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ABSTRACT. This paper describes a problem of interdicting/jammingeless communi-
cation networks in uncertain environments. Jamming conication networks is an im-
portant problem with many applications, but has receivéatively little attention in the
literature. Most of the work on network interdiction is fead on preventing jamming and
analyzing network vulnerabilities. Here, we consider tasecwhere there is no informa-
tion about the network to be jammed. Thus, the problem isaedito jamming all points
in the area of interest. The optimal solution will determthe locations of the minimum
number of jamming devices required to suppress the netwdskconsider a subproblem
which places jamming devices on the nodes of a uniform griel ¢ve area of interest.
The objective here is to determine the maximum grid step ¥ifederive upper and lower
bounds for this problem and provide a convergence resulth&uy we prove that due to the
cumulative effect of the jamming devices, the proposed owkfiroduces better solutions
than the classical technique of covering the region wittiaumi circles.

1. INTRODUCTION

This paper describes a problem of interdicting/jammingeamication networks in un-
certain environments. Jamming communication networks ismgportant problem but has
not been intensively researched despite the vast amountiif @n optimizing telecom-
munication systems [8]. Most papers on network interdicoe about preventing jam-
ming and analyzing network vulnerability [7, 3]. To our knledge, the only literature on
network interdiction involving optimal placement of janmmgidevices is the work of Com-
mander et al. [1] in which several mathematical programrfongiulations were given for
the deterministio?vViRELESS NETWORK JAMMING PROBLEM The only other thoroughly
studied cases are problems of minimizing the maximal ndtflow and maximizing the
shortest path between given nodes via arc interdictiorgusimted resources. Wood [9],
Israeli et al. [5], and Cormican et al. [2] studied stochaatid deterministic cases and
suggested efficient heuristics. A similar setup but withféedgnt objective was recently
studied by Held in 2005 [4].

Since most situations arise in military battlefield scemsmrexact information about the
topology of the adversary’s network is unknown. Thus, deisistic network interdiction
approaches have limited applicability. In this case, atsistic approach involving some
risk measure for evaluating the efficiency of the jammingckeplacement may be helpful.
However, choosing an appropriate risk measure is a chatigmgoblem in its own right.
In this paper, we consider an extreme case where there is noraipformation about the
topology of the network to be jammed. The only informatioedisn our approach is a
bounding area, containing the communication network.

The organization of the paper is as follows. Section 2 givissraal description of the
problem and the jamming model. We derive bounds and proveneecgence result for
the case of complete uncertainty in Section 3. Here we alswodstrate the advantage
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of the proposed method compared to the simplified case whiel dot account for the
cumulative effect of the jamming devices. Section 4 progisieme concluding remarks.

2. DESCRIPTIONS ASSUMPTIONS AND DEFINITIONS

In general, the problem of jamming a communication netwstioidetermine the min-
imum number of jamming devices required to interdict or sepp functionality of the
network. Starting with this general statement, more speciifes can be obtained by con-
sidering various types of jamming devices and interdictioteria. Depending on the
given information about the communication nodes and the/ordt topology, stochastic
or deterministic setups can be constructed [1]. Below weigeassumptions and basic
definitions of the considered framework.

We consider radio-transmitting communication networkd @mming devices operat-
ing with electromagnetic waves. We assume that the jammévicds have omnidirec-
tional antennas and emit electromagnetic waves in all times with the same intensity.
We also assume that jamming power decreases reciprocdlig sguared distance from a
device.

Definition 1. A point (communication nodeX is said to be jammed or covered if the
cumulative energy received from all jamming devices exxeenhe threshold valug:

A

— _>F 1

ZZ_Z oy 2P (1)

whereA € R and R(X,i) represents the distance froi to jamming device. This

condition can be rewritten as:

1 1
- >

Z'RQ(X,Z') = L2’ (2)

i

whereL = \/%

The latter inequality implies that a jamming device coverg point inside a circle of
radiusL.

Definition 2. A connection (arc) between two communication nodes is deresi blocked
if any of the two nodes is covered.

Usually, interdiction efficiency is determined by a fractiof covered nodes and/or arcs.
More complicated criteria used are based on the amountafrivdtion transmitted through
the network or the length of the shortest path between pairsades. We do not consider a
specific criterium because we are interested in the casengblete uncertainty. Thus, we
are assuming that we have no knowledge of the network togpilogluding information
about the node coordinates.

