
Edge-Computing-Assisted Intelligent Processing of
AI-Generated Image Content
Suzhen Wang

Hebei University of Economics and Business
Yongchen Deng

Hebei University of Economics and Business
Lisha Hu

Hebei University of Economics and Business
Ning Cao

Wuxi Vocational College of Science and Technology

Research Article

Keywords: AIGIC, edge computing, serverless computing, WebAssembly, E-PPO2

Posted Date: September 25th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3366364/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

Version of Record: A version of this preprint was published at Journal of Real-Time Image Processing on
February 25th, 2024. See the published version at https://doi.org/10.1007/s11554-023-01400-w.

https://doi.org/10.21203/rs.3.rs-3366364/v1
https://doi.org/10.21203/rs.3.rs-3366364/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11554-023-01400-w

Edge-Computing-Assisted Intelligent Processing of AI-Generated

Image Content

Suzhen Wang1·Yongchen Deng1·Lisha Hu1·Ning Cao2, 3

Abstract Artificial intelligence-generated
image content (AIGIC) is produced through
the extraction of features and patterns from a
vast image dataset, requiring substantial
computational resources for training. This
study aims to enhance image processing and
response time on terminal devices by
utilizing 1 edge computing technology to
offload specific training tasks to edge nodes.
Additionally, task offloading and resource
allocation strategies are developed to
effectively generate image content on terminal
devices. Edge computing aims to execute
computing tasks in close proximity to data
sources; however, the computing resources of
edge devices are limited. Therefore, the
development of suitable resource allocation
strategies for resource-constrained
environments is crucial in edge computing
research. Serverless computing, which heavily
relies on container technology for program
hosting, is recognized as one of the most

1 Correspondence
Ning Cao
ning.cao2008@hotmail.com

1 School of Information Technology, Hebei University

of Economics and Business, Shijiazhuang, Hebei,

China
2 School of Integrated Circuits, Wuxi Vocational

College of Science and Technology, Jiangsu, China
3 School of Information Engineering, Shandong

Vocational and Technical University of International

Studies, Shandong, China

Funding information

Natural Science Foundation of Hebei Province,
Grant/Award Number: F2021207005

suitable architectures for edge computing.
WebAssembly (WASM) is a binary instruction
format that operates on a stack and enables the
execution of computing tasks on both client
and server sides. Its advantages encompass
reducing cold start time, enhancing efficiency,
and improving portability, thereby addressing
challenges encountered by container
technology in Serverless deployments. This
paper commences with an introduction and
analysis of the research status of Serverless
and WASM, subsequently delving into the
investigation of task offloading and resource
allocation in edge computing within the
Serverless architecture supported by WASM.
To facilitate collaboration among edge nodes,
an enhanced deep reinforcement learning
algorithm, called entropy-based Proximal
Policy Optimization (E-PPO2), is employed.
This algorithm allows edge devices to share a
global reward and continuously update
parameters, leading to an optimized response
strategy and maximizing the utilization of
edge device resources.
Keywords: AIGIC; edge computing;
serverless computing; WebAssembly; E-PPO2

1. Introduction

Due to the continuous advancements in deep
learning and image processing technology, the
capabilities of AIGIC have significantly
improved, enabling its widespread application
across various domains such as computer
games, virtual reality, design, and artistic
creation. However, the training process of
AIGIC usually requires substantial computing

mailto:ning.cao2008@hotmail.com

resources and storage capacity, limiting its
efficient utilization on resource-constrained
terminal devices. This study utilizes edge
computing technology to resolve this
challenge. The integration of AIGIC with edge
computing technology can improve system
efficiency, minimize network transmission
overhead, reduce latency, bolster privacy
protection, and improve reliability. Edge
computing represents a distributed computing
model that utilizes the computational
capabilities of terminal devices and edge
servers for data processing and
decision-making in close proximity to data
sources. By doing so, it intends to improve
system performance, minimize latency, and
strengthen data privacy and security. The
fundamental idea of edge computing is to
process computing tasks on computing
resources close to data sources [1]. The
rational task offloading to edge nodes and
efficient allocation of limited computing
resources to each computing task remain
pivotal challenges in edge computing
research.

Serverless was originally proposed for
cloud computing environments, aiming to
simplify the development and deployment
process and improve efficiency. Serverless
architecture includes Function as a Service
(FaaS) and Backend as a Service (BaaS) [2],
and its core idea is to execute functions on
demand. The automatic scaling feature of the
serverless architecture is well-suited for edge
computing scenarios, where edge nodes
typically experience changing load and traffic
demands. The serverless architecture can
automatically scale up or down the size of
functions according to actual needs to meet
the requirements of horizontal scaling. This
automatic scaling function can effectively
handle sudden high load situations and ensure
system scalability and other performance
metrics. The serverless architecture on the

edge node can offer functions such as
simplified deployment, elastic scaling, event
driven and cost-effective without requiring
expertise in underlying infrastructure details,
making it an efficient and scalable application
development and deployment model in the
edge computing environment. However, there
are still many challenges and issues that need
to be addressed in Serverless [3,4], such as the
increase in program running time caused by
container cold start [5].

WebAssembly (WASM) is a low-level
bytecode format designed for stack based
virtual machines [6], designed to provide
efficient cross platform execution
environments. WASM is capable of running in
web browsers and is also compatible with
server-side and embedded devices. By
packaging the program as a WASM module
and utilizing the Serverless platform, faster
cold start times can be realized without relying
on Docker. This method can boost the
responsiveness and scalability of the
application while decreasing resource
consumption and costs. Therefore, this paper
investigates the serverless task offloading and
resource allocation supported by WASM in
edge computing environment. And in order to
enhance the collaboration capability between
edge nodes, E-PPO2 is employed to enable
each edge node agent to share global rewards
and develop final task offloading and resource
allocation strategies.

