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Edge-Computing-Assisted Intelligent Processing of AI-Generated 

Image Content 

Suzhen Wang1·Yongchen Deng1·Lisha Hu1·Ning Cao2, 3 

Abstract Artificial intelligence-generated 
image content (AIGIC) is produced through 
the extraction of features and patterns from a 
vast image dataset, requiring substantial 
computational resources for training. This 
study aims to enhance image processing and 
response time on terminal devices by 
utilizing 1  edge computing technology to 
offload specific training tasks to edge nodes. 
Additionally, task offloading and resource 
allocation strategies are developed to 
effectively generate image content on terminal 
devices. Edge computing aims to execute 
computing tasks in close proximity to data 
sources; however, the computing resources of 
edge devices are limited. Therefore, the 
development of suitable resource allocation 
strategies for resource-constrained 
environments is crucial in edge computing 
research. Serverless computing, which heavily 
relies on container technology for program 
hosting, is recognized as one of the most 
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suitable architectures for edge computing. 
WebAssembly (WASM) is a binary instruction 
format that operates on a stack and enables the 
execution of computing tasks on both client 
and server sides. Its advantages encompass 
reducing cold start time, enhancing efficiency, 
and improving portability, thereby addressing 
challenges encountered by container 
technology in Serverless deployments. This 
paper commences with an introduction and 
analysis of the research status of Serverless 
and WASM, subsequently delving into the 
investigation of task offloading and resource 
allocation in edge computing within the 
Serverless architecture supported by WASM. 
To facilitate collaboration among edge nodes, 
an enhanced deep reinforcement learning 
algorithm, called entropy-based Proximal 
Policy Optimization (E-PPO2), is employed. 
This algorithm allows edge devices to share a 
global reward and continuously update 
parameters, leading to an optimized response 
strategy and maximizing the utilization of 
edge device resources. 
Keywords: AIGIC; edge computing; 
serverless computing; WebAssembly; E-PPO2 

1. Introduction 

Due to the continuous advancements in deep 
learning and image processing technology, the 
capabilities of AIGIC have significantly 
improved, enabling its widespread application 
across various domains such as computer 
games, virtual reality, design, and artistic 
creation. However, the training process of 
AIGIC usually requires substantial computing 
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resources and storage capacity, limiting its 
efficient utilization on resource-constrained 
terminal devices. This study utilizes edge 
computing technology to resolve this 
challenge. The integration of AIGIC with edge 
computing technology can improve system 
efficiency, minimize network transmission 
overhead, reduce latency, bolster privacy 
protection, and improve reliability. Edge 
computing represents a distributed computing 
model that utilizes the computational 
capabilities of terminal devices and edge 
servers for data processing and 
decision-making in close proximity to data 
sources. By doing so, it intends to improve 
system performance, minimize latency, and 
strengthen data privacy and security. The 
fundamental idea of edge computing is to 
process computing tasks on computing 
resources close to data sources [1]. The 
rational task offloading to edge nodes and 
efficient allocation of limited computing 
resources to each computing task remain 
pivotal challenges in edge computing 
research. 

Serverless was originally proposed for 
cloud computing environments, aiming to 
simplify the development and deployment 
process and improve efficiency. Serverless 
architecture includes Function as a Service 
(FaaS) and Backend as a Service (BaaS) [2], 
and its core idea is to execute functions on 
demand. The automatic scaling feature of the 
serverless architecture is well-suited for edge 
computing scenarios, where edge nodes 
typically experience changing load and traffic 
demands. The serverless architecture can 
automatically scale up or down the size of 
functions according to actual needs to meet 
the requirements of horizontal scaling. This 
automatic scaling function can effectively 
handle sudden high load situations and ensure 
system scalability and other performance 
metrics. The serverless architecture on the 

edge node can offer functions such as 
simplified deployment, elastic scaling, event 
driven and cost-effective without requiring 
expertise in underlying infrastructure details, 
making it an efficient and scalable application 
development and deployment model in the 
edge computing environment. However, there 
are still many challenges and issues that need 
to be addressed in Serverless [3,4], such as the 
increase in program running time caused by 
container cold start [5]. 

WebAssembly (WASM) is a low-level 
bytecode format designed for stack based 
virtual machines [6], designed to provide 
efficient cross platform execution 
environments. WASM is capable of running in 
web browsers and is also compatible with 
server-side and embedded devices. By 
packaging the program as a WASM module 
and utilizing the Serverless platform, faster 
cold start times can be realized without relying 
on Docker. This method can boost the 
responsiveness and scalability of the 
application while decreasing resource 
consumption and costs. Therefore, this paper 
investigates the serverless task offloading and 
resource allocation supported by WASM in 
edge computing environment. And in order to 
enhance the collaboration capability between 
edge nodes, E-PPO2 is employed to enable 
each edge node agent to share global rewards 
and develop final task offloading and resource 
allocation strategies. 

