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Abstract  

With the rapid advancement of artificial intelligence technologies, drone aerial photography has gradually 
become the mainstream method for defect detection of transmission line insulators. To address the issues of 
slow recognition speed and low accuracy in existing detection methods, this paper proposes an insulator 
defect detection algorithm based on an improved YOLOv8s model. Initially, a Multi-scale Large Kernel 
Attention (MLKA) module is introduced to enhance the model's focus on features of different scales as well 
as low-level feature maps. Additionally, by employing lightweight GSConv convolution and constructing the 
GSC_C2f module, the computational process is simplified and memory burden is reduced, thereby effectively 

improving the performance of insulator defect detection. Finally, an improved loss function using SIoU is 
adopted to optimize the model's detection performance and enhance its feature extraction capability for 
insulator defects. Experimental results demonstrate that the improved model exhibits excellent performance 
in drone aerial photography for insulator defect detection, achieving an mAP of 99.22% and an FPS of 55.73 
frames per second. Compared to the original YOLOv8s and YOLOv5s, the improved model's mAP increased 
by 2.18% and 2.91%, respectively, and the model size is only 30.18MB, meeting the requirements for real-
time operation and accuracy. 
 
Keywords: Object detection, Insulator defect, Attention mechanism, YOLOv8, SIoU 

 
 

1. Introduction 

 
Insulators play an indispensable and crucial role in power 

transmission lines, responsible for securing conductors and 

preventing short circuits between lines and towers. However, due 

to their sheer number and susceptibility to natural environmental 

factors and wear over time, insulators may suffer from issues such 

as detachment, self-explosion, and contamination. These issues 

can lead to the loss of their normal function, causing failures and 

unnecessary losses. To ensure the safe and stable operation of the 

electrical system, it is imperative to explore methods capable of 

identifying and detecting insulator defects. 

Currently, drone inspections are gradually replacing 

traditional manual inspections due to their efficiency and 

convenience. Accordingly, insulator defect detection methods 

based on aerial images have emerged. Traditional algorithms for 

insulator defect detection first process features such as color, 

texture, and edges, followed by identification through edge 

detection algorithms, HOG algorithms[1], and SIFT algorithms[2]. 

These algorithms heavily rely on high-quality images and 

appropriate shooting angles, resulting in relatively weak 

robustness. 

In recent years, deep learning algorithms have been widely 

applied in the field of image defect detection both domestically 

and internationally. Given the limitations of traditional algorithms, 

researchers have turned to deep learning. Methods using deep 

learning for insulator defect detection can be broadly divided into 

two categories. The first category includes single-stage detectors 

with high real-time detection performance. For instance, Xu et 

al.[3] proposed an insulator detection method based on SSD[4], 

which achieved high-precision detection in electrical systems but 

required high computational complexity and cost. Liu et al. 

[5]improved the YOLOv3 algorithm[6] by adopting the SPP 

feature pyramid pooling module[7] and multi-scale prediction 

network structure, enhancing the feature representation ability of 

insulator fault locations. Moreover, Qiu et al.[8] used a 

lightweight MobileNet[9] convolutional neural network as the 

feature extraction network for YOLOv4[10], solving the problems 

of excessive model parameters and slow detection speed. Han et 

al.[11] proposed an enhanced YOLOv5 model[12] that integrates 

the ECA-Net attention mechanism[13] and incorporates a 

bidirectional feature pyramid network in the feature fusion layer, 

effectively improving the accuracy of insulator defect detection. 

However, the model is parameter-intensive, potentially leading to 

computational overhead. 

The second category involves two-stage detectors. For 

instance, Zhang et al.[14] put forth a hybrid approach for insulator 

defect image detection that combines morphological operations 

with deep learning techniques. Specifically, they utilized Faster R-

CNN[15] for fine-grained localization, and augmented it with 

rotation algorithm preprocessing, sliding window techniques, and 
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object image segmentation to achieve high-accuracy defect 

detection in transmission lines. Despite its remarkable detection 

precision, the method suffers from relatively slow inference speed. 

In a parallel development, Zhou et al. [16] integrated attention 

mechanisms into the backbone network of the Mask R-CNN 

model [17], thereby enhancing the model's focus on smaller 

objects and improving localization accuracy. Furthermore, they 

incorporated rotational mechanisms into the loss function, 

allowing for precise defect localization through the consideration 

of various rotational angles. While these innovative methods 

demonstrate exceptional performance in terms of detection 

accuracy, the issue of inference speed remains a significant 

challenge. 

In light of the existing models' issues with low detection 

accuracy, large network structure parameters, and difficulty in 

achieving real-time accurate detection of insulator defects, this 

paper selects the YOLOv8s[18] lightweight deep learning 

detection model with smaller network depth and high detection 

efficiency and improves it to propose the YOLOv8-GSC model.  

