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Abstract We propose an SQP-type algorithm for solving nonlinear second-order cone programming
(NSOCP) problems. At every iteration, the algorithm solves a convex SOCP subproblem in which
the constraints involve linear approximations of the constraint functions in the original problem and
the objective function is a convex quadratic function. Those subproblems can be transformed into
linear SOCP problems, for which efficient interior point solvers are available. We establish global
convergence and local quadratic convergence of the algorithm under appropriate assumptions. We
report numerical results to examine the effectiveness of the algorithm.
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quadratic convergence

1 Introduction

Linear second-order cone programming (LSOCP) [1, 9, 10] and linear semidefinite programming
(LSDP) [12, 14] have extensively been studied in the last decade, since they have desirable theoretical
properties as well as many important applications [2, 9, 14]. For solving those problems, efficient
interior point algorithms have been proposed and the software implementing those algorithms has
been developed. On the other hand, nonlinear programming (NLP) has long been studied and a
number of effective methods such as sequential quadratic programming methods (SQP) [3, 7] and
interior point methods [15, 16] have been proposed. However, the study of nonlinear second-order
cone programming (NSOCP) and nonlinear semidefinite programming (NSDP), which are natural
extensions of LSOCP and LSDP, respectively, are much more recent and still in its preliminary phase.
Optimality conditions for NSOCP and NSDP are studied in [4, 5]. An interior point method has
been proposed for NSOCP in [17]. Globally convergent SQP-type method and successive linearization
method have been developed for NSDP in [6] and [8], respectively.

In this paper, we propose an SQP-type algorithm for NSOCP. At every iteration, the algorithm
solves a subproblem in which the constraints involve linear approximations of the constraints in the
original problem and the objective function is a convex quadratic function. The subproblem can be
transformed into an LSOCP problem, for which efficient interior point methods [13] are available. To
ensure global convergence, the algorithm employs a line search strategy with the l1-penalty function.

The organization of this paper is as follows: In Section 2, we formulate the nonlinear second-order
cone programming problem. In Subsection 3.1, we describe the algorithm for NSOCP. In Subsection
3.2, we show global convergence of the algorithm. In Subsection 3.3, we consider the local convergence
behavior of the algorithm. In Section 4, we report some numerical results.
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For vector x ∈ <n, x0 denotes the first component and x̄ is the subvector consisting of the

remaining components, that is, x =
(

x0

x̄

)
. The second-order cone of dimension n is defined by

Kn := {x ∈ <n+1 | x0 ≥ ‖x̄‖}. For simplicity, (xT , yT )T is written as (x, y)T . The Euclidean norm
of vector x is denoted ‖x‖ :=

√
xT x.

2 Nonlinear Second-Order Cone Program

We are interested in the following nonlinear second-order cone program (NSOCP):

min f(x)
s.t. g(x) = 0, (1)

h(x) ∈ K,

where f : <n → <, g : <n → <m and h : <n → <l are twice continuously differentiable functions, K
is the Cartesian product of second-order cones given by K := K l1 ×K l2 × · · · ×K ls , and l := l1 +
· · ·+ ls. Throughout the paper, we denote h(x) = (h1(x), · · · , hs(x))T and hi(x) = (hi0(x), h̄i(x))T ∈
<li (i = 1, · · · , s).

The Karush-Kuhn-Tucker (KKT) conditions for NSOCP(1) are given by

∇f(x∗)−∇g(x∗)ζ∗ −∇h(x∗)η∗ = 0,

g(x∗) = 0, (2)
hi(x∗) ∈ K li , η∗i ∈ K li ,

hi(x∗)T η∗i = 0, i = 1, · · · , s,
where ζ∗ ∈ <m and η∗i ∈ <li(i = 1, · · · , s) are Lagrange multiplier vectors. The KKT conditions
are necessary optimality conditions under certain constraint qualifications [5]. We call a vector x∗

a stationary point of problem (1) if there exist Lagrange multipliers ζ∗ and η∗ satisfying the KKT
conditions (2). In this paper, we assume that there exists a triple (x∗, ζ∗, η∗) satisfying the KKT
conditions (2) of problem (1). Such (x∗, ζ∗, η∗) is called a KKT triple of (1).

3 SQP-Type Algorithm for NSOCP

3.1 Algorithm

The algorithm solves the following subproblem at every iteration:

min ∇f(xk)T ∆x + 1
2∆xT Mk∆x

s.t. g(xk) +∇g(xk)T ∆x = 0, (3)
h(xk) +∇h(xk)T ∆x ∈ K,

where xk is a current iterate and Mk is a symmetric positive definite matrix approximating the
Hessian of Lagrangian function of problem (1) in some sense. The subproblem (3) is a convex
programming problem. Therefore, under certain constraint qualifications, a vector ∆x is an optimal
solution of (3) if and only if there exist Lagrange multiplier vectors λ and µ satisfying the following
KKT conditions for (3):

∇f(xk) + Mk∆x−∇g(xk)λ−∇h(xk)µ = 0,

2



g(xk) +∇g(xk)T ∆x = 0, (4)
hi(xk) +∇hi(xk)T ∆x ∈ K li , µi ∈ K li ,

(hi(xk) +∇hi(xk)T ∆x)T µi = 0, i = 1, · · · , s.