2. Related works 

Most major cloud service providers, such as 
Microsoft, Amazon, Google, and IBM, offer 
Serverless computing. With the exponential 
proliferation of IoT devices, an immense 
volume of data is being generated by 
numerous sensors, smart devices, and terminal 
devices. Many applications necessitate 
real-time or near real-time processing and 
decision-making capabilities due to their 



reliance on this data, such as smart cities, 
autonomous driving, and industrial automation. 
However, deploying Serverless to the cloud 
center alone proves inadequate in effectively 
managing the surge of tasks originating from 
these terminals. Consequently, the integration 
of serverless computing with edge computing 
has emerged as a prominent development 
trend. Recognizing this need, certain cloud 
service providers have extended their 
offerings to include edge capabilities, 
exemplified by AWS IoT Greengrass [8] and 
Azure IoT Edge [9]. Recent study [10] have 
illustrated the successful utilization of 
Serverless in resource-constrained 
environments, particularly in edge computing 
scenarios. Consequently, a plethora of 
research endeavors have commenced to 
explore the application of Serverless in edge 
computing scenarios. The performance of 
Serverless in edge computing has been 
examined by previous studies [11-13]. In a 
comparative evaluation of various 
open-source serverless architectures, it was 
determined that Kubeless outperformed other 
architectures [14]. The utilization of container 
technology within the Serverless architecture 
was investigated in the context of video 
analytics applications at the edge [15]. While 
container technology effectively mitigates 
memory and CPU overhead, the cold start of 
containers introduces delays to the application. 
To assess the maturity of serverless computing 
methods in cloud edge environments, new 
standards were introduced [16]. Experimental 
results revealed that the current product 
exhibits immature features in data 
management, serverless programming models, 
and AI support.  

An introductory document on WASM, 
which includes performance benchmarks, was 
published by a previous study [17]. 
Comparisons were made between the startup 
time of WASM and containers, revealing that 

WASM workloads exhibit a startup time about 
ten times faster with a lower memory footprint 
[18]. In another study, the cold start time and 
total execution time of WASM and containers 
were compared in 13 tests, highlighting the 
significant advantages of WASM [19]. 
Furthermore, the feasibility of utilizing edge 
WASM in serverless environments was 
demonstrated [20]. This study applied WASM 
to edge computing and conducted a 
performance comparison against native 
execution. The overall runtime of WASM 
exhibited a 2-5 times slower performance 
compared to local execution due to the 
introduction of an additional intermediate 
layer during actual execution [21, 22]. A 
hybrid serverless platform, proposed by a 
recent study [23], incorporates both WASM 
and Docker while extending Kubernetes (K8S) 
for container management. Experimental 
results have demonstrated significant 
advantages of this platform for serverless 
applications requiring frequent execution and 
elasticity. WASM technology introduces 
numerous benefits to the serverless 
environment, which are not achievable in the 
current operating environment [24]. Another 
study [25] explored the features and usage 
scenarios of edge serverless computing 
utilizing WASM. It also examined the current 
status, trends of adoption, and discussed the 
developmental direction of utilizing containers 
as edge serverless computing platforms within 
the WASM execution environment. 
Furthermore, in a novel approach suggested 
by researchers [26], an edge computing 
scenario without servers utilizing WASM was 
proposed. Experimental results revealed a 99.5% 
reduction in cold start delay and a boost of 4.2 
times in function execution throughput. 

The study by [27] examined the resource 
scheduling problem in serverless platforms 
and categorized them based on scheduling 
objectives: resource utilization, response time 



delay, and multi-objective optimization. A 
comprehensive review by [28] discussed the 
current research status of key technologies in 
resource management for serverless platforms. 
In order to tackle the resource management 
bottlenecks arising from imbalanced call 
frequency and resource allocation in function 
applications, [29] presented two resource 
management strategies. [13] developed a 
real-time data analysis system utilizing 
serverless platform and cloud edge 
architecture. The system distinguished 
between multi-level real-time data analysis 
workflows based on time sensitivity. However, 
it did not address resource scheduling issues. 
In a comprehensive review of 164 papers, [30] 
analyzed the topics of performance 
optimization, programming framework, 
application migration, and multi-cloud 
development in the context of serverless 
computing. The analysis highlighted resource 
scheduling as a prominent research trend in 
the field. To tackle the challenge of 
heterogeneous computing resources in 
serverless computing, [31] employed deep 
reinforcement learning algorithms and 
conducted training and evaluation in a cloud 
center. The experimental results revealed a 24% 
increase in application response time and a 34% 
increase in resource utilization cost compared 
to the baseline technology. In conclusion, in 
the context of an edge computing environment 
and under the serverless architecture 
supported by WASM, further investigation is 
required to optimize the strategies for task 
offloading and resource allocation. 

3. Edge Serverless computing 

This section presents the multi-layer 
architecture of edge serverless computing, 
along with the utilization of WASM to support 
edge serverless computing. This includes an 
enhanced version of Kubernetes (K8S) for 
deploying and managing WASM modules, the 

selection of benchmark functions for testing, 
and the adoption of a Serverless platform. 

3.1 Edge serverless computing multi-layer 
architecture 

Edge serverless computing refers to the 
utilization of the Serverless computing 
platform on edge devices to carry out 
computational tasks. In the context of edge 
computing, Serverless computing plays a vital 
role in providing an efficient task processing 
platform between edge devices and clients. 
Edge serverless computing is characterized by 
a multi-layer architecture, illustrated in Figure 
1. The initial layer comprises the edge device 
network, where diverse edge devices are 
deployed in proximity to users and capable of 
intercommunication. The orchestration and 
management of the edge device network are 
facilitated by edge controllers. The serverless 
layer facilitates the deployment, execution, 
and collaborative scheduling of serverless 
functions, establish direct connections with 
the user layer to receive and execute diverse 
edge applications. 