The main contributions are as follows: 

1.   First, an MLKA module[19] is added to the backbone 

detection network. This module uses a multi-scale LKA 

[20]strategy to process features of different scales and fuses 

their outputs, effectively capturing the local and non-local 

contextual information of the input feature map, thereby 

improving the model's accuracy in detecting insulators and 

their defects in complex backgrounds. 

2.   Furthermore, by introducing lightweight convolution 

GSConv[21] to construct an efficient GSC_C2f module to 

replace the original C2f module, the aim is to enhance target 

feature extraction efficiency and enrich deep semantic 

information. Due to its streamlined computational process, 

the GSC_C2f module can reduce the number of model 

parameters and complexity, thereby improving detection 

efficiency. 

3.   Lastly, SIoU[22] is adopted as the loss function. SIoU 

ingeniously combines angle loss, distance loss, and shape 

loss, providing a more comprehensive and accurate 

assessment of the similarity of target bounding boxes. 

Compared with the CIoU loss function[23], SIoU shows 

significant advantages in accelerating model convergence 

speed and improving small target detection accuracy. 

 

2. YOLOv8 Model Structure 

 
YOLOv8, released by Ultralytics in early 2023, is the latest object 

detection model. Compared to previous YOLO models, YOLOv8 

demonstrates significant performance improvements across 

various key tasks, including object detection, semantic 

segmentation, and image classification. The YOLOv8 model 

consists of four main components: the input layer, the backbone 

network, the neck network, and the prediction network, as detailed 

in Figure 1. 

 
 

Fig. 1  YOLOv8 Structure 

 

The input layer of YOLOv8 integrates adaptive anchoring, 

adaptive image scaling, as well as Mosaic and Mix Up data 

augmentation techniques. Adaptive anchoring and image scaling 

ensure the generation of prediction boxes and the standardization 

of input image dimensions. Specifically, Mosaic and Mix Up serve 

as data augmentation methods that enhance the diversity of 

training samples and the model's ability to recognize small targets. 

They achieve this by integrating and fusing randomly scaled, 

cropped, and arranged images, as illustrated in Figure 2. In 

complex tasks such as insulator detection, these two techniques 

have been particularly effective in improving the model's ability to 

recognize and segment overlapping targets, thereby ensuring 

YOLOv8's performance under diverse conditions. 

 

 

(a) Mosaic data augmentation 

 

(b) Mix Up data augmentation 

 



 

 

Fig. 2 (a) shows the effect of mosaic data augmentation, and(b) 

shows the effect of mix up data augmentation. 

 

In the design of YOLOv8, the backbone detection network 

still adopts the CSPNet architecture [24]. The input image size is 

adjusted to 640 640 3  , and the image passes through the 

backbone network to generate multi-scale feature maps of three 

different dimensions: 20 20 256  、 40 40 128  and 

80 80 64  . Drawing upon the concept of ELAN in YOLOv7 

[25], an effective C2f structure is introduced, as shown in Figure 

4.3. Compared to traditional C3 and CSPLayer modules, the C2f 

module has denser residual connections. In each residual structure 

computation, the output is preserved and added to the output of 

subsequent layers, enhancing the gradient flow and making the 

network easier to train. To reduce computational complexity and 

memory requirements, the C2f module employs a smaller 

expansion ratio to decrease the number of channels in intermediate 

layers. Additionally, the bottleneck module in the C2f structure 

allows the use of different kernel sizes, increasing the network's 

flexibility in feature extraction. 

In the neck structure of YOLOv8, a path aggregation network 

and feature pyramid structure are employed. Through a series of 

upsampling and downsampling operations, the three feature 

tensors from the backbone network are fused and further enhanced 

through convolutional operations. The original C3 structure is 

replaced by the C2f structure, improving the model's flexibility 

and efficiency. 

Significant changes can be observed in the predictive 

network structure of YOLOv8 as compared to that of  YOLOv5. 

It adopts the current mainstream decoupled network structure, 

comprising two independent prediction networks specifically 

designed for classification and regression tasks, allowing the 

model to flexibly adapt to various task requirements. Notably, the 

decoupled network demonstrates excellent performance in 

handling class imbalance and object scale variation, enhancing the 

robustness of object detection. Furthermore, YOLOv8 transitions 

from anchor-based to anchor-free, successfully avoiding the 

complex calculations and hyperparameter settings associated with 

anchor boxes, significantly impacting the model's performance. 