3. AMMING UNDER COMPLETE UNCERTAINTY

If we ignore the cumulative effect of the jamming deviceglthe problem reduces to
determining the optimal covering of an area on a plane byesrcThis covering problem
was solved in 1936 by Kershner [6]. The current paper shoasdhcounting for the
cumulative effect of all the devices can lead to significarsises in costs, i.e. required
number of jamming devices.

Since we assume no information is known about the networlet@aimmed, the only
reasonable approach is to cover all points in some area ktweantain the network. This
approach would also be appropriate when some informatioatdahe network is available,
but is potentially inaccurate.

We consider a case when a communication network is locasétbia square. However,
all of the following theorems can be formulated for a moreagahcase. For example, to
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obtain results when the network is contained inside a rgctiain region in the plane, the
only modification required to the calculations is an appiatprupdating of the summation
bounds.

An optimal covering is one which contains the minimum numifigamming devices
that jam all points in the particular area of interest. Hogre¥inding a globally optimal
solution for the general problem is difficult [1]. Thereforge consider a subproblem
of covering a square with jamming devices located at the siof@ uniform grid. The
solution to this problem will provide a feasible solutiorp{imal in certain cases) to the
general problem. Suppose the grid step sizR.idf the length of a square sideis not a
multiple of R, then we cover a bigger square with a side of lenfgth:] +1). See Figure 1
for an example. The optimal solution in the considered pwhik a uniform grid with the
largest possible step size which covers the square. Thégpnalemains non-trivial, even
for this simplified setup.

By

Figure 1: Uniform grid with jamming devices

Lemma 1. For any covering of a square with a uniform grid, a point whielceives the
least amount of jamming energy lies inside a corner grid (mde Figure 2).

least covered point

Figure 2: The least covered point is shown in the lower leid gell.

Proof. Consider a corner cefly and an arbitrary non-corner cél]. We prove that for any
point P € S;, there is a corresponding poif¥ € S, such thatE/(P) > E(P’), where
E(X) is the cumulative jamming energy from all devices receiviggbént X .

Let P’ be a symmetric correspondence of paihtnsideSy,. Here, symmetry implies
that P and P’ are equidistant from the sides of their respective cells.syli the square
into the four rectangled, B, C, and D, whereA is the rectangle containing celf and
S; (see Figure 3). Denote the other two corner cells of receadgby C; andC5. Let
alsoT; andT; be points inside”; andC, respectively, such thdf, PT, P’ is a rectangle
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with sides parallel to the sides of the square as in Figure gindJsymmetry we get the

following relations:

whereE (X, I) is the cumulative jamming energy from all devices insiddaegle’ re-

=
T

— 5,

=

Figure 3: Square Decomposition
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Figure 4: Equivalent Points

E(P',A) = E(PA),
) < E(T\,B) = E(P,B),
< E(Ty,D) = E(P,D),
E(P'.C) < E(P,C),

ceived by pointX. Relations (3) - (6) imply

E(P")

and the lemma is proved.

Below we formulate theorems for uppBrand lowerR bounds for the optimal grid step
size R* : R < R* < R. In all formulated theorems, we consider covering a squatte w

side lengthu.

E(P',A)+ E(P',B) + E(P',C) + E(P', D)
E(P,A)+ E(P,B)+ E(P,C) + E(P, D)
E(P),
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Theorem 1. The unique solution of the equation

1 a 1
is a lower boundr for the optimal grid step siz&*.

Proof. In Lemma 1, we proved that the least covered point lies ingiderner cell. Con-
sider now a grid with step sizB. Without the loss of generality, |6 (xq, yo) be a point

9] 3

Figure 5: Cumulative emanation of jamming devices.

inside the bottom left corner cell as shown in Figure B. I», and I3 are cumulative
jamming energy received d& by jamming devices located in regiogs A, and B cor-
respondingly. Similarly,l, is the jamming energy from the jamming device located at
the bottom left nod®. With this, the jamming energy received at pointis calculated
through the expression

E(P)=1 + Iy + Is + 1, where 9)
T—1T-1 1
I = , 10
' ;j:zo(R—$0+i'R)2+(R—yo+j'R)2 (10)
I —T_l 1 (12)
T (R—wo+i R2+yd
T—1 1
I3 = , 12
3 g+ (R—yo+3j- R)? (12)
1
Iy = ———, (13)
g + Y3
a
T = [E} Y (14)
Notice that we can estimafe + I3 as
= 1 2 (T 1
In+13>2- _ > — — . 15
20 2 §R2(1+i)2+R2_R2/0 T+ (1+a22™ (15)
This follows from the fact that
N N+1
S 56) = / f(2)da, (16)
. 0
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Figure 6: Integral Lower Bound.