Edge applications
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Fig.1 Edge serverless computing multi-layer architecture 

3.2 Serverless Computing with WASM 
support 



To facilitate the deployment and orchestration 
of containers, K8S is employed as the chosen 
tool in this article. In order to enable the 
deployment of WASM modules in K8S 
clusters and simulate the instantiation process 
of workload based on containers, a dedicated 
K8S WASM operator [23] is utilized. The K8S 
operator serves as a custom controller that 
extends the functionality of K8S. Leveraging 
the API and resource model of K8S, the 
operator manages and operates applications or 
services through automated programming. 
Operators typically comprise three 
components: Custom Resource Definition 
(CRD), controller, and automation operations. 
The CRD allows developers to define new 
resource types for describing and managing 
the configuration and status of specific 
applications or services. Thus, operators are 
capable of extending the resource model of 
K8S via CRD. In this article, a new CRD 
called WASM-CRD is introduced to describe 
WASM workloads. The newly defined CRD 
seamlessly integrates with existing K8S tools 
and can be readily incorporated into 
K8S-based platforms. Figure 2 illustrates the 
serverless deployment process facilitated by 
WASM, depicting the following steps in the 
deployment process: 

1. Create a new WASM-CRD in the 
cluster; 

2. Generate events from computational 
tasks to trigger the coordination function of 
the K8S operator. The operator verifies the 
parameters passed in WASM-CRD, and if 
successful, instantiates the built-in resources. 
And each WASM-CRD has at least the 
following resource support: deployment, 
specifying OCI images, customizing K8S 
RuntimeClass, and exposed ports; 

3. Create portal services and deploy 
resources; 

4. After creating a deployment, the pod 
instantiation will be triggered, and the pod 

will be scheduled by the K8S scheduler on the 
selected node. Bind an HTTP listener on a 
randomly selected port, which is shared with 
the K8S operator through a Redis instance; 

5. The local Kubelet running on the node 
is based on the associated RuntimeClass, and 
calls the modified version of Spin Ship and 
deploys the WASM module; 

6. Store the random port of the Spin 
instance in Redis; 

7. WASM module reporting status; 
8. Container reports the current status to 

K8S; 
9. The module Pod representing WASM 

has entered a ready state; 
10. Once the module Pod representing 

WASM enters the ready state, the K8S 
operator will query the Redis instance; 

11. Obtain the value of the random port 
and correct the Service and Ingress objects. 
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Fig.2 serverless deployment process supported by WASM 

3.3 Selection of benchmark functions for 
testing and the serverless platform 

This study deploys the Serverless platform in 
the edge computing environment to address 
the challenges of task offloading and resource 
allocation. To validate the effectiveness of the 
chosen platform, a benchmark testing function 
is employed. The Serverless benchmark 
function serves as a standardized tool for 
evaluating the performance of various 
Serverless platforms, measuring key indicators 
such as cold start latency, execution time, and 



resource utilization. The benchmark function 
can be tailored and expanded as per specific 
requirements to assess the performance and 
capabilities of different Serverless platforms. 
To obtain more precise performance 
measurements, factors such as request 
concurrency, request frequency, and data 
volume should be taken into consideration 
during performance testing. 

To assess the performance of the 
serverless architecture supported by the 
proposed WASM technology and make a 
comparison with existing container-oriented 
serverless platforms, this study employs an 
expanded set of serverless benchmark testing 
functions [32]. The set comprises 13 test 
functions (refer to Table 1), all of which are 
compatible with the WASM execution 
environment of the shared code library. The 
execution process of each test function 
involves the following steps: firstly, compiling 
the function code into a WASM module, then 
bundling it with the necessary dependencies, 
and finally deploying it onto the serverless 
platform. Subsequently, the function can be 
tested by triggering its execution. Function 
triggering can be accomplished through 

various means, such as invoking the function's 
API endpoint, sending specific events, or 
utilizing the triggers provided by the platform.  
Upon triggering a function, the platform 
initiates the loading of the corresponding 
WASM module and commences the execution 
of its code. The WASM-based serverless 
platform employs the Wasmtime Runtime 
(Wasmtime) as the execution engine for the 
WASM module. Wasmtime, an open-source 
WASM runtime, enables the execution of 
WASM modules within a server environment. 
When a function is triggered, Wasmtime loads 
the associated WASM module and executes its 
code within a virtual machine. During the 
execution of the function, Wasmtime parses 
the input parameters and carries out the 
function's code. The function's code is 
exported through the functions defined in the 
WASM module and interacts with the 
platform's provided API. Subsequently, upon 
completion of the function's execution, 
Wasmtime delivers the result to the caller. 
Throughout the execution process, various 
performance metrics, such as execution time 
and memory usage, are continuously 
monitored and recorded. 