Additionally, the subproblem (3) can be transformed into a linear second-order cone programming
problem, for which efficient interior point methods are available [13].

Comparing conditions (2) and (4) yields the next proposition. The proof is straightforward and
hence is omitted.

Proposition 1 Under certain constraint qualifications, ∆x = 0 is an optimal solution of subproblem
(3) if and only if xk is a stationary point of NSOCP (1) .

This proposition allows us to deduce that the algorithm is globally convergent if {Mk} is bounded
and lim

k→∞
‖∆xk‖ = 0, where ∆xk is the solution of subproblem (3). Note that a subproblem (3) may

be infeasible, even if the original NSOCP (1) is feasible. In SQP methods for nonlinear programming
problems, some remedies to avoid this difficulty have been proposed [3]. In this paper, we simply
assume that subproblem (3) is always feasible and hence has a unique optimal solution ∆xk.

The algorithm uses the l1-penalty function as a merit function to determine step sizes:

Pα(x) := f(x) + α
( m∑

j=1

|gj(x)|+
s∑

i=1

max{0,−(hi0(x)− ‖h̄i(x)‖)}
)
, (5)

where α > 0 is a penalty parameter.
The algorithm is formally stated as follows:

Algorithm 1

Step 0 Choose x0 ∈ <n, α0 > 0, β ∈ (0, 1), σ ∈ (0, 1), τ > 0, and set k := 0.

Step 1 Choose a symmetric positive definite matrix Mk ∈ <n×n. Find the solution ∆xk and the
corresponding Lagrange multipliers λk and µk satisfying the KKT conditions (4) of subproblem
(3). If ‖∆xk‖ = 0, then STOP. Otherwise, go to Step 2.

Step 2 Set the penalty parameter as follows: If αk ≥ max
{

max
1≤j≤m

|λk
j |, max

1≤i≤s
µk

i0

}
, then αk+1 := αk;

otherwise, αk+1 := max
{

αk, max
1≤j≤m

|λk
j |, max

1≤i≤s
µk

i0

}
+ τ.

Step 3 Compute the smallest nonnegative integer r satisfying

Pαk+1
(xk)− Pαk+1

(xk + (β)r∆xk) ≥ σ(β)r∆xkT Mk∆xk, (6)

and set the step size tk := (β)r.

Step 4 Set xk+1 := xk + tk∆xk, k := k + 1, and go to Step 1.

3.2 Global Convergence

In this subsection, we show that Algorithm 1 has a global convergence property. For simplicity, we
assume s := 1. The arguments in what follows apply in a similar manner to the case where s > 1.
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When s = 1, the KKT conditions (4) reduce to

∇f(xk) + Mk∆x−∇g(xk)λ−∇h(xk)µ = 0,

g(xk) +∇g(xk)T ∆x = 0, (7)
h(xk) +∇h(xk)T ∆x ∈ K l, µ ∈ K l,

(h(xk) +∇h(xk)T ∆x)T µ = 0

and the penalty function used as a merit function is given by

Pα(x) = f(x) + α
( m∑

j=1

|gj(x)|+ max{0,−(h0(x)− ‖h̄(x)‖)}
)
, (8)

where h(x) := (h0(x), h̄(x))T with h0 : <n → < and h̄ : <n → <l−1.
To prove global convergence of Algorithm 1, we make the next two assumptions.

(A.1) At every iteration, subproblem (3) has a KKT triple (∆xk, λk, µk).
(A.2) The generated sequence {(xk, λk, µk)} is bounded.

Assumption (A.1) implies that subproblem (3) has a unique optimal solution since Mk is a
positive definite matrix. Below, we will show that the optimal solution ∆xk of subproblem (3)

affords a descent direction of the penalty function Pαk
at xk, provided αk ≥ max

{
max

1≤j≤m
|λk

j |, µk
0

}
.

Thus we can determine the step size tk in Step 3, and Algorithm 1 is well defined. Assumption (A.2)
is standard in SQP methods for nonlinear programming.

In what follows, we denote

ϕ(x) := max{0,−(h0(x)− ‖h̄(x)‖)},

ψ(x) :=
m∑

j=1

|gj(x)|.

The next lemma gives a formula for the directional derivative of ϕ.