wheref(z) is a decreasing function. This property can be easily astadil geometrically.
Notice in Figure 6 that the left side of inequality (16) reseets the shaded region in the
figure, while the right side represents the area urfdej. Continuing from (15) above we
have

T
1 T
S — tan(T +1) — =
/0 1+ (1+22" arctan(T'+1) =
1
= g — arctan (T—H> — g (17)
T 1
D —
- 4 T+1
Here and further, we use the inequalities given below:
arctan(z) <z, 0 <z <1, (18)
3
arctan(x) > x — %, 0<z<1. (29)
Now combining (15) and (17), we obtain
2 (7 1
L+I3> —(-———]. 20
2+3_R2<4 T+1> (20)
We also have the following approximation foy which follows clearly
1
Iy > —. 21
2o (21)

For estimatingl/; we use a property similar to (16), but in a higher dimensiocamigly,

N N N41 ,N+1
S sz [ [ s, (22)

i=0 j=0

where as abovef(z,y) is a decreasing function af andy. Using this inequality, we
derive the following approximation faf .

T T dxdy
I > /
T T
> / / dxdy (23)
o Jo (R+z-R?+(R+y-R)?

7 1 /T+1 /T+1 dIdy
- RY); 1 a? +y?
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Furthermore,
T+1 T+1 dady T+1 T+1 T+1 4 1
5 5 = — arctan dr — —arctan [ — | dz
1 1 e +y 1 x x 1 x x
T+1 T+1
1 T+1 d
> / —arctan( + )da:—/ —926
1 X X 1 X
T+1
1 /x T
= — [ — — arct — d 24
/1 :C(x arcan(T+1>) x — T (24)

T 1 TJrl

= §1H(T+1)—1+T—H— A —a,rCta, < )
T 1 T+11

> “mT+1)-14+-— —

z 5 n(T+1) +T+1 /0 ( >
™ 1

= 21n(T+1)—2(1—T—+1)

Combining this result with (23) we have

I >}; <—1(T+1) 2<1—TL+1)> (25)

Summing (20), (21), and (25) we obtain an overestimate ofdted coverage at point
P. Thatis

1 2 2 1
E(P) > —-(%111(T+1)—2+ +f——+—>

-~ RZ? T+1 2 T+1 2
1 3

= In(T +1 - — = 26
w (Fuer+n+3-3) (26)

1 a
> — (7 = —3).
= 2R? (W IH(R+1) T 3)
To guarantee coverage of poiRt it is sufficient to claim that
1 a 1
=— (m- — -3) > —.
FR) = 57 (= 1n(R—|—1)+7T 3)_L2 27)
Since f(R) is monotonically decreasing i), +o0), the largestR satisfying the above
inequality is the unique solutioR of the equation
1
FR) = 75

Thus, a uniform grid with step sizB jams any pointP inside a corner cell. According
to Lemma 1, the grid jams the least covered point in the squaplying that the whole
square is jammed. Thus we have the desired result. O

(28)

Since the functiorf (R) = 55 (7 In(4% + 1) + 7 — 3) is monotonic, equation (8) can
be easily solved using a numerical procedure such as a béeargh. Therefore, using
(8), we can obtain a step siZeésuch that the corresponding uniform grid covers the entire
square. Further, the number of jamming devices in the grés dot exceed

2
Ny = (}% + 2) . (29)

A more straightforward solution of the initial problem cdide based on the property that a
jamming device covers all the points inside a circle of radilas mentioned in Definition
1. Using that, we could reduce the problem to finding the oalticovering of a square
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with circles of radiusL. A direct result from [6] (that was mentioned in [7]) is thatthe
limit, the minimum number of circles to cover an ar€ais

Ny = 2 (30)
N2

To compare the approaches, we consider the ratio

N ()2
Ny \L?) 3V3(1428)
222 1
S S 31
Vi1 B ey

wherex = % andk = 7. Using these substitutions, equation (8) can be rewrittéerms
of variablesz andk as follows

%(WIH(§+1>+W—3>—2- (32)

By solving (32) for different values df, one can find corresponding valuesmand%—f.
To evaluate the advantage of the uniform grid approach dwenaive one, we provide
some computational results in the Table 1. From the tablesegethat ag increases, the

k T %—f
102 | 2.44] 2.3
10* | 3.54| 4.8
10% | 4.40| 7.5
108 [ 5.14] 10.2

Table 1: Comparing\% for various values of.

advantage of using our approach becomes more significafdctinit can be proved that
limg— 0o %—1 = oo. This will follow as a corollary of Theorem 3.