Table 1 Severless test benchmark contains test function information 

Name Text 

number 

P.Lang1 Description Type2 

audio-sine-wave (1) Rust Render a 440Hz sine wave and store it as a mono .wav file M 

fuzzysearch (2) Rust Search for the occurrence of a phrase in a text file  R 

n-body (3) Rust Model the orbits of Jovian planets M 

prime-numbers (4) Rust Search for prime numbers among the first n numbers M 

whatlang (5) Rust Determine the natural language of a given string R 

zip-compression (6) Rust Compress multiple files in a single zip archive R 

aes (7) Go Encrypt a given text using AES symmetrical encryption multiple times R 

checksum (8) Go Calculate the MD5, SHA256, and SHA512 checksums of a given file R 

diskio (9) Go Write and then read back a file containing 100000 lines of text M 

float-operation (10) Go Calculate sin, cos and square root of an arbitrary number M 

imageprocessing (11) Go Rotate an image and change its color palette R 

linear-equations (12) Go Solve a system of linear equations M 

matmul (13) Go Square matrix multiplication M 

1Source programming language of the given benchmarking function 



2M - Microbenchmark; R - Real-word workload 

OpenFaaS is specifically designed for 
K8S and can be deployed to effectively utilize 
various functions of K8S, such as automatic 
scaling, service discovery, and load balancing. 
The OpenFaaS platform supports the use of 
WASM technology to write and deploy 
functions. Compared with other serverless 
platforms, OpenFaaS is more suitable for edge 
computing application scenarios. Therefore, 
this paper uses OpenFaaS based on WASM 
technology as the serverless platform to study 
task unloading and resource allocation 
strategies in edge computing environment. 

4 Research on Task Unloading and 
Resource Allocation Strategies 

4.1Network model construction 

Each edge system consists of a wireless base 
station and K edge servers, where the edge 
servers are represented as:𝑟 = {𝑈1, 𝑈2, … , 𝑈𝑘}, 
each edge server 𝑈𝑖  has N independent 
computing tasks, and the task set of 𝑈𝑖  is 
represented as 𝛤𝑖 = {𝑇𝑖,1, 𝑇𝑖,2, … , 𝑇𝑖𝑁} . The 
edge computing server provides the device 
with high-intensity computing services. The 
terminal device offloads computing tasks to 
the edge server, and the server allocates 
resources to each user to reduce the delay and 
energy consumption of the user device. In this 
model, the cache of unprocessed tasks stored 
by the edge server is large enough, and both 
the user device and the edge server are 
equipped with a single core CPU. All tasks are 
processed in the order of the input CPU. 

4.2 Problem Description 

The system consists of K edge servers, and all 
task sets of all edge servers are represented as 𝐺 = {𝑇𝑖,𝑗|1 ≤ 𝑖 ≤ 𝐾, 1 ≤ 𝑗 ≤ 𝑁}. There is a 
total of K*N (denoted as m) independent 
computing tasks that need to be processed, 

where all tasks can be uninstalled and 
scheduled. Each task 𝑇𝑖,𝑗 is described by two 
parameters: 𝐷𝑖,𝑗  and 𝐶𝑖,𝑗  ,which 𝐷𝑖,𝑗 
represents the amount of task data that needs 
to be processed and 𝐶𝑖,𝑗  represents the 
number of CPU cycles required to process 
each unit of data for that task. In this article, 
the main focus is on coarse-grained task 
offloading and resource allocation. Tasks are 
not further divided and each device is only 
equipped with one antenna, which can only 
transmit one task at a time; All terminal 
devices share the transmission bandwidth 
equally, so the rate at which the computing 
tasks 𝑇𝑖,𝑗  of the terminal devices 𝑈𝑖  are 
transmitted to the edge server is shown in 
formula (1): 𝑅 = (𝐵/𝐾)𝑙𝑜𝑔2[1 + 𝑆/𝑁]             (1) 

Where B is the channel bandwidth, in 
hertz, S represents the average power of the 
signal transmitted within the channel, and N is 
the internal Gaussian noise power of the 
channel. Therefore, the time for each task 𝑇𝑖,𝑗 
to be transmitted from the terminal device to 
the edge server is shown in formula (2). 𝑡𝑖,𝑗𝑡𝑟𝑎𝑛𝑠 = 𝐷𝑖,𝑗/𝑅                     （2） 

The total frequency of the server is F, the 
frequency assigned to the edge server 𝑈𝑖 is 𝑓𝑖,𝑠𝑒𝑟, and the CPU frequency for tasks to be 
executed locally is 𝑓𝑖,𝑢𝑠𝑒𝑟 .Therefore, the 
execution time of the task 𝑇𝑖,𝑗 on the edge 
server 𝑈𝑖 and locally is shown in formulas (3) 
and (4). 