Lemma 1 The directional derivative ϕ′(x; ∆x) of ϕ at x along the direction ∆x = (∆x0, ∆x̄)T is
given by

ϕ′(x;∆x) =





−∇h0(x)T ∆x + (∇h̄(x)h̄(x))T

‖h̄(x)‖ ∆x




h0(x) < ‖h̄(x)‖, h̄(x) 6= 0 or
h0(x) = ‖h̄(x)‖ 6= 0 and
∇h0(x)T ∆x < (∇h̄(x)h̄(x))T

‖h̄(x)‖ ∆x




−∇h0(x)T ∆x + ‖∇h̄(x)T ∆x‖




h0(x) < ‖h̄(x)‖, h̄(x) = 0 or
h0(x) = h̄(x) = 0 and
∇h0(x)T ∆x < ‖∇h̄(x)T ∆x‖




0 (otherwise).

Proof We show this lemma by cases.
(i) If h0(x) < ‖h̄(x)‖, then

ϕ′(x;∆x) = lim
t↘0

1
t
(−h0(x + t∆x) + ‖h̄(x + t∆x)‖+ h0(x)− ‖h̄(x)‖)

= −∇h0(x)T ∆x + lim
t↘0

1
t
(‖h̄(x + t∆x)‖ − ‖h̄(x)‖)

=




−∇h0(x)T ∆x + (∇h̄(x)h̄(x))T

‖h̄(x)‖ ∆x
(
h̄(x) 6= 0

)

−∇h0(x)T ∆x + ‖∇h̄(x)T ∆x‖ (
h̄(x) = 0

)
.
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(ii) If h0(x) = ‖h̄(x)‖ = 0, then

ϕ′(x;∆x) = lim
t↘0

1
t

max
{
0,−(h0(x + t∆x)− ‖h̄(x + t∆x)‖)}

=




−∇h0(x)T ∆x + ‖∇h̄(x)T ∆x‖

(
∇h0(x)T ∆x < ‖∇h̄(x)T ∆x‖

)

0
(
∇h0(x)T ∆x ≥ ‖∇h̄(x)T ∆x‖

)
.

(iii) If h0(x) = ‖h̄(x)‖ 6= 0, then

ϕ′(x;∆x) = lim
t↘0

1
t

max
{
0, (−h0(x + t∆x) + ‖h̄(x + t∆x)‖+ h0(x)− ‖h̄(x)‖)}

= max
{

0,−∇h0(x)T ∆x + lim
t↘0

1
t
(‖h̄(x + t∆x)‖ − ‖h̄(x)‖

}

=




−∇h0(x)T ∆x + (∇h̄(x)h̄(x))T

‖h̄(x)‖ ∆x
(
∇h0(x)T ∆x < (∇h̄(x)h̄(x))T

‖h̄(x)‖ ∆x
)

0
(
∇h0(x)T ∆x ≥ (∇h̄(x)h̄(x))T

‖h̄(x)‖ ∆x
)

.

(iv) If h0(x) > ‖h̄(x)‖, then ϕ′(x;∆x) = 0.

In the next lemma, using the directional derivative ϕ′(x;∆x) given in Lemma 1, we derive an
inequality that is used to prove global convergence of the algorithm.

Lemma 2 Let (∆xk, λk, µk) be a KKT triple of subproblem (3). If α > µk
0, then the directional

derivative ϕ′(xk;∆xk) of ϕ at xk along the direction ∆xk satisfies the inequality

−µkT h(xk) + αϕ′(xk;∆xk) ≤ 0.

Proof Using the formula of ϕ′(x; ∆x) given in Lemma 1, we show the desired inequality by cases.
(i) If h0(xk) < ‖h̄(xk)‖ and h̄(xk) 6= 0, then we have

−µkT h(xk) + αϕ′(xk;∆xk)

= −µkT h(xk) + α(−∇h0(xk)T ∆xk +
(∇h̄(xk)h̄(xk))T

‖h̄(xk)‖ ∆xk)

≤ −µkT h(xk) + α(h0(xk)− ‖h̄(xk) +∇h̄(xk)T ∆xk‖+
(∇h̄(xk)h̄(xk))T

‖h̄(xk)‖ ∆xk)

= −µkT h(xk) + α(h0(xk)− ‖h̄(xk) +∇h̄(xk)T ∆xk‖

+
h̄(xk)T (h̄(xk) +∇h̄(xk)T ∆xk)

‖h̄(xk)‖ − ‖h̄(xk)‖)

≤ (α− µk
0)h0(xk)− µ̄kT h̄(xk)− α‖h̄(xk)‖

≤ (α− µk
0)h0(xk)− (α− ‖µ̄k‖)‖h̄(xk)‖

≤ −(µk
0 − ‖µ̄k‖)‖h̄(xk)‖

≤ 0,

where the first inequality holds by h(xk) + ∇h(xk)T ∆xk ∈ K l in the KKT conditions (7), the
second and the third inequalities follow from Cauchy-Schwarz inequality, and the fourth and the last
inequalities follow from α ≥ µk