2. Related works

Most major cloud service providers, such as
Microsoft, Amazon, Google, and IBM, offer
Serverless computing. With the exponential
proliferation of IoT devices, an immense
volume of data is being generated by
numerous sensors, smart devices, and terminal
devices. Many applications necessitate
real-time or near real-time processing and
decision-making capabilities due to their

reliance on this data, such as smart cities,
autonomous driving, and industrial automation.
However, deploying Serverless to the cloud
center alone proves inadequate in effectively
managing the surge of tasks originating from
these terminals. Consequently, the integration
of serverless computing with edge computing
has emerged as a prominent development
trend. Recognizing this need, certain cloud
service providers have extended their
offerings to include edge capabilities,
exemplified by AWS IoT Greengrass [8] and
Azure IoT Edge [9]. Recent study [10] have
illustrated the successful utilization of
Serverless in resource-constrained
environments, particularly in edge computing
scenarios. Consequently, a plethora of
research endeavors have commenced to
explore the application of Serverless in edge
computing scenarios. The performance of
Serverless in edge computing has been
examined by previous studies [11-13]. In a
comparative evaluation of various
open-source serverless architectures, it was
determined that Kubeless outperformed other
architectures [14]. The utilization of container
technology within the Serverless architecture
was investigated in the context of video
analytics applications at the edge [15]. While
container technology effectively mitigates
memory and CPU overhead, the cold start of
containers introduces delays to the application.
To assess the maturity of serverless computing
methods in cloud edge environments, new
standards were introduced [16]. Experimental
results revealed that the current product
exhibits immature features in data
management, serverless programming models,
and AI support.

An introductory document on WASM,
which includes performance benchmarks, was
published by a previous study [17].
Comparisons were made between the startup
time of WASM and containers, revealing that

WASM workloads exhibit a startup time about
ten times faster with a lower memory footprint
[18]. In another study, the cold start time and
total execution time of WASM and containers
were compared in 13 tests, highlighting the
significant advantages of WASM [19].
Furthermore, the feasibility of utilizing edge
WASM in serverless environments was
demonstrated [20]. This study applied WASM
to edge computing and conducted a
performance comparison against native
execution. The overall runtime of WASM
exhibited a 2-5 times slower performance
compared to local execution due to the
introduction of an additional intermediate
layer during actual execution [21, 22]. A
hybrid serverless platform, proposed by a
recent study [23], incorporates both WASM
and Docker while extending Kubernetes (K8S)
for container management. Experimental
results have demonstrated significant
advantages of this platform for serverless
applications requiring frequent execution and
elasticity. WASM technology introduces
numerous benefits to the serverless
environment, which are not achievable in the
current operating environment [24]. Another
study [25] explored the features and usage
scenarios of edge serverless computing
utilizing WASM. It also examined the current
status, trends of adoption, and discussed the
developmental direction of utilizing containers
as edge serverless computing platforms within
the WASM execution environment.
Furthermore, in a novel approach suggested
by researchers [26], an edge computing
scenario without servers utilizing WASM was
proposed. Experimental results revealed a 99.5%
reduction in cold start delay and a boost of 4.2
times in function execution throughput.

The study by [27] examined the resource
scheduling problem in serverless platforms
and categorized them based on scheduling
objectives: resource utilization, response time

delay, and multi-objective optimization. A
comprehensive review by [28] discussed the
current research status of key technologies in
resource management for serverless platforms.
In order to tackle the resource management
bottlenecks arising from imbalanced call
frequency and resource allocation in function
applications, [29] presented two resource
management strategies. [13] developed a
real-time data analysis system utilizing
serverless platform and cloud edge
architecture. The system distinguished
between multi-level real-time data analysis
workflows based on time sensitivity. However,
it did not address resource scheduling issues.
In a comprehensive review of 164 papers, [30]
analyzed the topics of performance
optimization, programming framework,
application migration, and multi-cloud
development in the context of serverless
computing. The analysis highlighted resource
scheduling as a prominent research trend in
the field. To tackle the challenge of
heterogeneous computing resources in
serverless computing, [31] employed deep
reinforcement learning algorithms and
conducted training and evaluation in a cloud
center. The experimental results revealed a 24%
increase in application response time and a 34%
increase in resource utilization cost compared
to the baseline technology. In conclusion, in
the context of an edge computing environment
and under the serverless architecture
supported by WASM, further investigation is
required to optimize the strategies for task
offloading and resource allocation.

3. Edge Serverless computing

This section presents the multi-layer
architecture of edge serverless computing,
along with the utilization of WASM to support
edge serverless computing. This includes an
enhanced version of Kubernetes (K8S) for
deploying and managing WASM modules, the

selection of benchmark functions for testing,
and the adoption of a Serverless platform.

3.1 Edge serverless computing multi-layer
architecture

Edge serverless computing refers to the
utilization of the Serverless computing
platform on edge devices to carry out
computational tasks. In the context of edge
computing, Serverless computing plays a vital
role in providing an efficient task processing
platform between edge devices and clients.
Edge serverless computing is characterized by
a multi-layer architecture, illustrated in Figure
1. The initial layer comprises the edge device
network, where diverse edge devices are
deployed in proximity to users and capable of
intercommunication. The orchestration and
management of the edge device network are
facilitated by edge controllers. The serverless
layer facilitates the deployment, execution,
and collaborative scheduling of serverless
functions, establish direct connections with
the user layer to receive and execute diverse
edge applications.

Edge applications

C

Edge computing Device Network

Edge node

Edge Manager

Serverless based service management

Service
placement/
deployment

Service
Registration/

Discovery

Service
scheduling

strategy

Intra/inter domain
collaboration

strategy

Edge orchestration controller

Deterministic
management

Segment routing
control

network
scheduling

Resource
orchestration

Network
awareness

Storage
Sense

Computational
power perception

Collaborative
sharing

Edge node

Fig.1 Edge serverless computing multi-layer architecture

3.2 Serverless Computing with WASM
support

To facilitate the deployment and orchestration
of containers, K8S is employed as the chosen
tool in this article. In order to enable the
deployment of WASM modules in K8S
clusters and simulate the instantiation process
of workload based on containers, a dedicated
K8S WASM operator [23] is utilized. The K8S
operator serves as a custom controller that
extends the functionality of K8S. Leveraging
the API and resource model of K8S, the
operator manages and operates applications or
services through automated programming.
Operators typically comprise three
components: Custom Resource Definition
(CRD), controller, and automation operations.
The CRD allows developers to define new
resource types for describing and managing
the configuration and status of specific
applications or services. Thus, operators are
capable of extending the resource model of
K8S via CRD. In this article, a new CRD
called WASM-CRD is introduced to describe
WASM workloads. The newly defined CRD
seamlessly integrates with existing K8S tools
and can be readily incorporated into
K8S-based platforms. Figure 2 illustrates the
serverless deployment process facilitated by
WASM, depicting the following steps in the
deployment process:

1. Create a new WASM-CRD in the
cluster;

2. Generate events from computational
tasks to trigger the coordination function of
the K8S operator. The operator verifies the
parameters passed in WASM-CRD, and if
successful, instantiates the built-in resources.
And each WASM-CRD has at least the
following resource support: deployment,
specifying OCI images, customizing K8S
RuntimeClass, and exposed ports;

3. Create portal services and deploy
resources;

4. After creating a deployment, the pod
instantiation will be triggered, and the pod

will be scheduled by the K8S scheduler on the
selected node. Bind an HTTP listener on a
randomly selected port, which is shared with
the K8S operator through a Redis instance;

5. The local Kubelet running on the node
is based on the associated RuntimeClass, and
calls the modified version of Spin Ship and
deploys the WASM module;

6. Store the random port of the Spin
instance in Redis;

7. WASM module reporting status;
8. Container reports the current status to

K8S;
9. The module Pod representing WASM

has entered a ready state;
10. Once the module Pod representing

WASM enters the ready state, the K8S
operator will query the Redis instance;

11. Obtain the value of the random port
and correct the Service and Ingress objects.

1

4

2

8

5 7

6

9

10

3

11

Serverless

Computing tasks

Kubernetes

Kubernetes Operator

Fig.2 serverless deployment process supported by WASM

3.3 Selection of benchmark functions for
testing and the serverless platform

This study deploys the Serverless platform in
the edge computing environment to address
the challenges of task offloading and resource
allocation. To validate the effectiveness of the
chosen platform, a benchmark testing function
is employed. The Serverless benchmark
function serves as a standardized tool for
evaluating the performance of various
Serverless platforms, measuring key indicators
such as cold start latency, execution time, and

resource utilization. The benchmark function
can be tailored and expanded as per specific
requirements to assess the performance and
capabilities of different Serverless platforms.
To obtain more precise performance
measurements, factors such as request
concurrency, request frequency, and data
volume should be taken into consideration
during performance testing.

To assess the performance of the
serverless architecture supported by the
proposed WASM technology and make a
comparison with existing container-oriented
serverless platforms, this study employs an
expanded set of serverless benchmark testing
functions [32]. The set comprises 13 test
functions (refer to Table 1), all of which are
compatible with the WASM execution
environment of the shared code library. The
execution process of each test function
involves the following steps: firstly, compiling
the function code into a WASM module, then
bundling it with the necessary dependencies,
and finally deploying it onto the serverless
platform. Subsequently, the function can be
tested by triggering its execution. Function
triggering can be accomplished through

various means, such as invoking the function's
API endpoint, sending specific events, or
utilizing the triggers provided by the platform.
Upon triggering a function, the platform
initiates the loading of the corresponding
WASM module and commences the execution
of its code. The WASM-based serverless
platform employs the Wasmtime Runtime
(Wasmtime) as the execution engine for the
WASM module. Wasmtime, an open-source
WASM runtime, enables the execution of
WASM modules within a server environment.
When a function is triggered, Wasmtime loads
the associated WASM module and executes its
code within a virtual machine. During the
execution of the function, Wasmtime parses
the input parameters and carries out the
function's code. The function's code is
exported through the functions defined in the
WASM module and interacts with the
platform's provided API. Subsequently, upon
completion of the function's execution,
Wasmtime delivers the result to the caller.
Throughout the execution process, various
performance metrics, such as execution time
and memory usage, are continuously
monitored and recorded.

Table 1 Severless test benchmark contains test function information

Name Text

number

P.Lang1 Description Type2

audio-sine-wave (1) Rust Render a 440Hz sine wave and store it as a mono .wav file M

fuzzysearch (2) Rust Search for the occurrence of a phrase in a text file R

n-body (3) Rust Model the orbits of Jovian planets M

prime-numbers (4) Rust Search for prime numbers among the first n numbers M

whatlang (5) Rust Determine the natural language of a given string R

zip-compression (6) Rust Compress multiple files in a single zip archive R

aes (7) Go Encrypt a given text using AES symmetrical encryption multiple times R

checksum (8) Go Calculate the MD5, SHA256, and SHA512 checksums of a given file R

diskio (9) Go Write and then read back a file containing 100000 lines of text M

float-operation (10) Go Calculate sin, cos and square root of an arbitrary number M

imageprocessing (11) Go Rotate an image and change its color palette R

linear-equations (12) Go Solve a system of linear equations M

matmul (13) Go Square matrix multiplication M

1Source programming language of the given benchmarking function

2M - Microbenchmark; R - Real-word workload

OpenFaaS is specifically designed for
K8S and can be deployed to effectively utilize
various functions of K8S, such as automatic
scaling, service discovery, and load balancing.
The OpenFaaS platform supports the use of
WASM technology to write and deploy
functions. Compared with other serverless
platforms, OpenFaaS is more suitable for edge
computing application scenarios. Therefore,
this paper uses OpenFaaS based on WASM
technology as the serverless platform to study
task unloading and resource allocation
strategies in edge computing environment.

4 Research on Task Unloading and
Resource Allocation Strategies

4.1Network model construction

Each edge system consists of a wireless base
station and K edge servers, where the edge
servers are represented as:𝑟 = {𝑈1, 𝑈2, … , 𝑈𝑘},
each edge server 𝑈𝑖 has N independent
computing tasks, and the task set of 𝑈𝑖 is
represented as 𝛤𝑖 = {𝑇𝑖,1, 𝑇𝑖,2, … , 𝑇𝑖𝑁} . The
edge computing server provides the device
with high-intensity computing services. The
terminal device offloads computing tasks to
the edge server, and the server allocates
resources to each user to reduce the delay and
energy consumption of the user device. In this
model, the cache of unprocessed tasks stored
by the edge server is large enough, and both
the user device and the edge server are
equipped with a single core CPU. All tasks are
processed in the order of the input CPU.