 

3. Improved Network Structure of YOLOv8 

 

To enhance the detection performance of insulator defects in drone 

images, we propose the YOLO-GSC model, the structure of which 

is illustrated in Figure 3. YOLO-GSC incorporates an MLKA 

module into its backbone network, aiming to improve the 

detection accuracy of insulators and their defects, which vary in 

size and shape, in complex backgrounds. In line with the 

requirements for a lightweight model, the introduction of the 

GSC_C2f module in both the backbone and neck networks leads 

to a reduction in the number of model parameters while enhancing 

the feature extraction capabilities for insulator defects. 

Furthermore, the adoption of SIoU as the bounding box loss 

function aids in accelerating model convergence and significantly 

boosts the detection accuracy for small-target insulator defects. 

 

 
 

Fig. 3 Structure of YOLOv8-GSC 

 

3.1 Large Kernel Attention 

 

In the domain of computer vision tasks, there are generally two 

main approaches for establishing relationships between different 

feature regions within an image. The first approach utilizes self-

attention mechanisms[26] to capture long-range dependencies. 

However, this method has significant limitations in the realm of 

computer vision. Treating the image as a one-dimensional 

sequence leads to the neglect of the image's two-dimensional 

structure, resulting in a loss of spatial relationship information. 
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Additionally, the quadratic complexity of self-attention 

mechanisms in processing high-resolution images escalates 

computational costs, potentially limiting its applicability to large-

scale images. More importantly, while self-attention mechanisms 

can capture adaptability in the spatial dimension, they overlook 

adaptability in the channel dimension. In visual tasks, different 

channels typically represent different features; therefore, ignoring 

channel adaptability could adversely affect task performance. The 

second approach involves using large convolutional kernels[27] to 

construct correlations and generate attention maps. Although this 

method is capable of capturing spatial relationships, it too has its 

limitations, such as high computational costs and a large number 

of parameters. 

To overcome these limitations and take advantage of both 

self-attention and large kernel convolutions, a new method is 

introduced that captures long-range relationships by decomposing 

large kernel convolutional operations. As illustrated in Figure 4, 

large kernel convolution can be decomposed into three 

components: spatial local convolution (depthwise convolution), 

spatial long-range convolution (depthwise dilated convolution), 

and channel-wise convolution (1 1  convolution). Specifically, a 

convolution of size k k  can be broken down into a 

( ) ( )2 1 2 1d d−  −  depthwise convolution, a k k

d d

         
 depthwise 

dilated convolution, and a 1 1  convolution. 

 

 
 

Fig. 4 Decomposition diagram of large kernel convolution 

 

Through the aforementioned decomposition, long-range 

relationships can be captured with reduced computational cost and 

fewer parameters. After obtaining these long-range relationships, 

the importance of each point can be estimated to generate 

attention maps. The structure of the LKA module is illustrated in 

Figure 5. This can be expressed as: 

1 1tte ( ( ( )),A ntion Conv DW D Conv DW Conv F= − − −  (1) 

.Output Attention F=                        (2) 

The formula includes input feature C H W
F R

  and 
C H W

Attention R
   denotes attention map, which represents the 

importance of each feature. The symbol denotes element-wise 

multiplication. 

 
Fig. 5 Large Kernel Attention (LKA) 

3.2 Multi-scale Large Kernel Attention 

 
The MLKA module combines large-kernel decomposition with 

multi-scale learning. It essentially consists of three core 

components: large-kernel attention for establishing 

interdependencies, a multi-scale mechanism for capturing 

correlations across heterogeneous scales, and gated aggregation 

for dynamic calibration, as illustrated in Figure 6. 

 

 
 

Fig. 6 The structure of Multi-scale Large Kernel 

Attention(MLKA) block 

 

The input feature maps C H W
X R

  , the module initially 

divides the input feature map into n partitions, denoted 

as 1 2, ,..., nX X X , each with a size of 
c

H W
n

     
. Using the 

LKA  decomposed by{ , }i ik d , a homogeneous scale of attention 

map 
iLKA  is generated. The multiscale LKA  branch enables 

the module to capture features at various scales and spatial 

contexts, thereby obtaining richer feature representations. 

Although larger LKA  values capture broader pixel 

responses, blocking artifacts appear in the attention maps 

generated with larger LKA  To address the issue of blocking 

artifacts and to capture more local information, a spatial gating 

mechanism can be dynamically employed to adapt ( ).iLKA  to 

( ).iMLKA . The gating function is utilized to control the weights 

of each ( ).iLKA , resulting in a weighted sum for the final 

attention map. By introducing this gating mechanism, ( ).iMLKA  



 

 

can effectively capture both global and local information, thereby 

enhancing the capability to capture fine-grained features. The 

specific expression is as follows: 

( ) ( ) ( ),i i i i i iMLKA X G X LKA X=          (3) 

Where ( ).iG  is the i -th gating function generated 

by   i ia a depth separable convolution for gated aggregation. At 

the same time, ( ).iLKA  is LKA decomposed by 1i ia b− − . 