0 ≥ ‖µ̄k‖ and h0(xk) < ‖h̄(xk)‖, µk ∈ K l, respectively.
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(ii) If h0(xk) < ‖h̄(xk)‖ and h̄(xk) = 0, then we have

−µkT h(xk) + αϕ′(xk;∆xk) = −µkT
0 h0(xk) + α(−∇h0(xk)T ∆xk + ‖∇h̄(xk)T ∆xk‖)

≤ (α− µk
0)h0(xk)

≤ 0,

where the first inequality follows from h(xk) + ∇h(xk)T ∆xk ∈ K l and the last inequality holds by
α ≥ µk

0.
(iii) If h0(xk) = 0 and h̄(xk) = 0, then∇h0(xk)T ∆xk ≥ ‖∇h̄(xk)T ∆xk‖ implies h0(xk)+∇h0(xk)T ∆xk ≥
‖h̄(xk) +∇h̄(xk)T ∆xk‖, which in turn implies ϕ′(xk;∆xk) = 0 by the formula shown in Lemma 1.
Therefore we obtain

−µkT h(xk) + αϕ′(xk; ∆xk) = −µkT h(xk) = 0.

(iv) Suppose h0(xk) = ‖h̄(xk)‖ 6= 0. If ∇h0(x)T ∆x < (∇h̄(x)h̄(x))T

‖h̄(x)‖ ∆x, then similarly to case (i), we
have

−µkT h(xk) + αϕ′(xk;∆xk)

= −µkT h(xk) + α(−∇h0(xk)T ∆xk +
(∇h̄(xk)h̄(xk))T

‖h̄(xk)‖ ∆xk)

≤ −µkT h(xk) + α(h0(xk)− ‖h̄(xk) +∇h̄(xk)T ∆xk‖+
(∇h̄(xk)h̄(xk))T

‖h̄(xk)‖ ∆xk)

= −µkT h(xk) + α(h0(xk)− ‖h̄(xk) +∇h̄(xk)T ∆xk‖

+
h̄(xk)T (h̄(xk) +∇h̄(xk)T ∆xk)

‖h̄(xk)‖ − ‖h̄(xk)‖)

≤ (α− µk
0)h0(xk)− µ̄kT h̄(xk)− α‖h̄(xk)‖

≤ (α− µk
0)h0(xk)− (α− ‖µ̄k‖)‖h̄(xk)‖

= −(µk
0 − ‖µ̄k‖)‖h̄(xk)‖

≤ 0.

Otherwise, ϕ′(xk,∆xk) = 0, so it follows from µk ∈ K l and Cauchy-Schwarz inequality that

−µkT h(xk) + αϕ′(xk;∆xk) = −µkT h(xk)
= −µk

0h0(xk)− µ̄kT h̄(xk)
≤ −(µk

0 − ‖µ̄k‖)‖h̄(xk)‖
≤ 0.

(v) If h0(xk) > ‖h̄(xk)‖, then it follows from µk ∈ K l and Cauchy-Schwarz inequality that

−µkT h(xk) + αϕ′(xk;∆xk) = −µkT h(xk)
= −µk

0h0(xk)− µ̄kT h̄(xk)
≤ −(h0(xk)− ‖h̄(xk)‖)‖µ̄k‖
≤ 0.

The next lemma gives an equality regarding the directional derivative ψ′(x;∆x) of the function
ψ. The proof is not difficult and hence is omitted.
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Lemma 3 Let ∆xk be the optimal solution of subproblem (3). Then the directional derivative
ψ′(xk; ∆xk) of ψ at xk along the direction ∆xk satisfies the equality

ψ′(xk;∆xk) = −
m∑

j=1

|gj(xk)|.

From the above lemmas, we obtain the following lemma.

Lemma 4 Let (∆xk, λk, µk) be a KKT triple of subproblem (3). If α ≥ max
{
max1≤j≤m |λk

j |, µk
0

}
,

then the directional derivative P ′
α(xk;∆xk) of the penalty function Pα at xk along the direction ∆xk

satisfies the inequality
P ′

α(xk;∆xk) ≤ −∆xkT Mk∆xk.

Proof By the KKT conditions (7) and Lemma 3, we have

P ′(xk;∆xk)
= ∇f(xk)T ∆xk + α(ψ′(xk;∆xk) + ϕ′(xk,∆xk))
= −∆xkT Mk∆xk + λkT∇g(xk)T ∆xk + µkT∇h(xk)T ∆xk + α(ψ′(xk;∆xk) + ϕ′(xk, ∆xk))

= −∆xkT Mk∆xk − λkT g(xk)− µkT h(xk) + α(−
m∑

j=1

|gj(xk)|+ ϕ′(xk, ∆xk))

≤ −∆xkT Mk∆xk −
m∑

j=1

(λk
j + α)|gj(xk)| − µkT h(xk) + αϕ′(xk, ∆xk)).