4.2 Problem Description

The system consists of K edge servers, and all
task sets of all edge servers are represented as 𝐺 = {𝑇𝑖,𝑗|1 ≤ 𝑖 ≤ 𝐾, 1 ≤ 𝑗 ≤ 𝑁}. There is a
total of K*N (denoted as m) independent
computing tasks that need to be processed,

where all tasks can be uninstalled and
scheduled. Each task 𝑇𝑖,𝑗 is described by two
parameters: 𝐷𝑖,𝑗 and 𝐶𝑖,𝑗 ,which 𝐷𝑖,𝑗
represents the amount of task data that needs
to be processed and 𝐶𝑖,𝑗 represents the
number of CPU cycles required to process
each unit of data for that task. In this article,
the main focus is on coarse-grained task
offloading and resource allocation. Tasks are
not further divided and each device is only
equipped with one antenna, which can only
transmit one task at a time; All terminal
devices share the transmission bandwidth
equally, so the rate at which the computing
tasks 𝑇𝑖,𝑗 of the terminal devices 𝑈𝑖 are
transmitted to the edge server is shown in
formula (1): 𝑅 = (𝐵/𝐾)𝑙𝑜𝑔2[1 + 𝑆/𝑁] (1)

Where B is the channel bandwidth, in
hertz, S represents the average power of the
signal transmitted within the channel, and N is
the internal Gaussian noise power of the
channel. Therefore, the time for each task 𝑇𝑖,𝑗
to be transmitted from the terminal device to
the edge server is shown in formula (2). 𝑡𝑖,𝑗𝑡𝑟𝑎𝑛𝑠 = 𝐷𝑖,𝑗/𝑅 （2）

The total frequency of the server is F, the
frequency assigned to the edge server 𝑈𝑖 is 𝑓𝑖,𝑠𝑒𝑟, and the CPU frequency for tasks to be
executed locally is 𝑓𝑖,𝑢𝑠𝑒𝑟 .Therefore, the
execution time of the task 𝑇𝑖,𝑗 on the edge
server 𝑈𝑖 and locally is shown in formulas (3)
and (4).

𝑡𝑖,𝑗𝑒𝑑𝑔𝑒 = 𝐶𝑖,𝑗/𝑓𝑖,𝑠𝑒𝑟 （3）

𝑡𝑖,𝑗𝑙𝑜𝑐𝑎𝑙 = 𝐶𝑖,𝑗/𝑓𝑖,𝑢𝑠𝑒𝑟 （4）

The energy consumption for task 𝑇𝑖,𝑗 to
be executed locally and unloaded to edge
servers are shown in formulas (5), (6). The
transmission energy consumption is shown in

formulas (7). 𝑒𝑖,𝑗,𝑙𝑜𝑐𝑎𝑙 = 𝛿𝑖𝑓𝑖,𝑢𝑠𝑒𝑟2 𝐶𝑖,𝑗 （5） 𝑒𝑖,𝑗,𝑒𝑑𝑔𝑒 = 𝛿𝑖𝑓𝑖,𝑠𝑒𝑟2 𝐶𝑖,𝑗 （6） 𝑒𝑖,𝑗 = 𝑡𝑖,𝑗𝑡𝑟𝑎𝑛𝑠𝑝 （7）

Among them, 𝛿𝑖 is the effective
capacitance coefficient of the edge server, and 𝑝 is the transmission power of the terminal
device unloading tasks to the edge server.
Therefore, the total energy consumption for
processing tasks is:

𝑒𝑖 = ∑ [（𝑒𝑖,𝑗 + 𝑒𝑖,𝑗,𝑒𝑑𝑔𝑒）𝑥𝑖,𝑗𝑁𝑗=1 + 𝑒𝑖,𝑗,𝑙𝑜𝑐𝑎𝑙
（1 − 𝑥𝑖,𝑗）] （8）

Where 𝑥𝑖,𝑗 is the task offloading
coefficient, 𝑥𝑖,𝑗∈{0,1}. When the value of 𝑥𝑖,𝑗 is 0, it indicates that the task is executed
locally, and when the value is 1, it indicates
that the task is executed on edge server j. The
total consumption of the system is the
weighted sum of the completion time of each
user's last task and the energy consumption of
the edge server: 𝐸𝑖 = 𝑚𝑎 𝑥{𝑡𝑖,𝑗,𝑙𝑞 , 𝑡𝑖,𝑗,𝑠𝑞 } + 𝑒𝑖 （9）

Among them, 𝑡𝑖,𝑗,𝑙𝑞 represents the time
required for the task queue to be executed
locally, and 𝑡𝑖,𝑗,𝑠𝑞 represents the time required
for the task queue to be executed on the edge
server. The mathematical model described in
this article is a constrained joint optimization
problem that optimizes offloading decisions,
offloading scheduling, and server resource
allocation under limited server resources.
Therefore, the optimization objective of the
model can be expressed as: 𝑃1：𝑚𝑖𝑛 ∑ 𝐸𝑖𝐾𝑖=1 （10a） s. t. ∑ 𝑓𝑖,𝑠𝑒𝑟𝐾𝑖=1 ≤ 𝐹 （10b） 𝑓𝑖,𝑠𝑒𝑟 ≤ 𝐹，∀𝑖 ∈ 𝑟 （10c）

𝑥𝑖,𝑗 ∈ {0,1}，∀𝑇𝑖,𝑗 ∈ 𝐺 （10d）

The variables optimized in this article
include task offloading decisions and edge
server CPU frequency allocation. The
optimization objective (10a) is the weighted
sum of system delay and energy consumption.
The constraint (10b) is that the total frequency
assigned to the server cannot exceed the
maximum frequency. The constraint condition
(10c) indicates that the frequency allocated to
each edge server cannot exceed the maximum
frequency. The constraint condition (10d)
indicates that the execution location of the
task is only on terminal devices and edge
servers. The optimization objective (10a) can
be solved by finding the optimal decision and
calculating the resource allocation for
unloading. However, the unloading decision
vector X is a feasible set of binary variables,
and the objective function is a non-convex
problem. As the number of tasks increases, the
difficulty of solving the objective function
increases exponentially, making it an NP hard
problem. This article uses an improved deep
reinforcement learning method (E-PPO2) for
solving.

