoder on x86 processors with SIMD optimization," in 2012
Visual Commun. Image Process., pp. 1-6, (2012). https://​doi.​org/​
10.​1109/​VCIP.​2012.​64108​45

	21.	 de Souza, D. F., Ilic, A., Roma, N., Sousa, L.: “HEVC in-loop
filters GPU parallelization in embedded systems," in 2015 Int.
Conf. Embedded Computer Systems: Architectures, Modeling, and
Simulation, pp. 123-130, (2015). https://​doi.​org/​10.​1109/​SAMOS.​
2015.​73636​67

	22.	 de Souza, D.F., Ilic, A., Roma, N., Sousa, L.: GPU-assisted HEVC
intra decoder. J. Real-Time Image Process. 12(2), 531–547 (2016).
https://​doi.​org/​10.​1007/​s11554-​015-​0519-1

	23.	 Han, X., Wang, S., Ma, S., Gao, W.: “Optimization of motion
compensation based on GPU and CPU for VVC decoding," in
2020 IEEE Int. Conf. Image Process., pp. 1196-1200, (2020).
https://​doi.​org/​10.​1109/​ICIP4​0778.​2020.​91907​08

	24.	 Wieckowski, A., Hege, G., Bartnik, C., Lehmann, C., Stoffers, C.,
Bross, B., Marpe, D.: “Towards a live software decoder imple-
mentation for the upcoming versatile video coding (VVC) codec,"
in 2020 IEEE Int. Conf. Image Process., pp. 3124-3128, (2020).
https://​doi.​org/​10.​1109/​ICIP4​0778.​2020.​91911​99

	25.	 Zhu, B., Liu, S., Liu, Y., Luo, Y., Ye, J., Xu, H., Huang, Y., Jiao,
H., Xu, X., Zhang, X., Gu, C.: “A real-time H.266/VVC software
decoder," in 2021 IEEE Int. Conf. Multimedia Expo, pp. 1-6,
(2021). https://​doi.​org/​10.​1109/​ICME5​1207.​2021.​94284​70

	26.	 Li, Y., Liu, S., Chen, Y., Zheng, Y., Chen, S., Zhu, B., Lou, J.: “An
optimized H.266/VVC software decoder on mobile platform," in
2021 Picture Coding Symp. , pp. 1-5, (2021). https://​doi.​org/​10.​
1109/​PCS50​896.​2021.​94774​84

	27.	 ARM Developer, Neon. Accessed on: May 03, 2022. Online].
https://​devel​oper.​arm.​com/​archi​tectu​res/​instr​uction-​sets/​simd-​
isas/​neon

	28.	 Sullivan, G.: “Deployment status of the VVC standard," ISO/IEC
JTC1/SC29/WG11 JVET document Y0021 (JVET-Y0021), Tel-
econference, January, (2022)

	29.	 VLC media player: VideoLAN, a project and a non-profit organi-
zation, Accessed on: May 23, (2022). [Online]. https://​www.​video​
lan.​org/

	30.	 GPAC: multimedia open source project, Accessed on: May 23,
(2022). [Online]. https://​gpac.​wp.​imt.​fr/

	31.	 Ffmpeg: a complete, cross-platform solution to record, convert
and stream audio and video, Accessed on: May 23, (2022).
[Online]. https://​ffmpeg.​org/

	32.	 VVC VTM reference software repository, Accessed on: Mar. 14,
(2022). [Online]. https://​vcgit.​hhi.​fraun​hofer.​de/​jvet/​VVCSo​
ftware_​VTM

	33.	 Wieckowski, A., Lehmann, C., Bross, B., Marpe, D., Biatek, T.,
Raulet, M., Le Feuvre, J.: “A complete end to end open source
toolchain for the versatile video coding (VVC) Standard," in 2021
Proc. 29th ACM Int. Conf. Multimedia, Association Computing
Machinery, New York, NY, USA, 3795-3798. https://​doi.​org/​10.​
1145/​34740​85.​34783​20

	34.	 Saha, A., Chavarrías, M., Aranda, V., Garrido, M.J., Pescador,
F.: “Implementation of a real-time versatile video coding decoder
based on VVdeC over an embedded multi-core platform’’. IEEE
Trans. Consumer Electron. (2022). https://​doi.​org/​10.​1109/​TCE.​
2022.​32025​12

	35.	 Fraunhofer HHI VVdeC software repository, Releases vvdec-
0.2.0.0, Accessed on: Sep. 12, (2022). [Online]. https://​github.​
com/​fraun​hofer​hhi/​vvdec/​relea​ses/​tag/​v0.2.​0.0

	36.	 Nemerson, E.: “Transitioning SSE/AVX code to NEON with
SIMDe," Accessed on: Jun. 7, (2022). [Online]. https://​simd-​
every​where.​github.​io/​blog/​2020/​06/​22/​trans​ition​ing-​to-​arm-​with-​
simde.​html

	37.	 NVIDIA Jetson AGX Xavier developer kit, user guide,
DA_09403_003, December 17, (2019). [Online]. https://​devel​
oper.​nvidia.​com/​jetson-​agx-​xavier-​devel​oper-​kit-​user-​guide