Then Lemma 2 together with the inequality α ≥ max
{
max1≤j≤m |λk

j |, µk
0

}
yields the desired inequal-

ity.

When ∆xk 6= 0, by Lemma 4 and the positive definiteness of the matrix Mk, we have

Pα(xk)− Pα(xk + t∆xk)− σt∆xkT Mk∆xk

= −tP ′
α(xk;∆xk) + o(t)− σt∆xkT Mk∆xk

≥ (1− σ)t∆xkT Mk∆xk + o(t)
> 0

for any sufficiently small t > 0. This ensures that we can always determine the step size tk in Step 3
of Algorithm 1.

Now we are ready to establish global convergence of Algorithm 1.

Theorem 1 Suppose that Assumptions (A.1) and (A.2) hold. Let {(xk, λk, µk)} be a sequence
generated by Algorithm 1, and (x∗, λ∗, µ∗) be any accumulation point. Assume that there exist some
positive scalars γ and Γ such that

γ‖z‖2 ≤ zT Mkz ≤ Γ‖z‖2, ∀z ∈ <n, ∀k ∈ {0, 1, 2, · · ·}.

Then, (x∗, λ∗, µ∗) satisfies the KKT conditions (2) of NSOCP (1)

Proof Since {Mk} is bounded, we only need to show lim
k→∞

‖∆xk‖ = 0 from Proposition 1. First

note that, from (A.2) and the way of updating the penalty parameter, αk stays constant ᾱ eventually.
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Consequently, {Pᾱ(xk)} is monotonically nonincreasing for sufficiently large k. Meanwhile, by (6)
and the positive definiteness of Mk, we have

Pᾱ(xk)− Pᾱ(xk+1) ≥ σtk∆xkT Mk∆xk > 0.

Since {Pᾱ(xk)} is bounded below by (A.2), we have

lim
k→∞

Pᾱ(xk)− Pᾱ(xk+1) = 0.

Therefore, it holds that
lim

k→∞
tk∆xkT Mk∆xk = 0.

Moreover, it follows from the given assumption that

tk∆xkT Mk∆xk ≥ tkγ‖∆xk‖2.

Hence, we have lim
k→∞

tk‖∆xk‖2 = 0. It clearly holds that lim
k′→∞

‖∆xk′‖ = 0 for any subsequence {∆xk′}
such that lim inf

k′→∞
tk′ > 0. Let us consider an arbitrary subsequence {tk′} such that lim

k′→∞
tk′ = 0. Then,

by the Armijo rule in Step 3, we have

Pᾱ(xk′)− Pᾱ(xk′ + t̄k′∆xk′) < σt̄k′∆xk′T Mk′∆xk′ ,

where t̄k′ := tk′
β . On the other hand, since P ′̄

α(xk′ ;∆xk′) ≤ −∆xk′T Mk′∆xk′ by Lemma 4, it follows
that

Pᾱ(xk′)− Pᾱ(xk′ + t̄k′∆xk′) = −t̄k′P
′
ᾱ(xk′ ;∆xk′) + o(t̄k′) ≥ t̄k′∆xk′Mk′∆xk′ + o(t̄k′).

Combining the above inequalities yields t̄k′∆xk′Mk′∆xk′ + o(t̄k′) < σt̄k′∆xk′Mk′∆xk′ , i.e.,

0 > (1− σ)t̄k′∆xk′Mk′∆xk′ + o(t̄k′) > (1− σ)t̄k′γ‖∆xk′‖2 + o(t̄k′).

Thus we obtain
(1− σ)γ‖∆xk′‖2 +

o(t̄k′)
t̄k′

< 0,

which yields lim sup
k′→∞

‖∆xk′‖ ≤ 0. Consequently, we have lim
k→∞

‖∆xk‖ = 0.

3.3 Local Convergence

In this subsection, we consider local behavior of a sequence generated by Algorithm 1. For that
purpose, we make use of the results for generalized equations [11].

First note that the KKT conditions of NSOCP (1) can be rewritten as the generalized equation

0 ∈ F (y) + ∂δC(y), (9)

where F is a vector-valued function and ∂δC(y) is the normal cone of a closed convex set C at y,
which is defined by

∂δC(y) :=

{
∅ if y /∈ C
{w | wT (c− y) ≤ 0 ∀c ∈ C} if y ∈ C.
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Indeed, by defining the Lagrangian of NSOCP (1) by