4.3 algorithm optimization

4.3.1 MDP optimization problem

In this section, the defined total system
consumption is modeled as a Markov
Decision Process (MDP), which can be
represented by tuples (S, A, P, R), where S is
the object in the state space representing the
next state. A is the action space, representing
the object of the next action. P is the
probability set of transitioning from the
current state to another state. R is the reward
function corresponding to the action in a
specific state. The goal of MDP is to find a
policy and select the optimal action decision

rule in each state to maximize cumulative
rewards and obtain the optimal set of policies.

A. State

The state space of MDP can be
represented as: 𝑆 = {𝑠𝑡 ={(𝑥𝑚(𝑡), 𝐹(𝑡), 𝐸𝑏𝑢𝑑𝑔𝑒𝑡(𝑡))}} . Where 𝑠𝑡

represents the current state of all tasks in time
slot t, 𝑠𝑡 = {𝑠1, … , 𝑠𝑚}. 𝑥𝑚(𝑡) represents the
computational characteristics of all tasks in
time slot t. 𝐹(𝑡) = {𝑓1, … , 𝑓𝑘} indicates the
CPU computing power corresponding to the
edge server in time slot t. 𝐸𝑏𝑢𝑑𝑔𝑒𝑡(𝑡) = {𝐸𝑖}
indicates the total consumption of tasks
executed locally or uninstalled to edge servers
during time slot t.

B. Action

The actions selected for each task in its
current state can be defined as: 𝐴 = {𝑎𝑡 ={𝜒𝑚(𝑡), 𝜉𝑚(𝑡)}} , where 𝜒𝑚(𝑡) ∈ {0,1}
represents the execution location of the task, 𝜒𝑚(𝑡) = 0 represents the task being executed
locally, and 𝜒𝑚(𝑡) = 1 represents the task
being unloaded to the edge server for
execution. 𝜉𝑚(𝑡) ∈ {1,2, … , 𝑘} indicates the
final execution location for uninstalling to the
edge server, such as when the task is

uninstalled to the n edge server, 𝜉𝑚(𝑡) = 𝑛.
C. State-to-state transition

The transition probability between states
is expressed as: 𝑃 = {𝑃𝑎𝑡(𝑠, 𝑠𝑡+1)|𝑠, 𝑠𝑡+1 ∈𝑆, 𝑎𝑡 ∈ 𝐴, 𝑝 ∈ 𝑃} . Its meaning is that the
probability of taking action 𝑎𝑡 in state 𝑠𝑡
and entering the state 𝑠𝑡+1 is 𝑃𝑎𝑡(𝑠, 𝑠𝑡+1).

D. Reward function

In each state transition process, the
decision-maker receives a reward or
punishment. In deep reinforcement learning
algorithms, rewards can be represented by
states and actions: S × A → R. Therefore, in
this system, the reward function is defined as: 𝑅 = {𝑟𝑡(𝑠𝑡, 𝑎𝑡)}, which 𝑟𝑡(𝑠𝑡, 𝑎𝑡) can also be
represented as: 𝑟𝑡(𝑠𝑡, 𝑎𝑡) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝜒𝑚𝐸𝑚𝑒𝑀𝑚=1 + (1 −𝜒𝑚)𝐸𝑚𝑙 （11）

By introducing a state action function 𝑄(𝑠𝑡, 𝑎𝑡) = 𝐸𝜋[𝑟𝑡|𝑆 = 𝑠𝑡 , 𝐴 = 𝑎𝑡]} in MDP,
the system consumption is minimized by
selecting actions 𝑎𝑡 in the current state 𝑠𝑡 ,
resulting in an overall task offloading and
resource allocation strategy π. The update
function of 𝑄(𝑠𝑡, 𝑎𝑡) is shown in formula
(12). 𝑄𝜋∗ (𝑠𝑡 + 𝑎𝑡) = r(𝑠𝑡 + 𝑎𝑡) + ∑ 𝑃𝑎𝑡(𝑠𝑡, 𝑠𝑡+1)𝑠𝑡+1∈𝑆 ∑ 𝜋(𝑎𝑡+1|𝑠𝑡+1)(𝑄𝜋（𝑠𝑡+1, 𝑎𝑡+1）) （12）

Among them, 𝑃𝑎𝑡(𝑠𝑡, 𝑠𝑡+1) is defined as
the probability of state 𝑠𝑡 entering the next
state 𝑠𝑡+1, and task offloading strategy 𝜋𝑚∗ is
obtained to maximize long-term discount
rewards. 𝛾 is the discount parameter of
reward importance and 𝜋𝑚∗ is expressed as: 𝜋𝑚∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋𝑚𝐸[∑ 𝛾𝑡−1𝑡∈𝑇 𝑅(𝑠𝑡, 𝑎𝑡)|𝜋𝑚]