	38.	 NVIDIA Jetson Nano developer kit, user guide, DA_09402_004,
January 15, (2020). [Online]. https://​devel​oper.​nvidia.​com/​embed​
ded/​dlc/​Jetson_​Nano_​Devel​oper_​Kit_​User_​Guide

	39.	 Bossen, F., Boyce, J., Li, X., Seregin, V., Sühring, K.: “JVET
Common Test Conditions and Software Reference Configura-
tions for SDR Video,’’ Document JVET-N1010. JVET of ITU-T,
Geneva (2019)

	40.	 Saha, A., Roma, N., Chavarrías, M., Dias, T., Pescador, F.,
Aranda. V.: “GPU-based parallelisation of a versatile video coding
adaptive loop filter in resource-constrained heterogeneous embed-
ded platform." J. Real-Time Image Proc. 20, 43 (2023). https://​doi.​
org/​10.​1007/​s11554-​023-​01300-z

	41.	 Le Gonidec, O., Chavarrias, M., Saha, A., Rosa, G., Pescador, F.:
“Energy Efficient Versatile Video Coding Decoder Using Light-
weight Regression Models”. 26th Euromicro Conference Series
on Digital System Design (DSD) and 49th Euromicro Confer-
ence Series on Software Engineering and Advanced Applications
(SEAA), Durres, Albania, 2023. Pending publication

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://github.com/OpenVVC/OpenVVC
http://arxiv.org/abs/2205.12217
https://github.com/fraunhoferhhi/vvdec
https://doi.org/10.1109/ACCESS.2021.3075875
https://doi.org/10.1109/TCSVT.2021.3087706
https://doi.org/10.1109/MMSP48831.2020.9287167
https://doi.org/10.1109/MMSP48831.2020.9287167
https://doi.org/10.1109/TCSVT.2021.3101953
https://doi.org/10.1109/TCSVT.2021.3100744
https://doi.org/10.1109/DCC47342.2020.00027
https://doi.org/10.1109/DCC47342.2020.00027
https://doi.org/10.1109/TCSVT.2021.3072297
https://doi.org/10.1109/TCSVT.2021.3072297
https://doi.org/10.3390/s21103320
https://doi.org/10.1109/VCIP.2012.6410845
https://doi.org/10.1109/VCIP.2012.6410845
https://doi.org/10.1109/SAMOS.2015.7363667
https://doi.org/10.1109/SAMOS.2015.7363667
https://doi.org/10.1007/s11554-015-0519-1
https://doi.org/10.1109/ICIP40778.2020.9190708
https://doi.org/10.1109/ICIP40778.2020.9191199
https://doi.org/10.1109/ICME51207.2021.9428470
https://doi.org/10.1109/PCS50896.2021.9477484
https://doi.org/10.1109/PCS50896.2021.9477484
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon
https://www.videolan.org/
https://www.videolan.org/
https://gpac.wp.imt.fr/
https://ffmpeg.org/
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM
https://doi.org/10.1145/3474085.3478320
https://doi.org/10.1145/3474085.3478320
https://doi.org/10.1109/TCE.2022.3202512
https://doi.org/10.1109/TCE.2022.3202512
https://github.com/fraunhoferhhi/vvdec/releases/tag/v0.2.0.0
https://github.com/fraunhoferhhi/vvdec/releases/tag/v0.2.0.0
https://simd-everywhere.github.io/blog/2020/06/22/transitioning-to-arm-with-simde.html
https://simd-everywhere.github.io/blog/2020/06/22/transitioning-to-arm-with-simde.html
https://simd-everywhere.github.io/blog/2020/06/22/transitioning-to-arm-with-simde.html
https://developer.nvidia.com/jetson-agx-xavier-developer-kit-user-guide
https://developer.nvidia.com/jetson-agx-xavier-developer-kit-user-guide
https://developer.nvidia.com/embedded/dlc/Jetson_Nano_Developer_Kit_User_Guide
https://developer.nvidia.com/embedded/dlc/Jetson_Nano_Developer_Kit_User_Guide
https://doi.org/10.1007/s11554-023-01300-z
https://doi.org/10.1007/s11554-023-01300-z

	Performance analysis of optimized versatile video coding software decoders on embedded platforms
	Abstract
	1 Introduction
	2 Introduction to VVC
	2.1 Entropy decoding
	2.2 Inverse quantization and transform
	2.3 Intra-prediction
	2.4 Inter-prediction
	2.5 Luma mapping with chroma scaling
	2.6 In-loop filters

	3 Optimized and real-time software decoders
	3.1 Codec optimizations
	3.2 Coarse-grained parallelism
	3.3 Fine-grained parallelism

	4 Open-source VVC decoders
	4.1 Introduction to OpenVVC
	4.2 Introduction to versatile video decoder

	5 Decoder optimizations
	5.1 Frames and tiles parallelization in OpenVVC
	5.2 SIMD optimization in OpenVVC

	6 Experimental results
	6.1 Experimental setup
	6.2 Test video sequences
	6.3 Results and analyses
	6.3.1 Decoding performance
	6.3.2 Memory usage
	6.3.3 Energy consumption
	6.3.4 Comparison between OpenVVC and VVdeC decoders

	7 Conclusion
	References