To establish the quality of the lower bound rigorously, wedhto first establish a similar
result for an upper bound. This follows in the next theorem.

Theorem 2. The unique solution of the equation
() g T ) - -

is an upper bound of the optimal grid step sizB*.

Proof. Let P(xg,y0) be the least jammed point, that lies inside a corner cell ralicg
to Lemma 1. Without the loss of generality, as in the proof beédrem 1, we assume
that P is inside the bottom left corner cell. The jamming energyeieed at pointP

is calculated through the expressions (9) - (14). SiRcis the least covered point, the
following inequality holds.



JAMMING COMMUNICATION NETWORKS UNDER COMPLETE UNCERTAINY

E(P)<E<P’<:z:_§,y_0>>_I{+IQ+I3+I4, where
T—17-1
I = L
1 Pt j:()( + - R)Q—F(R-l-j'R)Q’
T—1 1
I = = EE——
2 ;( +i-R)?’

OJ\

z::o (£)2 R+] R)?’

1
(5)*

Iy =

(34)

(35)

(36)

(37)

(38)

I, and I} can be estimated through integrals similarly to the tealmsqused in the proof

of Theorem 1. The following inequality holds

i< [ " fe)ar

(39)

where f(z) is a decreasing function. This property can also be provemegrically.
Figure 7 represents a graphical interpretation of thidimaThe left side of the inequality

Figure 7: Integral Upper Bound.

is represented by the shaded area. The right side of (3% iartfa undeyf (x). With this

property we have from (36) that

(40)
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Furthermore, using inequalities (18) and (19), we see 8Wtié estimated by

Iy <

2 2 /1 1 1
< - 4 - (Z_ - 4 -
= * (2 o7 24T3> (41)

7151+1
T OR2\3 T 1213 )"

To estimatd{ a property similar to (39) can be used. This inequality i®gity

ZZfzg //fxydxdy—i—/ f:cOdac—i—/ f(0,y)dy,  (42)

=1 j=1

wheref(z,y) is a decreasing function afandy. With the above inequality,

I

<

1 +/T1 dx +/T1 dx N
E+r2 Jo G2+ R+e-R? S0 (F+-RP+ R

/Tl /Tl dIdy
£ +:c-R)2 ((R+y-R)2

, Where (43)
AR TP TP
1 s
C = 2arctan(2T) — arctan(2) + arctan (T — 5) -3

T 2arct LY 4 arctan [ £ 2
= —_ — arcta. — arcta. — — arcta
2 rean or rean g e

1
T 1 1 1 2
-2 == — | + = —
2 <2T 24T3> 2 <2T—1 2T—1>

T+1
7

) @

IN

<

The double integral in (43) is bounded as follows

% (y +12 Ji i 242
/ 1( (T) ()
— [ arctan | — | — arctan | — dt
1 t t t
T tan (L)) dt T
5 — arctan T —/; ?

INA
m\)-t\
~
|
IS
S

<" (m(r-L)-m(! /Tél LB Yy
T (LY _m (L)) - 1 T
) 2 2 s t\T  37°
_<§_ P, 1 )

3 T—-41 6T-3)?

7 20 5 1 1 1 1
= Tmer-1 - -

7 I ) =3 e e 36T3+T—§ 6(T — 3)2

7 20 5 1 1
<ZhET—1) - =+ =+ -

3 ) 67  T-1 12(T-1)
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Combining the results from (43), (44), and (45) gives thereseémate forl] as

1 [« T 16 5 1 1
I'< — (=@ 1)+~ — — + — - . (46

1<R2<2 n( R M 12(T—%)2> (40)
Recall equation (34) statell(P) < I; + I} + I + I,. So using the expression féf
given in (38) and the overestimates fr, I}, andI} derived in equations (46), (40), and
(41) respectively, we obtain

1 (= 1 T 19
EP) < —|=-In2T-1)— ——=+—-+—. 47
) < g (Fmer-v- g+ 3+7) (47)
Finally, if we letT =[] +1 < & + 1, we get
1 (= 2a 1 m 19
EP)< = (Zm(=Z+1)-—+ 242 48
(P) R2<2H<R+) 6(%+1)+2+3> (48)
The functionf(R) = 2> (g In(2%¢+1) - m +Z+ %) is monotone, hence the

equationf(R) = # has a unique solutiof. Equation (48) implies that a grid with
step sizeR does not cover the entire square. That is, there exists sit de@ pointP
that remains uncovered. Thiisis an upper bound for the optimal grid covering problem.
Since the optimal grid step siZ&¢* < R, the theorem is proved. O