（13）

4.3.2 E-PPO2 algorithm

In this section, the PPO2 algorithm based on
maximum entropy is used to solve the MDP
optimization problem. Entropy is used to
measure the uncertainty or information
content of random variables. For discrete

random variable X, entropy H (X) can be
calculated using formula (14). Entropy has
wide applications in fields such as information
theory, statistics, and machine learning [33].
In this article, the exploration ability of task
offloading strategy is improved by using
maximum entropy optimization reward
function, which increases the entropy
determined by the action distribution on the
basis of the original reward. The modified
reward function is shown in formula (15). 𝐻(𝑋) = − ∑ 𝑃(𝑋) ∗ log 2(𝑃(𝑥)) （14） 𝑅𝑡+1𝑒 = 𝑅𝑡+1 + 𝑒𝐻(𝜋(· |𝑠𝑡)), 𝑡 = 0,1,2, …（15）

e is a random parameter that controls the

optimal strategy and e>0. 𝐻(𝜋(· |𝑠𝑡)) =−𝑙𝑜𝑔𝜋(· |𝑠𝑡) represents the entropy of
strategy π in the state 𝑠𝑡 . The long-term
reward 𝐺𝑡𝑒 based on entropy, value function 𝑉𝜋𝑒(𝑠𝑡), and state action 𝑄𝜋𝑒(𝑠𝑡, 𝑎𝑡) function
are shown in formulas (16), (17) and (18). 𝐺𝑡𝑒 = ∑ 𝛾𝑡𝑅𝑡+1𝑒+∞𝑡=0 , 𝑡 = 0,1, …. （16） 𝑉𝜋𝑒(𝑠𝑡) = 𝐸𝜋[𝐺𝑡𝑒|𝑠𝑡], 𝑠𝑡 ∈ 𝑆 （17） 𝑄𝜋𝑒(𝑠𝑡, 𝑎𝑡) = 𝐸𝜋[𝐺𝑡𝑒|𝑠𝑡, 𝑎𝑡], 𝑠𝑡 ∈ 𝑆, 𝑎𝑡 ∈ 𝐴（18）

The modified state value function 𝑉𝜃
（𝑠𝑡） and strategy function 𝜋𝜃（𝑠𝑡|𝑎𝑡）
can be obtained from formulas (16) to (18), as
shown in formulas (19) and (20). 𝑉𝜃(𝑠𝑡) = 𝐸𝐴~𝜋[𝑄𝜋𝑒(𝑠𝑡, 𝐴)] + 𝑒𝐻(𝜋(· |𝑆)) = 𝐸𝐴~𝜋[𝑄𝜋𝑒(𝑠𝑡, 𝐴)] − 𝑒𝑙𝑜𝑔𝜋(𝐴|𝑠𝑡), 𝑠𝑡 ∈ 𝑆

（19） 𝜋𝜃(𝑠𝑡|𝑎𝑡) =𝑎𝑟𝑔𝑚𝑎𝑥 𝐸(𝑠𝑡,𝑎𝑡)~𝑝(𝜋)[∑ 𝛾𝑡(𝑟𝑡(𝑠𝑡, 𝑎𝑡) −+∞𝑡=0𝑒𝑙𝑜𝑔𝜋(· |𝑠𝑡))] （20）

The PPO2 algorithm is a new type of
Policy Gradient algorithm (PG), whose main
principle is to use gradient enhancement to
update strategy π to maximize expected
returns. In the PG algorithm, the updated

objective function of network parameters θ is
as follows: 𝐿𝑃𝐺(𝜃) = 𝐸𝑡[𝑙𝑔𝜋𝜃(𝑎𝑡|𝑠𝑡) × 𝐴𝑡] （21）

In reinforcement learning, the process of
policy updating may lead to drastic
fluctuations in policy performance, and if the
policy update amplitude is too large, it may
lead to overfitting of current empirical data,
thereby reducing the generalization ability of
the policy in unknown environments.
Therefore, this article introduces comparative
parameters between the new strategy and the
old strategy in the pruning objective function
to maintain the stability of policy updates. The
ratio of the action probability under the
current strategy to the action probability under
the previous strategy is denoted as 𝑝𝑡(𝜃) =𝜋𝜃(𝑎𝑡|𝑠𝑡)/𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡) . To avoid policy
mutations during the parameter update process,
the objective function is constrained. The PPO
algorithm limits the training stability to a
small range through policy updates. The PPO2
algorithm can use two constraints: limiting KL
divergence and truncation function. This
article uses a truncation function to optimize
the PPO2 objective function, as shown in
formula (22). 𝐿𝜋𝜃𝐶𝐿𝐼𝑃(𝜋𝜃𝑜𝑙𝑑) = 𝐸𝑟~𝜋𝜃[∑ [min(𝑝𝑡(𝜋𝜃 , 𝜋𝜃𝑜𝑙𝑑)𝐴𝑡𝜋𝜃𝑜𝑙𝑑 , 𝑐𝑙𝑖𝑝(𝑝𝑡(𝜋𝜃, 𝜋𝜃𝑜𝑙𝑑), 1 − 𝜖, 1 + 𝜖)𝐴𝑡𝜋𝜃𝑜𝑙𝑑)）𝑇𝑡=0]] （22） 𝜖 is a relatively small value, and the

experimental results were good when 𝜖 = 0.2
in this article. The clip operation in formula
(12) limits the amplitude of policy updates to

avoid excessive deviation from a single policy
update. The structure of the E-PPO2 algorithm
is shown in Figure 3.

C

Environment

Experience replay memory D

1, , ,t t t tS A r S +

1 1 1 1{(, , , ')}batch sizes a r s −

DNN

Actor network

Reward next state tr 1ts +

Feature

action

loss

Critic network

State actionts ta

Fig.3 E-PPO2 algorithm architecture

5 Experimental results

The experiment in this article is divided into
two parts. In the first part, in order to verify
the effectiveness of the proposed serverless
platform based on SWAM technology, 13
benchmark test functions were used to
compare the performance of different
platforms. The platform performance was
evaluated from two indicators: the cold start
delay of the function and the overall execution
delay of the function. In the second part, in
order to verify the effectiveness of the
proposed task unloading and resource
allocation strategies in the edge computing
scenario, the proposed E-PPO2 strategy is
compared with the existing three task
unloading methods.

In this paper, serverless computing is
introduced into the edge computing
environment. In order to reduce the container
cold start delay, WASM is used to replace the
container technology in the serverless
platform. In order to verify the effectiveness

of using WASM technology on the Severless
platform, this article uses 13 benchmark
testing functions to perform performance tests
on the OpenFaaS platform based on WASM
technology and the unmodified OpenFaaS
platform. Performance evaluation is conducted
from two indicators: cold start time and
function completion time. The experimental
results are shown in Figure 4. From Figure 4
(a), it can be seen that the OpenFaaS
serverless platform based on WASM can
effectively solve the problem of cold start
latency for functions, with a reduction of
approximately 81% in cold start latency.
Figure 4 (b) shows the completion time of the
test function on different Serverless platforms,
and the results show that the execution speed
of the test function on the improved platform
has increased by approximately 5%.