 

 

3.3 C2f_GSC Structure 

 

In practical scenarios where drones are used for power line 

inspections, the trade-off between detection speed and accuracy is 

of critical importance. While some large-scale models like 

ResNet[28] and Vision Transformer are capable of achieving high 

detection accuracy, the time consumption of their detection 

processes is too long to meet real-time requirements. On the other 

hand, some lightweight networks such as Xception[29], 

MobileNets[30-32], and ShuffleNets[33-34] significantly improve 

detection speed by adopting depthwise separable convolutions, but 

they compromise on detection accuracy. For power line inspection 

tasks requiring high precision, the applicability of these models is 

relatively poor. 

To address this issue, a novel lightweight convolutional 

structure, GSConv, is introduced. As illustrated in Figure 7, the 

GSConv structure first processes the input feature map through a 

module composed of a 2D convolution layer, Batch Normalization 

(BN), and SiLU activation function. The resulting feature map has 

a channel count that is half of the final output channel count. 

Subsequently, this feature map is processed through a DWConv 

module and is stacked with the original feature map along the 

channel dimension. Finally, a shuffle operation is performed to 

produce the final output feature map. 

 

 
 

 

Fig. 7 Structure of GSConv 

 

This paper incorporates the lightweight GSConv convolution 

into the C2f architecture. By performing grouping and shuffling 

along the channel dimension, GSConv not only enhances the 

model's feature representational power but also lowers 

computational complexity, thus boosting the model's 

computational efficiency. More crucially, the lightweight design of 

GSConv reduces the model's parameter count, effectively 

mitigating overfitting and enhancing the model's generalizability. 

Concurrently, the C2f module in YOLOv8s is replaced with the 

GSC_C2f module. The GSC_C2f module continues to employ the 

CSP approach and consists of two CBS modules and n bottleneck 

modules, as depicted in Figure 8. 

 

 
 

Fig. 8 GSC_C2 Module 

 

3.4 SIoU Loss Function 

 

The IoU (Intersection over Union) loss, also known as the Jaccard 

index, is a metric used to measure the degree of overlap between 

two bounding boxes. In object detection tasks, IoU loss offers 

advantages such as intuitiveness and robustness. However, it also 

presents disadvantages, including poor smoothness, sensitivity to 

thresholds, and higher computational complexity. The IoU loss 

formula is defined as the ratio of the intersection area to the union 

area of the predicted and ground truth bounding boxes, as 

illustrated in Figure 9. 

 

 
 

Fig. 9 The diagram illustrates the principle of IoU, the green box 

represents the predicted box, the yellow box represents the ground 

truth box, and the blue part denotes the intersection between the 

predicted box and the ground truth box. 

 
In the original YOLOv8 model, CIoU loss was chosen as the 

bounding box loss function. The CIoU loss accounts for the 

overlap of bounding boxes, the distance between their central 

points, and the aspect ratio. This consideration offers advantages 

in solving gradient smoothness issues and positively impacts the 

gradient descent optimization algorithm. However, CIoU loss has 

certain limitations as it does not consider the orientation between 

the ground-truth and predicted bounding boxes, which to some 

extent limits the convergence speed during model training. To 

address this shortcoming of CIoU loss and further accelerate the 

model's convergence speed, this study introduces the SIoU loss 

function. 

The SIoU loss function ingeniously integrates angle loss, 

distance loss, and shape loss. Compared to CIoU loss, SIoU loss 

exhibits significant superiority in improving the performance of 

object detection algorithms, particularly in terms of convergence 

speed and accuracy. This superiority makes SIoU loss an ideal 

choice for the loss function. The principle behind it is illustrated in 

Figure 10. Here, w and h  represent the width and height of the 
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predicted bounding box, while gt
w  and gt

h  represent the width 

and height of the ground-truth bounding box.  denotes the angle 

between the central points of the predicted and ground-truth 

bounding boxes. Additionally, w
c  and h

c  correspond to the 

width and height of the rectangle formed by the two central points, 

and W
C  and H

C  represent the width and height of the 

minimum bounding rectangle encompassing both boxes. 