𝑡𝑖,𝑗𝑒𝑑𝑔𝑒 = 𝐶𝑖,𝑗/𝑓𝑖,𝑠𝑒𝑟                    （3） 

𝑡𝑖,𝑗𝑙𝑜𝑐𝑎𝑙 = 𝐶𝑖,𝑗/𝑓𝑖,𝑢𝑠𝑒𝑟                   （4） 

The energy consumption for task 𝑇𝑖,𝑗 to 
be executed locally and unloaded to edge 
servers are shown in formulas (5), (6). The 
transmission energy consumption is shown in 



formulas (7). 𝑒𝑖,𝑗,𝑙𝑜𝑐𝑎𝑙 = 𝛿𝑖𝑓𝑖,𝑢𝑠𝑒𝑟2 𝐶𝑖,𝑗                 （5） 𝑒𝑖,𝑗,𝑒𝑑𝑔𝑒 = 𝛿𝑖𝑓𝑖,𝑠𝑒𝑟2 𝐶𝑖,𝑗                  （6） 𝑒𝑖,𝑗 = 𝑡𝑖,𝑗𝑡𝑟𝑎𝑛𝑠𝑝                        （7） 

Among them, 𝛿𝑖  is the effective 
capacitance coefficient of the edge server, and 𝑝 is the transmission power of the terminal 
device unloading tasks to the edge server. 
Therefore, the total energy consumption for 
processing tasks is: 

𝑒𝑖 = ∑ [（𝑒𝑖,𝑗 + 𝑒𝑖,𝑗,𝑒𝑑𝑔𝑒）𝑥𝑖,𝑗𝑁𝑗=1 + 𝑒𝑖,𝑗,𝑙𝑜𝑐𝑎𝑙
（1 − 𝑥𝑖,𝑗）]                       （8） 

Where 𝑥𝑖,𝑗  is the task offloading 
coefficient, 𝑥𝑖,𝑗∈{0,1}. When the value of 𝑥𝑖,𝑗 is 0, it indicates that the task is executed 
locally, and when the value is 1, it indicates 
that the task is executed on edge server j. The 
total consumption of the system is the 
weighted sum of the completion time of each 
user's last task and the energy consumption of 
the edge server: 𝐸𝑖 = 𝑚𝑎 𝑥{𝑡𝑖,𝑗,𝑙𝑞 , 𝑡𝑖,𝑗,𝑠𝑞 } + 𝑒𝑖             （9） 

Among them, 𝑡𝑖,𝑗,𝑙𝑞  represents the time 
required for the task queue to be executed 
locally, and 𝑡𝑖,𝑗,𝑠𝑞  represents the time required 
for the task queue to be executed on the edge 
server. The mathematical model described in 
this article is a constrained joint optimization 
problem that optimizes offloading decisions, 
offloading scheduling, and server resource 
allocation under limited server resources. 
Therefore, the optimization objective of the 
model can be expressed as: 𝑃1：𝑚𝑖𝑛 ∑ 𝐸𝑖𝐾𝑖=1                    （10a） s. t. ∑ 𝑓𝑖,𝑠𝑒𝑟𝐾𝑖=1 ≤ 𝐹                  （10b） 𝑓𝑖,𝑠𝑒𝑟 ≤ 𝐹，∀𝑖 ∈ 𝑟                  （10c） 

𝑥𝑖,𝑗 ∈ {0,1}，∀𝑇𝑖,𝑗 ∈ 𝐺              （10d） 

The variables optimized in this article 
include task offloading decisions and edge 
server CPU frequency allocation. The 
optimization objective (10a) is the weighted 
sum of system delay and energy consumption. 
The constraint (10b) is that the total frequency 
assigned to the server cannot exceed the 
maximum frequency. The constraint condition 
(10c) indicates that the frequency allocated to 
each edge server cannot exceed the maximum 
frequency. The constraint condition (10d) 
indicates that the execution location of the 
task is only on terminal devices and edge 
servers. The optimization objective (10a) can 
be solved by finding the optimal decision and 
calculating the resource allocation for 
unloading. However, the unloading decision 
vector X is a feasible set of binary variables, 
and the objective function is a non-convex 
problem. As the number of tasks increases, the 
difficulty of solving the objective function 
increases exponentially, making it an NP hard 
problem. This article uses an improved deep 
reinforcement learning method (E-PPO2) for 
solving. 

4.3 algorithm optimization 

4.3.1 MDP optimization problem 

In this section, the defined total system 
consumption is modeled as a Markov 
Decision Process (MDP), which can be 
represented by tuples (S, A, P, R), where S is 
the object in the state space representing the 
next state. A is the action space, representing 
the object of the next action. P is the 
probability set of transitioning from the 
current state to another state. R is the reward 
function corresponding to the action in a 
specific state. The goal of MDP is to find a 
policy and select the optimal action decision 



rule in each state to maximize cumulative 
rewards and obtain the optimal set of policies. 

A. State 

The state space of MDP can be 
represented as: 𝑆 = {𝑠𝑡 ={(𝑥𝑚(𝑡), 𝐹(𝑡), 𝐸𝑏𝑢𝑑𝑔𝑒𝑡(𝑡))}} . Where 𝑠𝑡 

represents the current state of all tasks in time 
slot t, 𝑠𝑡 = {𝑠1, … , 𝑠𝑚}. 𝑥𝑚(𝑡) represents the 
computational characteristics of all tasks in 
time slot t. 𝐹(𝑡) = {𝑓1, … , 𝑓𝑘}  indicates the 
CPU computing power corresponding to the 
edge server in time slot t. 𝐸𝑏𝑢𝑑𝑔𝑒𝑡(𝑡) = {𝐸𝑖} 
indicates the total consumption of tasks 
executed locally or uninstalled to edge servers 
during time slot t. 