(a)

(b)

Fig.4 Cold start time and completion time of 13 test

functions on different Serverless platforms: (a) Cold start

time of test functions; (b) Completion time of test functions

To verify the effectiveness of the task
offloading and resource allocation strategies
proposed in this article, the E-PPO2 algorithm
was compared with random algorithms
(Random), DDPG (Deep Deterministic Policy
Gradient) [34], DQN (Deep Q-network), and
DDQN (Double DQN) [35]. First, considering
the edge computing scenario, we set the
number of tasks to 5~100 and a total of 10
edge nodes. The calculation task transmission
bandwidth is 6MHz, the task transmission
power is 25dBm, the calculation power of the
edge node CPU is 50GHz, the calculation
power of the terminal device CPU is 10GHz,
and the discount parameter is 0.5. The
E-PPO2 algorithm parameters are shown in
Table 2.

Table .2 E-PPO2 algorithm parameters

Parameters Value

Learning rate 3e-4

Batch_size 64

N_Steps 2048

Clip_range 0.2

Gramma 0.99

Gae-lambda 0.95

(a)

(b)

Fig.5 For the total system consumption of different strategies

under different task arrival rates, the number of tasks in (a) is

set to 50, and the number of tasks in (b) is set to 100.

The total system consumption of the five
methods shows a certain growth trend with the
increase of task arrival rate, but overall, the
DQN, DDQN, DDGP, and E-PPO2 algorithms
outperform the random algorithm. This is
because the deep reinforcement learning
algorithm introduces an experience playback
process for obtaining intelligent computing
offloading decisions. The system consumption
of the E-PPO2 algorithm is superior to the
total system consumption of the DDGP

algorithm. This is because the unloading
decisions of E-PPO2 and DDGP are generated
through learning and training data. DDPG
adopts a deterministic strategy, while E-PPO2
adopts a random training strategy, and
introduces entropy in the training to improve
exploration ability.

(a)

(b)

Fig.6 Total system consumption under different task sizes: (a)

50 task quantities (b) 100 task quantities

Figure 6 shows the system consumption
of different strategies under different task
sizes. The number of tasks in Figures 6 (a) and
(b) is set to 50 and 100, respectively. As the
task data volume increases, the system
consumption gradually increases. The random
algorithm has the fastest increase in system
consumption, while the growth of the E-PPO2
algorithm is significantly lower than other
strategies. This is mainly because the E-PPO2
algorithm can effectively solve the unknown
load state at the edge server. When the task
data volume increases to 900kbits, the

E-PPO2 strategy reduces system consumption
by approximately 8% compared to the DDGP
offloading strategy.

6 Conclusion

This paper investigates the synergy between
Artificial Intelligence Generated Image
Content (AIGIC) and edge computing,
enabling efficient image content generation on
terminal devices. In contrast to traditional
generation models, leveraging edge computing
technology allows for on-device model
reasoning and calculation, thereby reducing
data transmission, latency, network bandwidth
pressure, and enhancing the user experience.
The combined implementation of artificial
intelligence image generation and edge
computing technology offers low
computational resource requirements. By
offloading certain model computing tasks to
the edge server for processing, the burden on
the cloud server is alleviated, leading to
reduced energy consumption. Additionally, it
enhances real-time image generation,
mitigates operational expenses, and proves
conducive to resource-constrained devices or
applications. This paper integrates edge
computing technology with serverless
technology, leveraging the characteristics of
the serverless architecture, such as resource
management, automatic scalability, rapid
deployment, and distributed data. These
features render it well-suited for edge
computing scenarios. Addressing the
challenge of cold start latency in Serverless
containers, this article proposes an effective
solution utilizing WebAssembly (WASM)
technology. However, it should be noted that
WASM technology cannot entirely replace
container technology due to their distinct
application scenarios and respective
advantages. Consequently, to extend the
applicability of the Serverless platform across
diverse scenarios, the research direction is

currently focused on a hybrid Serverless
platform that combines WASM and Docker
technology.

To address the task offloading and
resource allocation challenge in edge
computing scenarios, this paper aims to
minimize the combined weights of delay and
energy consumption. A model for task
offloading and resource allocation is
constructed, and an optimization algorithm

based on maximum entropy, referred to as the
near-end strategy optimization algorithm, is
proposed. The effectiveness of the E-PPO2
algorithm is validated through experimental
evaluation. Moving forward, we will
incorporate the mobility factor of end users
and devise dynamic strategies for task
offloading and resource allocation.

References:

[1] Shi Weisong, Zhang Xingzhou, Yifan

Wang, and Zhang Qingyang, Edge computing:

State-of-the-Art and future directions, Journal of

Computer Research and Development, pp. 69-89,

2019.
[2] M.S. Aslanpour, A.N. Toosi, C. Cicconetti,

B. Javadi, and P. Sbarski, Serverless Edge

Computing: Vision and Challenges, in Proc.

2021 Australasian Computer Science Week

Multiconference, 2021.
[3] Joseph M. Hellerstein, Jose Faleiro Joseph

E, Joseph E. Gonzalez, Johann Schleier-Smith,

Vikram Sreekanti, Alexey Tumanov, and C. Wu,

Serverless Computing: One Step Forward, Two

Steps Back, arXiv preprint, 2018.
[4] V. Kjorveziroski, C. Bernad Canto, P. Juan

Roig, K. Gilly, A. Mishev, V. Trajkovikj, and S.

Filiposka, IoT serverless computing at the edge:

Open issues and research direction, Transactions

on Networks and Communications, 2021.
[5] P. Mendki, Evaluating webassembly

enabled serverless approach for edge computing,

in Proc. 2020 IEEE Cloud Summit. IEEE, 2020.
[6] , Webassembly, in Book Webassembly, vol.

2023, Series Webassembly, 2020.
[7] J. Wen, Y. Liu, Z. Chen, J. Chen, and Y.