 

 
 

Fig. 10 SIoU Principal Diagram 

 

The SIoU loss function incorporates angle cost, distance cost, 

shape cost, and IoU cost, with the underlying principle as follows: 

 

(1) Angle Loss 

   2sin arcsin( )
4

x
  =−  − 

 
       （4） 

   ( )sinhc
x = = 


               （5） 

( ) ( )max , min ,gt gt

h cy cy cy cyc b b b b= −      （6） 

 

( ) ( )2 2
gt gt

cx cx cy cyb b b b = − + −          （7） 

(2) Distance Loss 

   
( ) ( )

22 22

2

chw

CH
W

c

C
e e

 
−   

 

 
−   

  = − −        （8） 

(3) Shape Loss 

 

     
( ) ( )max , max ,

1 1

gt gt

gt gt

w w h h

w w h h
e e

 
− −

− −
   
   

 = − + −   
   
   

     （9） 

(4) IoU Loss 

| |

| |

gt

gt

B B
IoU

B B


=


             （10） 

By integrating these four types of loss functions, the final 

SIoU loss function is calculated using the following equation: 

   1
2

SIoUL IoU
 +

= − −          （11） 

 

4. Experiment and analysis 

 

4.1 Experimental Environment 

 
The experimental environment was configured on Windows 10, 

with an AMD EPYC 7601 CPU and an NVIDIA GeForce RTX 

3090 GPU. Programming was done using Python 3.7 and the 

model architecture was built on the PyTorch framework. The 

model was trained for 300 epochs, divided into two phases. 

During the first 50 epochs, the backbone of the model was frozen, 

the initial learning rate was set to 21 10−  , and the batch size 

was 32, focusing only on fine-tuning the network. In the second 

phase, the "unfreeze" training method was used, training the 

model for 250 epochs with a batch size of 16. At this point, the 

backbone network was not frozen, thus all network parameters 

were updated. A momentum value of 0.937 and a weight decay of 
45 10− were used with the SGD optimizer. To further enhance the 

effectiveness of the training process, techniques such as Mosaic 

data augmentation and cosine annealing learning rate strategy 

were employed. This approach leverages the powerful 

optimization capabilities of the SGD optimizer, combined with 

fine-grained techniques like data augmentation and custom 

learning rate strategies, to improve the model's performance 

during training. Table 1 shows the experimental environment and 

configuration parameters. 

 

Table 1 Basic Configuration of Local Computer 

Computer configuration Specific parameters/versions 

Operating System Windows10 

CPU AMD EPYC 7601 

Python 3.7.13 

Pytorch 1.7.1 

Cudnn 11.0 

Opencv 4.5.3 

 

4.2 Dataset 

 

The experimental dataset partially comes from the Chinese Power 

Line Insulator dataset, which includes 600 images of normal 

insulators and 248 images of defective insulators. The remaining 

data were collected from real-world scenarios, totaling 2348 

images. To address the issue of overfitting due to the small dataset 

size, which could affect the detection performance of both 

insulators and their defects, data augmentation techniques were 

employed to expand the original dataset. By using a variety of 

data augmentation methods, including random rectangular 

occlusion, horizontal flipping, random pixel zeroing, random 

cropping, and padding, the dataset was expanded to 5322 images. 

One advantage of this approach is that the expanded dataset 

enhances the model's robustness and generalizability, enabling it 

to handle detection tasks in different scenarios while avoiding 

overfitting, thereby improving the accuracy and reliability of 

detection. Subsequently, the expanded dataset was randomly 

divided into training, validation, and test sets. The training set was 

used for training the network, the validation set for checking for 

overfitting and assessing network convergence, and the test set for 

evaluating the model's performance on new data. The division 

ratio was 8:1:1 to ensure the dataset is fully utilized and 

effectively prevent overfitting. Some results of image data 

augmentation are shown in Fig. 11. 

 

 



 

 

  

(a)  Horizontal Flip (b)  Gaussian Noise 

  

(c) Rectangular Occlusion (d)  Translation 

  

(e)  Scaling (f)  Rotation 

 

Fig. 11 Example of data expansion 

 

4.3 Evaluation Metrics 

 
This paper employs evaluation metrics such as mAP (Mean 

Average Precision) and FPS (Frames Per Second) for a 

comprehensive assessment of the insulator detection model. mAP 

serves as an integrated evaluation metric that assesses the overall 

performance of an object detection model by calculating the mean 

of the AP (Average Precision) across all detection categories. The 

AP value gauges the model's performance in a specific category 

and reflects the model's detection capabilities for various classes. 

By calculating the mAP value, the model's composite performance 

across all categories can be assessed. Equations (12) and (13) 

outline the methods for calculating AP and mAP, while equations 

(14) and (15) explain the recall and precision required to compute 

the AP for different detection categories. In these equations, recall 

measures the model's ability to detect positive samples, while 

precision evaluates the model's predictive accuracy against actual 

results. By calculating the number of True Positives (TP), False 

Positives (FP), and False Negatives (FN), the model's precision 

and recall can be obtained, thereby enabling the calculation of 

average precision and mean average precision.                          