In Figure 8, we see an example in which we are coveringpat 40 square and the
required jamming level at each pointi$ units. In part (a), we see the coverage associated
with the required number of devices from the lower bound oédhem 2. In this case,
20% = 400 jamming devices are used to cover the area. Notice that trerao holes in
the region. This, together with the scallop shell outside libunding box indicates that
all points within the region are covered. In part (b), we $eedoverage corresponding to
the placement of the jamming devices on a uniform grid adogrtb the upper bound of
Theorem 3. Here, the required number of device)is= 361. Notice the holes located
at the four corners of the region indicating that these jga@né uncovered. This validates
the theoretical results obtained in Theorem 2 and Theorem 3.

25

20r 1 2F >
151 B 51

100 i ok

. . . . . . . . . p . . . . . . . . .
-5 -0 -15 -10 -5 0 5 10 15 20 25 Hoomoom s 0 s oo s
(a) (b)

Figure 8: (a) The coverage when jamming devices are placada@iag to the lower bound
from Theorem 2. The total number of jamming devices requis@d? = 400. (b) We see
the coverage associated with the result obtained from Eme@: In this casel9? = 361
devices are placed. Notice the corner points are not jammed.
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Now that we have established both upper and lower boundsnfapémal grid step
size, we can determine the quality of the bounds. The reswbiained in the following
theorem.

Theorem 3. .
R

lim — =1 49

Am =1 (49)

whereR and R are bounds obtained from equations (8) and (33), correspuiyl More-
over, the following inequality holds:

1< (50)

=] =l

<.,/1
- + In(a)’

for constants\/ € R, ¢ € R, such thatR > M.

Proof. By letting x = % andy = %, equations (8) and (33) can be respectively rewritten
as

a:L.x(e%<rz+%>*1—1),and (51)
s 2a 19 L.y
21 )=y - — -4 ——F—. 52
2n<L-y+> VT3 T sar Ly (52)
To prove the theorem, we need to show that
lim 2 =1, (53)
a—oo I

wherex > 0 andy > 0 are solutions of (51) and (52), correspondingly. From (5&),
obtain

Tn (ﬁ + 1) > y? — C1, where (54)

2 L-y

19 «
C, = ? + bR and (55)
Ly 22—
a > — (e — 1) . (56)
From (51) and (56) we see that

T (e%(””2+c2) O3 — 1) > % (e%(yzfcl) - 1) , Where (57)
Cy = g, and (58)
Cs=e ' (59)

Sincey - L andx - L are upper and lower bounds, correspondingly, the followsétation

holds
Yy

=>1. (60)
x
With (51) and (60) above, we can also conclude that
lim x =00 and lim y = oc. (61)

a—0o0 a—0o0

For all M € R, whereM > /C1, there exist%) € R such that (57) can be reduced to
Yo Q-e*@ ) andy > M. (62)

x
Moreover, forc = 7 In(Q) the following inequality holds
2
(g) —-1< %, andy > M. (63)
X

x



JAMMING COMMUNICATION NETWORKS UNDER COMPLETE UNCERTAINY 13
Assume for the sake of contradiction that the inequality68)(does not hold for some
N )
(z*,y*). Thatis assume thz{tg—*) — 1> —%. Using (62) we have

*2 ¢

V@ # (E5) c o2t o (64)
X

which contradicts (60).
Applying (60) and (63) we get

1<g§,/1+%,andy>M. (65)
x x

Letting a tend tooco and taking (61) into account, we see that in fact

lim 4 =1. (66)

a—oo I

Finally, by using (65) and (51), the following relation caa d&btained

1<?< 142, (67)
x In(a)
for some constart € R, wheny > M. Thus, the theorem is proved. O

4. CONCLUSION

In this paper, we introduced the problem of jamming a comization network under
complete uncertainty. We examined the case when the neta/&riown to lie in a square
with areaa?®. We derived upper and lower bounds for the optimal numbeawofjing
devices required when they are located at the vertices offarangrid. We also provided
a convergence result indicating that the proposed bouredsgdut. Furthermore, we proved
that our approach is more efficient than the solution pravidg optimally covering the
square with circles of radius.
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