L(x, ζ, η) := f(x)− g(x)T ζ − h(x)T η,

the KKT conditions (2) are represented as

0 ∈ ∇xL(x, ζ, η) + ∂δ<n(x),
0 ∈ ∇ζL(x, ζ, η) + ∂δ<m(ζ),
0 ∈ ∇ηL(x, ζ, η) + ∂δK∗(η),

where K∗ := {η ∈ <l | ηT ξ ≥ 0 ∀ξ ∈ K} is the dual cone of K. Since ∂δ<n(x) = {0}, ∂δ<m(ζ) = {0}
and K∗ = K, we can rewrite the KKT conditions (2) as the generalized equation (9) with y :=
(x, ζ, η)T , C := <n ×<m ×K and

F (y) :=



∇xL(x, ζ, η)
∇ζL(x, ζ, η)
∇ηL(x, ζ, η)


 . (10)

On the other hand, if we choose Mk := ∇2
xxL(xk, λk, µk), we can express the KKT conditions of

subproblem (3) as

0 ∈ ∇xL(xk, λ, µ) +∇2
xxL(xk, λk, µk)∆x + ∂δ<n(x),

0 ∈ ∇ζL(xk, λ, µ) +∇2
ζxL(xk, λk, µk)∆x + ∂δ<m(λ),

0 ∈ ∇ηL(xk, λ, µ) +∇2
ηxL(xk, λk, µk)∆x + ∂δK(µ),

which is precisely the generalized equation

0 ∈ F (zk) + F ′(zk)(z − zk) + ∂δC(z), (11)

where zk = (xk, λk, µk), z = (xk + ∆x, λ, µ) and F is defined by (10). This can be regarded as the
application of Newton’s method for the generalized equation (9). Thus, a sequence {zk} generated
by (11) is expected to converge fast to a solution of (10). To be more precise, we use the notion of a
regular solution [11].

Definition 1 Let y∗ be a solution of the generalized equation (9) and F be Fréchet differentiable at
y∗. Define the set-valued mapping T by T (y) := F (y∗) + F ′(y∗)(y − y∗) + ∂δC(y). If there exist
neighborhoods U of 0 and V of y∗ such that the mapping T−1 ∩ V is single-valued and Lipschitzian
on U , then y∗ is called a regular solution of the generalized equation (9).

We suppose that F is Fréchet differentiable with Lipschitz constant L and the generalized equation
(11) at k = 0

0 ∈ F (z0) + F ′(z0)(z − z0) + ∂δC(z)

has a regular solution with Lipschitz constant Λ. Then (11) has a regular solution at every iteration
and the following inequality holds for a sequence {zk} generated by (11), provided z0 is sufficiently
close to a regular solution y∗ of the generalized equation (9) (see [11]):

‖zk − y∗‖ ≤ (2(l+n+m)ΛL)−1(2ΛL‖z0 − z1‖)(2k),

which means that the sequence {zk} converges R-quadratically to y∗.
Next we consider the relation between the regularity of a solution and the second-order conditions

for NSOCP (1). We recall the notion of nondegeneracy in second-order cone programming [4].

9



Definition 2 For each i = 1, · · · , s, given a vector ŵi ∈ K li, define the function φi as follows:
(i) if ŵi = 0, then φi : <li → <li and φi(wi) := wi;
(ii) if ŵi0 > ‖ ¯̂wi‖, then φi : <li → <0 and φi(wi) := 0;
(iii) if ŵi0 = ‖ ¯̂wi‖ 6= 0, then φi : <li → <1 and φi(wi) := ‖w̄i‖ − wi0.
Let x be a feasible solution of NSOCP (1). If the matrix

(∇g(x),∇h1(x)∇φ1(h1(x)), · · · ,∇hs(x)∇φs(hs(x)))

has full column rank, then x is said to be nondegenerate. Here, ∇hi(x)∇φi(hi(x)) = ∇hi(x) if
hi(x) = 0, ∇hi(x)∇φi(hi(x)) = −∇hi0(x)+∇h̄i(x)h̄i(x)

‖h̄i(x)‖ if hi0(x) = ‖h̄i(x)‖ 6= 0, and ∇hi(x)∇φi(hi(x))
is vacuous if hi0(x) > ‖h̄i(x)‖.

It is showed in [4] that when a local optimal solution x∗ of NSOCP(1) is nondegenerate, (x∗, ζ∗, η∗)
is a regular solution of the generalized equation representing the KKT conditions (2) of NSOCP (1)
if and only if (x∗, ζ∗, η∗) satisfies the following second-order condition:

dT
(
∇2

xxL(x∗, ζ∗, η∗) +
s∑

i=1

Hi(x∗, ζ∗, η∗i
)
d > 0 ∀d ∈ C0(x∗)∩CKl1 (x

∗)∩· · ·∩CKls (x∗), d 6= 0, (12)

where

C0(x∗) = {d ∈ <n | ∇g(x∗)T d = 0}
and for i = 1, · · · , s

CKli (x∗) =





d ∈ <n

∇hi(x∗)T d = 0 if η∗i0 > η̄∗i ,
∇hi(x∗)T d ∈ span{Riη

∗
i } if η∗i0 = ‖η̄∗i ‖ 6= 0, hi(x∗) = 0,

dT∇hi(x∗)η∗i = 0 if η∗i0 = ‖η̄∗i ‖ 6= 0, hi0(x∗) = ‖h̄i(x∗)‖ 6= 0,
no condition otherwise