               
1

0
( )AP P R dR=                     (12)              

PA
mAP

Nc
=                      (13) 

     100%
TP

P
TP FP

= 
+

               (14)  

100%
TP

R
TP FN

= 
+

               (15) 

 

4.4 Experimental Results Analysis 

 

As illustrated in Figure 12, a detailed comparative analysis of the 

training loss curves between the improved model and YOLOv8s is 

presented. By analyzing the dynamic changes in the loss curves, it 

can be observed that as the number of training iterations increases, 

the loss curves of both models gradually transition to a stable state. 

This phenomenon indicates that the models are continuously 

extracting information from the training data and adjusting their 

internal parameters to more accurately adapt to and fit the data. 

During the initial 20 epochs of training, both models show a 

significant downward trend in loss, symbolizing that the models 

have already begun to learn at a faster rate in the early stages. 

However, the loss in the initial stages of training is slightly higher 

for the improved model than for the YOLOv8s model. This is 

primarily because the improved model integrates the MLKA 

module and GSC_C2f structure into its backbone network. The 

initial adjustments and optimizations of these new modules may 

temporarily increase the loss. Despite this situation in the early 

stages, the improved model begins to show a more rapid decrease 

in loss and superior convergence performance relative to the 

YOLOv8s model after approximately 30 epochs. 

In the later stages of the training process, the loss values of 

both models show a gradually decreasing trend. However, the loss 

value of the improved model consistently remains lower than that 

of the YOLOv8s model. This phenomenon indicates that the 

improved model not only converges faster but also exhibits better 

convergence results, further substantiating the significant effect of 

the SIoU loss function on model optimization and performance 

enhancement. 

 

 
Fig. 12 Comparison of Loss between YOLOv8s and Our Model  

 

4.4.1 Comparative Experiment on the Embedding of 

Different Attention Modules 

 

To validate the impact of attention modules on object detection 

performance, four different attention mechanisms were embedded 

into the backbone detection network: CA[35], CBAM, ECA, and 

MLKA. This resulted in the improved models YOLOv8s+MLKA, 

YOLOv8s+CA, YOLOv8s+CBAM, and YOLOv8s+ECA, with no 

other modifications made to other parts. These models were tested 

and compared on the insulator dataset, and the results are shown 

in Table 2. 

 

Table 2 Comparison of Different Attention Modules in the 

Experiment 

Model Insulator Defect mAP50 FPS 
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AP% AP% 

YOLOv8s 97.80% 96.27% 97.04% 50.89 

YOLOv8s+SE 98.40% 96.33% 97.36% 47.50 

YOLOv8s+ECA 98.49% 96.38% 97.43% 46.65 

YOLOv8s+CBAM 98.72% 96.09% 97.40% 47.81 

YOLOv8s+CA 98.98% 96.57% 97.76% 46.23 

YOLOv8+MLKA 98.93% 96.89% 97.91% 46.73 

 

The experimental results indicate that all five embedded 

attention modules, including YOLOv8s+MLKA, YOLOv8s+CA, 

YOLOv8s+CBAM, YOLOv8s+ECA, sand YOLOv8s+SE, can 

effectively enhance the model's detection performance. Despite a 

slight decrease in detection speed due to the increased size of all 

models, the model with the MLKA module exhibited a less 

significant reduction in speed and a marked improvement in 

detection accuracy. Specifically, the YOLOv8s+MLKA model 

achieved the best detection results on the insulator dataset, with an 

mAP value 0.87 percentage points higher than the original 

YOLOv8s model. The YOLOv8s+CA model also showed a 

relatively large performance increase, adding 0.72 percentage 

points. In contrast, the performance gains of YOLOv8s+SE, 

YOLOv8s+CBAM, and YOLOv8s+ECA were relatively smaller, 

with increases of 0.32, 0.36, and 0.39 percentage points, 

respectively. Based on these experimental results, adding the 

MLKA module is the most effective for improving object 

detection performance, better enhancing the model's detection 

capabilities. 

 

4.4.2 Ablation Experiment 

 
To comprehensively evaluate the impact of the three improvement 

strategies on the performance of the YOLOv8s model, a series of 

systematic ablation experiments were meticulously designed and 

conducted under unified parameter settings, environmental 

configurations, and dataset conditions. Table 3 provides detailed 

information on the implementation of each improvement strategy 

and its specific contribution to model performance. 