B. Action 

The actions selected for each task in its 
current state can be defined as: 𝐴 = {𝑎𝑡 ={𝜒𝑚(𝑡), 𝜉𝑚(𝑡)}} , where 𝜒𝑚(𝑡) ∈ {0,1} 
represents the execution location of the task, 𝜒𝑚(𝑡) = 0 represents the task being executed 
locally, and 𝜒𝑚(𝑡) = 1  represents the task 
being unloaded to the edge server for 
execution. 𝜉𝑚(𝑡) ∈ {1,2, … , 𝑘}  indicates the 
final execution location for uninstalling to the 
edge server, such as when the task is 

uninstalled to the n edge server, 𝜉𝑚(𝑡) = 𝑛. 
C. State-to-state transition 

The transition probability between states 
is expressed as: 𝑃 = {𝑃𝑎𝑡(𝑠, 𝑠𝑡+1)|𝑠, 𝑠𝑡+1 ∈𝑆, 𝑎𝑡 ∈ 𝐴, 𝑝 ∈ 𝑃}  . Its meaning is that the 
probability of taking action 𝑎𝑡  in state 𝑠𝑡 
and entering the state 𝑠𝑡+1 is 𝑃𝑎𝑡(𝑠, 𝑠𝑡+1). 

D. Reward function 

In each state transition process, the 
decision-maker receives a reward or 
punishment. In deep reinforcement learning 
algorithms, rewards can be represented by 
states and actions: S × A → R. Therefore, in 
this system, the reward function is defined as: 𝑅 = {𝑟𝑡(𝑠𝑡, 𝑎𝑡)}, which 𝑟𝑡(𝑠𝑡, 𝑎𝑡) can also be 
represented as: 𝑟𝑡(𝑠𝑡, 𝑎𝑡) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝜒𝑚𝐸𝑚𝑒𝑀𝑚=1 + (1 −𝜒𝑚)𝐸𝑚𝑙                            （11） 

By introducing a state action function 𝑄(𝑠𝑡, 𝑎𝑡) = 𝐸𝜋[𝑟𝑡|𝑆 = 𝑠𝑡 , 𝐴 = 𝑎𝑡]}  in MDP, 
the system consumption is minimized by 
selecting actions 𝑎𝑡  in the current state 𝑠𝑡 , 
resulting in an overall task offloading and 
resource allocation strategy π. The update 
function of 𝑄(𝑠𝑡, 𝑎𝑡)  is shown in formula 
(12). 𝑄𝜋∗ (𝑠𝑡 + 𝑎𝑡) = r(𝑠𝑡 + 𝑎𝑡) + ∑ 𝑃𝑎𝑡(𝑠𝑡, 𝑠𝑡+1)𝑠𝑡+1∈𝑆 ∑ 𝜋(𝑎𝑡+1|𝑠𝑡+1)(𝑄𝜋（𝑠𝑡+1, 𝑎𝑡+1）)     （12） 

Among them, 𝑃𝑎𝑡(𝑠𝑡, 𝑠𝑡+1) is defined as 
the probability of state 𝑠𝑡 entering the next 
state 𝑠𝑡+1, and task offloading strategy 𝜋𝑚∗  is 
obtained to maximize long-term discount 
rewards. 𝛾  is the discount parameter of 
reward importance and 𝜋𝑚∗  is expressed as: 𝜋𝑚∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋𝑚𝐸[∑ 𝛾𝑡−1𝑡∈𝑇 𝑅(𝑠𝑡, 𝑎𝑡)|𝜋𝑚]

（13） 

4.3.2 E-PPO2 algorithm 

In this section, the PPO2 algorithm based on 
maximum entropy is used to solve the MDP 
optimization problem. Entropy is used to 
measure the uncertainty or information 
content of random variables. For discrete 

random variable X, entropy H (X) can be 
calculated using formula (14). Entropy has 
wide applications in fields such as information 
theory, statistics, and machine learning [33]. 
In this article, the exploration ability of task 
offloading strategy is improved by using 
maximum entropy optimization reward 
function, which increases the entropy 
determined by the action distribution on the 
basis of the original reward. The modified 
reward function is shown in formula (15). 𝐻(𝑋) = − ∑ 𝑃(𝑋) ∗ log 2(𝑃(𝑥))       （14） 𝑅𝑡+1𝑒 = 𝑅𝑡+1 + 𝑒𝐻(𝜋(· |𝑠𝑡)), 𝑡 = 0,1,2, …（15） 

e is a random parameter that controls the 



optimal strategy and e>0. 𝐻(𝜋(· |𝑠𝑡)) =−𝑙𝑜𝑔𝜋(· |𝑠𝑡)  represents the entropy of 
strategy π in the state 𝑠𝑡 . The long-term 
reward 𝐺𝑡𝑒 based on entropy, value function 𝑉𝜋𝑒(𝑠𝑡), and state action 𝑄𝜋𝑒(𝑠𝑡, 𝑎𝑡) function 
are shown in formulas (16), (17) and (18). 𝐺𝑡𝑒 = ∑ 𝛾𝑡𝑅𝑡+1𝑒+∞𝑡=0 , 𝑡 = 0,1, ….         （16） 𝑉𝜋𝑒(𝑠𝑡) = 𝐸𝜋[𝐺𝑡𝑒|𝑠𝑡], 𝑠𝑡 ∈ 𝑆            （17） 𝑄𝜋𝑒(𝑠𝑡, 𝑎𝑡) = 𝐸𝜋[𝐺𝑡𝑒|𝑠𝑡, 𝑎𝑡], 𝑠𝑡 ∈ 𝑆, 𝑎𝑡 ∈ 𝐴（18） 