,

Hi(x∗, ζ∗, η∗i ) =

{
− η∗i0

hi0(x∗)∇hi(x∗)Ri∇hi(x∗)T if hi0(x∗) = ‖h̄i(x∗)‖ 6= 0,

0 otherwise

with Ri :=
(

1 0T

0 −Ili−1

)
∈ <li×li . Summarizing the above arguments, we have the next theorem

about the local behavior of a sequence {(xk, ζk, ηk)} generated by Algorithm 1.

Theorem 2 Suppose Mk = ∇2
xxL(xk, ζk, ηk) and tk = 1 for all k > k̄, where k̄ is a positive integer.

If, for some k > k̄, (xk, ζk, ηk) is sufficiently close to a KKT triple (x∗, ζ∗, η∗) of NSOCP (1) such
that x∗ is nondegenerate and (x∗, ζ∗, η∗) satisfies the second-order condition (12), then the sequence
{(xk, ζk, ηk)} generated by Algorithm 1 converges R-quadratically to (x∗, ζ∗, η∗). In particular, {xk}
converges R-quadratically to x∗.

4 Numerical Experiments

We implemented Algorithm 1 in MATLAB (Version 6.5) using the SDPT3-Solver (Version 3.0) [13]
to solve the subproblems by transforming them into LSOCPs. In Algorithm 1, we set the parameters
as α0 = 1, τ = 0.01, σ = 0.2, β = 0.95 and use the stopping criterion ‖∆xk‖ < 10−4.

10



Experiment 1. First, we consider the following convex NSOCP:

min xT Cx +
n∑

i=1

(dix
4
i + fixi)

s.t. Ax +




b1
...
bs


 ∈ K := K l1 × · · · ×K ls ,

(13)

where di, fi (i = 1, · · · , n) are scalars, bj (j = 1, · · · , s) are lj-dimensional vectors with l1 + · · ·+ ls = n,
C is an n × n symmetric positive semidefinite matrix, and A is an n × n matrix. We generate
ten problem instances for each of n = 10, 30, 50. We determine the constants as follows: di and
fi (i = 1, · · · , n) are randomly chosen from the intervals [0,1] and [−1, 1], respectively, and C is given
by C := ZT Z, where Z is an n × n matrix whose elements are randomly chosen from the interval
[0,1]. The elements of the matrix A are chosen from the interval [0,2]. Vectors bj ∈ <lj (j = 1, · · · , s)
are determined as bj0 = 1, b̄j = 0. Then, problem (13) is always feasible, since x = 0 satisfies the
constraints.

Each problem instance is solved by Algorithm 1 using an initial point whose elements are randomly
generated from the interval [−1, 1]. The following two updating formulas for matrices Mk are tested.
Both update formulas ensure the positive definiteness of Mk for all k.
Modified Newton formula. At iteration k, if the Hessian ∇2

xxL(xk, µk−1) of the Lagrangian is
a positive definite matrix, then set Mk = ∇2

xxL(xk, µk−1); otherwise, set Mk = ∇2
xxL(xk, µk−1) +

(|ξk|+ 0.1)I, where ξk is the minimum eigenvalue of ∇2
xxL(xk, µk−1). At the first iteration, M0 is set

to be the identity matrix I.
Quasi-Newton formula. We set M0 = I and subsequently update Mk by

Mk+1 = Mk − Mkv
kvkT Mk

vkT Mkvk
+

ukukT

vkT uk
,

where vk = xk+1 − xk, wk = ∇xL(xk+1, λk, µk) − ∇xL(xk, λk, µk), uk = θkw
k + (1 − θk)Mkv

k, and
θk is determined by

θk =

{
1 if vkT wk ≥ 0.2vkT Mkv

k

0.8vkT Mkvk

vkT (Mkvk−wk)
otherwise.

This is a modified BFGS update suggested in the SQP method for NLP [3].