 

Table 3 Experimental results of different improvement methods 

Model 
Insulator  

AP% 

Defect  

AP% 
mAP50 FPS 

YOLOv8s 97.80% 96.27% 97.04% 50.89 

YOLOv8s+GSC_C2f 98.66% 96.45% 97.56% 56.57 

YOLOv8s+MLKA 98.93% 96.89% 97.91% 46.73 

YOLOv8s+SIOU 98.11% 97.30% 97.71% 50.52 

YOLOv8-GSC 99.43% 99.01% 99.22% 5.73 

 

Based on the aforementioned data analysis, by replacing the 

C2f module in the backbone detection network of the original 

YOLOv8s model with the GSC_C2f module, the model's mAP 

increased by 0.32%, and the FPS increased by 5.14 frames. This 

improvement not only enhances the model's feature representation 

capabilities but also effectively reduces computational complexity, 

further improving the model's computational efficiency. Adding 

the MLKA module to the backbone detection network of the 

model increased the mAP by 0.87%. Figure 13(a) depicts the 

detection heat map of the original model, while Figure 13(b) 

shows the detection heat map after adding the MLKA module. In 

the heat maps, areas with higher brightness indicate where the 

model's attention is more focused. These images clearly 

demonstrate the improved accuracy of the modified model in 

insulator defect detection, further confirming that the addition of 

the MLKA module significantly enhances the detection precision 

for insulator defects. 

 

 

 

 

(a) YOLOv8s   

 

(b) YOLOv8s+MLKA 

 

Fig. 13 Comparison of the Improved Model's Heatmap with the 

YOLOv8s Model Heatmap 

 

Adopting the SIoU loss function in place of the CIoU loss 

function yields superior performance in guiding model 

convergence and enhancing the regression accuracy of the 

prediction network. The AP for the insulator defect category in the 

improved model increased by 1.03%. Overall, these three 

improvement strategies have made significant progress in 

enhancing the model's detection accuracy and speed, resulting in a 

total increase of 2.18% in mAP. The experimental results strongly 

validate the practicality and effectiveness of the improvement 

strategies proposed in this paper. 

 

4.4.3 Comparative experiment of different algorithms 

 

To deeply evaluate the performance of the improved model, a 

series of carefully designed comparative experiments were 

conducted. These include Faster R-CNN, SSD, CenterNet, 

YOLOv3, YOLOv4, YOLOv5s, and the YOLOv8 series. During 

this process, special attention was paid to three key performance 

metrics of each detection model: GFLOPS (Giga Floating Point 

Operations Per Second), Parameters, and model size. These 

metrics are summarized in Table 4. 

 

Table 4 The parameter comparisons for several algorithms are 

summarized. 

Model GFLOPS Parameter Model Size 

Faster R-CNN 370.210G 137.099M 521.51MB 

SSD 62.747G 26.285M 100.27MB 

CenterNet 70.217G 32.665M 124.61MB 

YOLOv3 66.171G 61.949M 236.32MB 

YOLOv4 59.960G 63.943M 243.92MB 

YOLOv5s 17.156G 7.277M 27.76MB 

YOLOv8s 28.817G 11.167M 42.70MB 

YOLOv8-GSC 21.517G 7.912M 30.18MB 

 

Through an in-depth analysis and comprehensive comparison 

of the data in Table 4, it can be observed that the size of the 

improved model is only 30.18MB, making it the smallest among 

the tested models, except for YOLOv5s. Additionally, the model 



 

 

shows significant advantages in terms of GFLOPS and the number 

of parameters. These results collectively validate the superior 

performance of the YOLOv8-GSC algorithm in computational 

efficiency and resource utilization. 

The evaluation metrics for each model are summarized in 

Table 5. The corresponding Precision-recall curves are plotted and 

visualized in Figure 14. 

 

            Table 5 Comparison of several methods 

 

 

Model 
Insulator 

AP% 

Defect 

AP% 
mAP50 FPS 

Faster R-CNN 93.43% 71.28% 82.35% 16.10 

SSD 93.94% 83.53% 88.74% 45.98 

CenterNet 96.16% 93.89% 95.02% 27.41 

YOLOv3 96.97% 93.71% 95.34% 44.16 

YOLOv4 96.42% 95.60% 96.01% 46.37 

YOLOv5s 96.90% 95.71% 96.31% 53.59 

YOLOv8s 97.80% 96.27% 97.04% 50.89 

YOLOv8-GSC 99.43% 99.01% 99.22% 55.73 

 
(a)  Faster R-CNN 

 
(b)  SSD 

 
(c)  CenterNet 

 
(d)  YOLOv3 

 

(e)  YOLOv4 

 

(f)  YOLOv5s 

 

 

 

                      

 

 

 

Fig. 14 Precision-recall curves of different models 
 

After a thorough analysis of the data in Table 5 and Figure 13, 

it is evident that the YOLOv8-GSC algorithm shows significant 

improvements in all evaluation metrics, outperforming other 

comparison models. Its mAP value reached 99.22%, which is an 

increase of 16.87%, 10.48%, 4.20%, 3.87%, 3.21%, 2.91%, and 

2.18% compared to Faster R-CNN, SSD, CenterNet, YOLOv3, 

YOLOv4, YOLOv5s, and the original YOLOv8s, respectively. 