The modified state value function 𝑉𝜃
（𝑠𝑡）  and strategy function 𝜋𝜃（𝑠𝑡|𝑎𝑡） 
can be obtained from formulas (16) to (18), as 
shown in formulas (19) and (20). 𝑉𝜃(𝑠𝑡) = 𝐸𝐴~𝜋[𝑄𝜋𝑒(𝑠𝑡, 𝐴)] + 𝑒𝐻(𝜋(· |𝑆)) = 𝐸𝐴~𝜋[𝑄𝜋𝑒(𝑠𝑡, 𝐴)] − 𝑒𝑙𝑜𝑔𝜋(𝐴|𝑠𝑡), 𝑠𝑡 ∈ 𝑆 

（19） 𝜋𝜃(𝑠𝑡|𝑎𝑡) =𝑎𝑟𝑔𝑚𝑎𝑥 𝐸(𝑠𝑡,𝑎𝑡)~𝑝(𝜋)[∑ 𝛾𝑡(𝑟𝑡(𝑠𝑡, 𝑎𝑡) −+∞𝑡=0𝑒𝑙𝑜𝑔𝜋(· |𝑠𝑡))]                     （20） 

The PPO2 algorithm is a new type of 
Policy Gradient algorithm (PG), whose main 
principle is to use gradient enhancement to 
update strategy π to maximize expected 
returns. In the PG algorithm, the updated 

objective function of network parameters θ is 
as follows: 𝐿𝑃𝐺(𝜃) = 𝐸𝑡[𝑙𝑔𝜋𝜃(𝑎𝑡|𝑠𝑡) × 𝐴𝑡]        （21） 

In reinforcement learning, the process of 
policy updating may lead to drastic 
fluctuations in policy performance, and if the 
policy update amplitude is too large, it may 
lead to overfitting of current empirical data, 
thereby reducing the generalization ability of 
the policy in unknown environments. 
Therefore, this article introduces comparative 
parameters between the new strategy and the 
old strategy in the pruning objective function 
to maintain the stability of policy updates. The 
ratio of the action probability under the 
current strategy to the action probability under 
the previous strategy is denoted as 𝑝𝑡(𝜃) =𝜋𝜃(𝑎𝑡|𝑠𝑡)/𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡) . To avoid policy 
mutations during the parameter update process, 
the objective function is constrained. The PPO 
algorithm limits the training stability to a 
small range through policy updates. The PPO2 
algorithm can use two constraints: limiting KL 
divergence and truncation function. This 
article uses a truncation function to optimize 
the PPO2 objective function, as shown in 
formula (22). 𝐿𝜋𝜃𝐶𝐿𝐼𝑃(𝜋𝜃𝑜𝑙𝑑) = 𝐸𝑟~𝜋𝜃[∑ [min(𝑝𝑡(𝜋𝜃 , 𝜋𝜃𝑜𝑙𝑑)𝐴𝑡𝜋𝜃𝑜𝑙𝑑 , 𝑐𝑙𝑖𝑝(𝑝𝑡(𝜋𝜃, 𝜋𝜃𝑜𝑙𝑑), 1 − 𝜖, 1 + 𝜖)𝐴𝑡𝜋𝜃𝑜𝑙𝑑)）𝑇𝑡=0 ]]    （22） 𝜖  is a relatively small value, and the 

experimental results were good when 𝜖 = 0.2 
in this article. The clip operation in formula 
(12) limits the amplitude of policy updates to 

avoid excessive deviation from a single policy 
update. The structure of the E-PPO2 algorithm 
is shown in Figure 3. 
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Fig.3 E-PPO2 algorithm architecture

 

5 Experimental results 

The experiment in this article is divided into 
two parts. In the first part, in order to verify 
the effectiveness of the proposed serverless 
platform based on SWAM technology, 13 
benchmark test functions were used to 
compare the performance of different 
platforms. The platform performance was 
evaluated from two indicators: the cold start 
delay of the function and the overall execution 
delay of the function. In the second part, in 
order to verify the effectiveness of the 
proposed task unloading and resource 
allocation strategies in the edge computing 
scenario, the proposed E-PPO2 strategy is 
compared with the existing three task 
unloading methods. 

In this paper, serverless computing is 
introduced into the edge computing 
environment. In order to reduce the container 
cold start delay, WASM is used to replace the 
container technology in the serverless 
platform. In order to verify the effectiveness 

of using WASM technology on the Severless 
platform, this article uses 13 benchmark 
testing functions to perform performance tests 
on the OpenFaaS platform based on WASM 
technology and the unmodified OpenFaaS 
platform. Performance evaluation is conducted 
from two indicators: cold start time and 
function completion time. The experimental 
results are shown in Figure 4. From Figure 4 
(a), it can be seen that the OpenFaaS 
serverless platform based on WASM can 
effectively solve the problem of cold start 
latency for functions, with a reduction of 
approximately 81% in cold start latency. 
Figure 4 (b) shows the completion time of the 
test function on different Serverless platforms, 
and the results show that the execution speed 
of the test function on the improved platform 
has increased by approximately 5%. 