Ma, Characterizing commodity serverless

computing platforms, Journal of Software:

Evolution and Process, 2021.
[8] Aws iot greengrass - amazon web services,

in Book Aws iot greengrass - amazon web

services, vol. 2023, Series Aws iot greengrass -

amazon web services, 2020.
[9] Iot edge | microsoft azure, in Book Iot

edge | microsoft azure, vol. 2023, Series Iot edge

| microsoft azure, 2020
[10] V. Kjorveziroski and S. Filiposka,

Kubernetes distributions for the edge: serverless

performance evaluation, The Journal of

Supercomputing, pp. 13728-13755, 2022.
[11] Baresi, Luciano and D.F. Mendonça,

Towards a serverless platform for edge

computing, in Proc. 2019 IEEE International

Conference on Fog Computing (ICFC), 2019.
[12] P. Mendki, Blockchain enabled IoT edge

computing, in Proc. Proceedings of the 2019

international conference on blockchain

technology, 2019.
[13] S. Nastic, T. Rausch, O. Scekic, S. Dustdar,

M. Gusev, and Bojana Koteska, A serverless

real-time data analytics platform for edge

computing, IEEE INTERNET COMPUT, pp.

64-71, 2017.
[14] S.K. Mohanty, G. Premsankar and M. di

Francesco, An Evaluation of Open Source

Serverless Computing Frameworks, 2018 IEEE

International Conference on Cloud Computing

Technology and Science (CloudCom), 2018.
[15] P. Mendki, Docker container based

analytics at IoT edge Video analytics usecase, in

Proc. 2018 3rd International Conference On

Internet of Things: Smart Innovation and Usages

(IoT-SIU), 2018.
[16] P. Raith, S. Nastic and S. Dustdar,

Serverless Edge Computing—Where We Are

and What Lies Ahead, IEEE Internet Computing,

2023.
[17] A. Haas, A. Rossberg, D.L. Schuff, B.L.

Titzer, M. Holman, and E.A. Dan Gohman,

Bringing the web up to speed with

WebAssembly, in Proc. Proceedings of the 38th

ACM SIGPLAN Conference on Programming

Language Design and Implementation, 2017.
[18] J. Long, H. Tai, S. Hsieh, and M.J. Yuan, A

Lightweight Design for Serverless Function as a

Service, IEEE SOFTWARE, pp. 75-80, 2020.
[19] V. Kjorveziroski and S. Filiposka,

WebAssembly as an Enabler for Next

Generation Serverless Computing, J GRID

COMPUT, 2023.
[20] A. Hall and U. Ramachandran, An

execution model for serverless functions at the

edge, in Proc. Proceedings of the International

Conference on Internet of Things Design and

Implementation. 2019, 2019, pp. 225-236.
[21] D. Hockley and C. Williamson,

Benchmarking Runtime Scripting Performance

in Wasmer, in Proc. Companion of the 2022

ACM/SPEC International Conference on

Performance Engineering, 2022.
[22] Abhinav Jangda, Bobby Powers Emery D.

Berger and A. Guha, Not so fast: Analyzing the

performance of {WebAssembly} vs. native code,

in Proc. 2019 USENIX Annual Technical

Conference (USENIX ATC 19). 2019, 2019, pp.

107-120.
[23] V. Kjorveziroski and S. Filiposka,

WebAssembly Orchestration in the Context of

Serverless Computing, J NETW SYST MANAG,

2023.
[24] J. Ménétrey, M. Pasin, P. Felber, and V.

Schiavoni, WebAssembly as a Common Layer

for the Cloud-edge Continuum, in Proc.

Proceedings of the 2nd Workshop on Flexible

Resource and Application Management on the

Edge, 2022.
[25] Xin Wang, Kai Zhao and Qin Bin,

Overview of WebAssembly Application

Research for Edge serverless Computing,

Computer Engineering and Applications, 2023.

[26] P. Gackstatter, P.A. Frangoudis and S.

Dustdar, Pushing serverless to the edge with

webassembly runtimes, in Proc. 2022 22nd IEEE

International Symposium on Cluster, Cloud and

Internet Computing (CCGrid), 2022.
[27] Zehua Ma, Bo Liu, Weiwei Lin, and jiawei

li, Overview of Resource Scheduling on Server

Free Platforms, computer science, 2021.
[28] Baiai Yang, Shan Zhao and F. Liu,

Overview of serverless computing technology

research, Computer Engineering & Science, pp.

611-619, 2022.
[29] Mohammad Shahrad, R.F.Í. Goiri, Gohar

Chaudhry, Paul Batum, Jason Cooke, Eduardo

Laureano, Colby Tresness, Mark Russinovich,

and R. Bianchini, Serverless in the wild:

Characterizing and optimizing the serverless

workload at a large cloud provider, in Proc. 2020

USENIX annual technical conference (USENIX

ATC 20), 2020, pp. 205-218.
[30] J. Wen, Z. Chen, X. Jin, and X. Liu, Rise of

the planet of serverless computing: A systematic

review, ACM T SOFTW ENG METH, 2023.
[31] A. Mampage, S. Karunasekera and R.

Buyya, Deep reinforcement learning for

application scheduling in resource-constrained,

multi-tenant serverless computing environments,

Future Generation Computer Systems, 2023.
[32] J. Kim and K. Lee, Functionbench: A suite

of workloads for serverless cloud function

service, in Proc. 2019 IEEE 12th International

Conference on Cloud Computing (CLOUD),

2019.
[33] G. Ciuperca, V. Girardin and L. Lhote,

Computation and estimation of generalized

entropy rates for denumerable Markov chains,

IEEE T INFORM THEORY, 2011.
[34] Y. Ren, X. Yu, X. Chen, S. Guo, and Q.

Xue-Song, Vehicular network edge intelligent

management: A deep deterministic policy

gradient approach for service offloading decision,

in Proc. 2020 International Wireless

Communications and Mobile Computing

(IWCMC), 2020.

[35] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji,

and M. Bennis, Optimized computation

offloading performance in virtual edge

computing systems via deep reinforcement

learning, IEEE INTERNET THINGS, 2018.