These results strongly validate the effectiveness of the three 

improvement strategies proposed in this paper for enhancing the 

model's performance. 

In terms of processing speed, YOLOv8-GSC achieves 55.73 

frames per second, making it the fastest among all tested models. 

This performance ensures that the improved model can meet the 

real-time dynamic detection requirements of drones and other 

embedded devices with limited computational resources. 

 

 

(g)  YOLOv8s 

 

(h)  YOLOv8-GSC 



 
 

 
10 

4.4.4 Comparison of Detection Results Across Different 

Models 

 

To verify the superior performance of the improved model, eight 

different detection models were tested on a dataset of insulator 

images with diverse sizes and shapes against complex 

backgrounds, as shown in Figure 15. The results indicate that, 

compared to the other seven models, the YOLOv8-GSC algorithm 

exhibits higher confidence in identifying insulator defects without 

any false negatives or false positives. These empirical findings 

confirm that the improved model has made significant progress in 

enhancing the accuracy and efficiency of insulator defect detection 

tasks, making it more adaptable to the demands of real-world 

detection applications.

    

(a) Faster R-CNN 

    

(b) SSD 

    

(C) CenterNet 

    

(d) YOLOv3 

    

(e) YOLOv4 

    

(f) YOLOv5s 

    

(g) YOLOv8s 

    

(h) YOLOv8-GSC 

Fig. 15 Display of different model detection effects 

 

4.4.5 Robustness Analysis 

 

To validate the robustness of the improved model, experimental 

tests were conducted on insulators with and without defects under 

challenging environmental conditions. The results are illustrated in 

Figure 16. A comparison between parts (a) and (b) of Figure 16 

reveals a noticeable improvement in the detection accuracy of the 

enhanced model. By contrasting the first and third images in part 

(a), it's evident that the original YOLOv8s algorithm misses 

detections when the background is complex. In contrast, the 

improved model, which incorporates the MLKA attention 

mechanism into the backbone detection network and utilizes the 

SIoU loss function, effectively enhances the feature extraction 

capability and defect localization accuracy. These improvements 

significantly increase the accuracy of target identification and 

substantially reduce the rate of missed detections. Therefore, the 

experiments confirm that the improved algorithm possesses a 

certain level of robustness in insulator defect detection.

 



 

 

(a) YOLOv8s 

(b)  YOLOv8-MLKA 

Fig. 16 Comparison of Detection Results in Different Scenarios 
 

  

5. Conclusions 

 

The primary aim of this paper is to delve deeply into the methods 

for detecting defects in transmission line insulators within aerial 

images. We chose the lightweight YOLOv8s network as the 

foundational model and made improvements to enhance its 

identification accuracy. Considering the relatively small size of 

existing datasets, innovative data augmentation techniques were 

employed to effectively expand the dataset and enhance the 

model's robustness. 

In comparative analysis experiments, the improved model 

was benchmarked against several advanced models, including 

Faster R-CNN, SSD, CenterNet, YOLOv3, MobileNetv3-

YOLOv4, YOLOv5s, and YOLOv8s, under consistent 

experimental conditions. The results demonstrate that the 

enhanced model exhibits significant advantages in detection 

performance, with a mAP value considerably surpassing other 

comparison models. The AP value for the normal insulator 

category increased by 1.63%, and the defect category saw a 2.74% 

rise, both of which significantly outperformed the YOLOv8s 

model. Moreover, aside from YOLOv5s, the enhanced model is 

the smallest in size and has the fewest parameters among all 

compared models, making it highly valuable for real-time 

applications and resource-constrained environments. 

Furthermore, robustness tests were carried out to assess the 

model's detection capabilities in complex environmental 

backgrounds and at various angles. The results further validate the 

excellent performance of the improved model. It can accurately 

detect all targets, and its stability and accuracy in complex and 

changing environments are noticeably better than the original 

YOLOv8s algorithm. 

The primary direction for future work is to deploy the YOLOv8-

GSC algorithm into embedded devices. This will better apply 

object detection algorithms to real-world insulator defect detection 

projects, improving both the accuracy and efficiency of insulator 

defect detection, and thus providing strong support for the 

continuous development of the electrical indust. 
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