 

(a) 

 

(b) 

Fig.4 Cold start time and completion time of 13 test 

functions on different Serverless platforms: (a) Cold start 

time of test functions; (b) Completion time of test functions 

To verify the effectiveness of the task 
offloading and resource allocation strategies 
proposed in this article, the E-PPO2 algorithm 
was compared with random algorithms 
(Random), DDPG (Deep Deterministic Policy 
Gradient) [34], DQN (Deep Q-network), and 
DDQN (Double DQN) [35]. First, considering 
the edge computing scenario, we set the 
number of tasks to 5~100 and a total of 10 
edge nodes. The calculation task transmission 
bandwidth is 6MHz, the task transmission 
power is 25dBm, the calculation power of the 
edge node CPU is 50GHz, the calculation 
power of the terminal device CPU is 10GHz, 
and the discount parameter is 0.5. The 
E-PPO2 algorithm parameters are shown in 
Table 2. 
 

 

 

Table .2 E-PPO2 algorithm parameters 

Parameters Value 

Learning rate 3e-4 

Batch_size 64 

N_Steps 2048 

Clip_range 0.2 

Gramma 0.99 

Gae-lambda 0.95 
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(b) 

Fig.5 For the total system consumption of different strategies 

under different task arrival rates, the number of tasks in (a) is 

set to 50, and the number of tasks in (b) is set to 100. 

The total system consumption of the five 
methods shows a certain growth trend with the 
increase of task arrival rate, but overall, the 
DQN, DDQN, DDGP, and E-PPO2 algorithms 
outperform the random algorithm. This is 
because the deep reinforcement learning 
algorithm introduces an experience playback 
process for obtaining intelligent computing 
offloading decisions. The system consumption 
of the E-PPO2 algorithm is superior to the 
total system consumption of the DDGP 



algorithm. This is because the unloading 
decisions of E-PPO2 and DDGP are generated 
through learning and training data. DDPG 
adopts a deterministic strategy, while E-PPO2 
adopts a random training strategy, and 
introduces entropy in the training to improve 
exploration ability. 

 

(a) 

 

(b) 

Fig.6 Total system consumption under different task sizes: (a) 

50 task quantities (b) 100 task quantities 

Figure 6 shows the system consumption 
of different strategies under different task 
sizes. The number of tasks in Figures 6 (a) and 
(b) is set to 50 and 100, respectively. As the 
task data volume increases, the system 
consumption gradually increases. The random 
algorithm has the fastest increase in system 
consumption, while the growth of the E-PPO2 
algorithm is significantly lower than other 
strategies. This is mainly because the E-PPO2 
algorithm can effectively solve the unknown 
load state at the edge server. When the task 
data volume increases to 900kbits, the 

E-PPO2 strategy reduces system consumption 
by approximately 8% compared to the DDGP 
offloading strategy. 

6 Conclusion 

This paper investigates the synergy between 
Artificial Intelligence Generated Image 
Content (AIGIC) and edge computing, 
enabling efficient image content generation on 
terminal devices. In contrast to traditional 
generation models, leveraging edge computing 
technology allows for on-device model 
reasoning and calculation, thereby reducing 
data transmission, latency, network bandwidth 
pressure, and enhancing the user experience. 
The combined implementation of artificial 
intelligence image generation and edge 
computing technology offers low 
computational resource requirements. By 
offloading certain model computing tasks to 
the edge server for processing, the burden on 
the cloud server is alleviated, leading to 
reduced energy consumption. Additionally, it 
enhances real-time image generation, 
mitigates operational expenses, and proves 
conducive to resource-constrained devices or 
applications. This paper integrates edge 
computing technology with serverless 
technology, leveraging the characteristics of 
the serverless architecture, such as resource 
management, automatic scalability, rapid 
deployment, and distributed data. These 
features render it well-suited for edge 
computing scenarios. Addressing the 
challenge of cold start latency in Serverless 
containers, this article proposes an effective 
solution utilizing WebAssembly (WASM) 
technology. However, it should be noted that 
WASM technology cannot entirely replace 
container technology due to their distinct 
application scenarios and respective 
advantages. Consequently, to extend the 
applicability of the Serverless platform across 
diverse scenarios, the research direction is 



currently focused on a hybrid Serverless 
platform that combines WASM and Docker 
technology. 

To address the task offloading and 
resource allocation challenge in edge 
computing scenarios, this paper aims to 
minimize the combined weights of delay and 
energy consumption. A model for task 
offloading and resource allocation is 
constructed, and an optimization algorithm 

based on maximum entropy, referred to as the 
near-end strategy optimization algorithm, is 
proposed. The effectiveness of the E-PPO2 
algorithm is validated through experimental 
evaluation. Moving forward, we will 
incorporate the mobility factor of end users 
and devise dynamic strategies for task 
offloading and resource allocation. 
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