Table 1: Computational results for the convex NSOCP (13)
modified Newton quasi-Newton

n K kave kmin kmax kave kmin kmax

10 K5 ×K5 12.11 7 19 22.89 15 31
30 K5 ×K5 ×K20 13.03 8 25 31.54 22 52
50 K5 ×K5 ×K20 ×K20 13.97 8 29 38.86 25 68

In our experiments with the modified Newton formula, we observed that Mk was chosen to be
∇2

xxL(xk, µk−1) and the step size was equal to 1 in the final stage of the iterations. In the case of the
quasi-Newton formula, the step size was also equal to 1 in the final stage of the iterations. Table 1
shows the average kave, the minimum kmin, and the maximum kmax numbers of iterations for ten
runs, along with the problem size and the Cartesian structure of the second-order cone K of each
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test problem. We find that, for the convex NSCOP (13), the modified Newton formula results in
faster convergence than the quasi-Newton formula. This suggests that the convexity of the objective
function and the linearity of the constraint functions can be better exploited in the modified Newton
formula, since it uses the Hessian matrices of those functions in a direct manner.
Experiment 2. Next, we consider the following nonconvex NSOCP:

min xT Cx +
n∑

i=1

(dix
4
i + eix

3
i + fixi)

s.t.




a1(ex1 − 1)
a2(ex2 − 1)

...
an(exn − 1)




+




â1x1x2

â2x2x3
...

ânxnx1




+




b1
...
bs


 ∈ K := K l1 × · · · ,×K ls ,

(14)

where the constants are similar to those in the previous test problem, except that C is an n × n
indefinite matrix. We generate ten problem instances for each of n = 10, 30, 50. We determine the
constants as follows: ai, âi, ei, fi (i = 1, · · · , n) and the elements of C are randomly chosen from
the interval [−1, 1], and di(i = 1, · · · , n) are randomly chosen from the interval [0, 1]. Vectors
bj ∈ <lj (j = 1, · · · , s) are determined as bj0 = 1, b̄j = 0 similarly to the case of problem (13). Note
that the objective function and the constraint functions are in general nonconvex.

As in the previous experiment, each problem instance is solved by Algorithm 1 using an initial
point whose elements are randomly generated from the interval [−1, 1]. We test the two formulas for
updating matrices Mk, the modified Newton formula and the quasi-Newton formula. The results are
shown in Table 2.

Table 2: Computational results for the nonconvex NSOCP (14)
modified Newton quasi-Newton

n K kave kmin kmax kave kmin kmax

10 K5 ×K5 24.31 11 116 24.96 12 56
30 K5 ×K5 ×K20 59.44 19 183 39.75 25 91
50 K5 ×K5 ×K20 ×K20 68.64 20 180 50.22 31 97

Because of the lack of convexity in the objective and constraint functions, the Hessian of the
Lagrangian is not likely to be positive definite even if xk is close to a stationary point of the problem.
Thus, the matrices Mk determined by the modified Newton formula may substantially differ from
∇2

xxL(xk, µk−1). We have observed that the algorithm with the modified Newton formula performs
somewhat inefficiently compared with the previous experiment, although it exhibits fast local con-
vergence when ∇2

xxL(xk, µk−1) becomes positive definite near a solution. In fact, Table 2 suggests
that the quasi-Newton formula works more effectively especially when ∇2

xxL(xk, µk−1) is indefinite.

References

[1] F. Alizadeh and D. Goldfarb: Second-order cone programming. Mathematical Programming,
Vol. 95, 2003, pp. 3–51.

[2] A. Ben-Tal and A. Nemirovski: Robust convex optimization. Mathematics of Operations Re-
search, Vol. 23, 1998, pp. 769–805.

12



[3] P.T. Boggs and J.W. Tolle: Sequential quadratic programming. Acta Numerica. Vol. 4, 1995,
pp. 1–51.

[4] J.F. Bonnans and H. Ramı́rez: Perturbation analysis of second-order-cone programming prob-
lems. Mathematical Programming, Vol. 104, 2005, pp. 205–227.

[5] J.F. Bonnans and A. Shapiro: Perturbation Analysis of Optimization Problems. Springer-Verlag,
New York, 2000.

[6] R. Correa and H. Ramı́rez: A global algorithm for nonlinear semidefinite programming. SIAM
Journal on Optimization, Vol. 15, 2004, pp. 303–318.

[7] S.P. Han: A globally convergent method for nonlinear programming. Journal of Optimization
Theory and Applications, Vol. 22, 1977, pp. 297–309.

[8] C. Kanzow, C. Nagel, H. Kato and M. Fukushima: Successive linearization methods for nonlinear
semidefinite programs. Computational Optimization and Applications, Vol. 31, 2005, pp. 251–
273.

[9] M.S. Lobo, L. Vandenberghe, S. Boyd and H. Lebret: Applications of second-order cone pro-
gramming. Linear Algebra and Its Applications, Vol. 284, 1998, pp. 193–228.

[10] R.D.C. Monteiro and T. Tsuchiya: Polynomial convergence of primal-dual algorithms for the
second-order cone program based on the MZ-family of directions. Mathematical Programming,
Vol. 88, 2000, pp. 61–83.

[11] S.M. Robinson: Generalized equations. in A. Bachem et al. (eds.) Mathematical Programming:
The State of the Art, Springer-Verlag, Berlin, 1983, pp. 346–367.

[12] M.J. Todd: Semidefinite optimization. Acta Numerica, Vol. 10, 2001, pp. 515–560.
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