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ABSTRACT. This paper describes a problem of interdicting/jamming wireless communi-
cation networks in uncertain environments. Jamming communication networks is an im-
portant problem with many applications, but has received relatively little attention in the
literature. Most of the work on network interdiction is focused on preventing jamming and
analyzing network vulnerabilities. Here, we consider the case where there is no informa-
tion about the network to be jammed. Thus, the problem is reduced to jamming all points
in the area of interest. The optimal solution will determinethe locations of the minimum
number of jamming devices required to suppress the network.We consider a subproblem
which places jamming devices on the nodes of a uniform grid over the area of interest.
The objective here is to determine the maximum grid step size. We derive upper and lower
bounds for this problem and provide a convergence result. Further, we prove that due to the
cumulative effect of the jamming devices, the proposed method produces better solutions
than the classical technique of covering the region with uniform circles.

1. INTRODUCTION

This paper describes a problem of interdicting/jamming communication networks in un-
certain environments. Jamming communication networks is an important problem but has
not been intensively researched despite the vast amount of work on optimizing telecom-
munication systems [8]. Most papers on network interdiction are about preventing jam-
ming and analyzing network vulnerability [7, 3]. To our knowledge, the only literature on
network interdiction involving optimal placement of jamming devices is the work of Com-
mander et al. [1] in which several mathematical programmingformulations were given for
the deterministicWIRELESS NETWORK JAMMING PROBLEM. The only other thoroughly
studied cases are problems of minimizing the maximal network flow and maximizing the
shortest path between given nodes via arc interdiction using limited resources. Wood [9],
Israeli et al. [5], and Cormican et al. [2] studied stochastic and deterministic cases and
suggested efficient heuristics. A similar setup but with a different objective was recently
studied by Held in 2005 [4].

Since most situations arise in military battlefield scenarios, exact information about the
topology of the adversary’s network is unknown. Thus, deterministic network interdiction
approaches have limited applicability. In this case, a stochastic approach involving some
risk measure for evaluating the efficiency of the jamming device placement may be helpful.
However, choosing an appropriate risk measure is a challenging problem in its own right.
In this paper, we consider an extreme case where there is no a priori information about the
topology of the network to be jammed. The only information used in our approach is a
bounding area, containing the communication network.

The organization of the paper is as follows. Section 2 gives aformal description of the
problem and the jamming model. We derive bounds and prove a convergence result for
the case of complete uncertainty in Section 3. Here we also demonstrate the advantage
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of the proposed method compared to the simplified case which does not account for the
cumulative effect of the jamming devices. Section 4 provides some concluding remarks.

2. DESCRIPTIONS, ASSUMPTIONS, AND DEFINITIONS

In general, the problem of jamming a communication network is to determine the min-
imum number of jamming devices required to interdict or suppress functionality of the
network. Starting with this general statement, more specific ones can be obtained by con-
sidering various types of jamming devices and interdictioncriteria. Depending on the
given information about the communication nodes and the network topology, stochastic
or deterministic setups can be constructed [1]. Below we provide assumptions and basic
definitions of the considered framework.

We consider radio-transmitting communication networks and jamming devices operat-
ing with electromagnetic waves. We assume that the jamming devices have omnidirec-
tional antennas and emit electromagnetic waves in all directions with the same intensity.
We also assume that jamming power decreases reciprocally tothe squared distance from a
device.

Definition 1. A point (communication node)X is said to be jammed or covered if the
cumulative energy received from all jamming devices exceeds some threshold valueE:

∑

i

λ

R2(X, i)
≥ E, (1)

whereλ ∈ R and R(X, i) represents the distance fromX to jamming devicei. This
condition can be rewritten as:

∑

i

1

R2(X, i)
≥ 1

L2
, (2)

whereL =
√

λ
E

.

The latter inequality implies that a jamming device covers any point inside a circle of
radiusL.

Definition 2. A connection (arc) between two communication nodes is considered blocked
if any of the two nodes is covered.

Usually, interdiction efficiency is determined by a fraction of covered nodes and/or arcs.
More complicated criteria used are based on the amount of information transmitted through
the network or the length of the shortest path between pairs of nodes. We do not consider a
specific criterium because we are interested in the case of complete uncertainty. Thus, we
are assuming that we have no knowledge of the network topology, including information
about the node coordinates.

3. JAMMING UNDER COMPLETE UNCERTAINTY

If we ignore the cumulative effect of the jamming devices, then the problem reduces to
determining the optimal covering of an area on a plane by circles. This covering problem
was solved in 1936 by Kershner [6]. The current paper shows that accounting for the
cumulative effect of all the devices can lead to significant losses in costs, i.e. required
number of jamming devices.

Since we assume no information is known about the network to be jammed, the only
reasonable approach is to cover all points in some area knownto contain the network. This
approach would also be appropriate when some information about the network is available,
but is potentially inaccurate.

We consider a case when a communication network is located inside a square. However,
all of the following theorems can be formulated for a more general case. For example, to
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obtain results when the network is contained inside a rectangular region in the plane, the
only modification required to the calculations is an appropriate updating of the summation
bounds.

An optimal covering is one which contains the minimum numberof jamming devices
that jam all points in the particular area of interest. However, finding a globally optimal
solution for the general problem is difficult [1]. Therefore, we consider a subproblem
of covering a square with jamming devices located at the nodes of a uniform grid. The
solution to this problem will provide a feasible solution (optimal in certain cases) to the
general problem. Suppose the grid step size isR. If the length of a square sidea is not a
multiple ofR, then we cover a bigger square with a side of lengthR([ a

R
]+1). See Figure 1

for an example. The optimal solution in the considered problem is a uniform grid with the
largest possible step size which covers the square. The problem remains non-trivial, even
for this simplified setup.

Figure 1: Uniform grid with jamming devices

Lemma 1. For any covering of a square with a uniform grid, a point whichreceives the
least amount of jamming energy lies inside a corner grid cell(see Figure 2).

Figure 2: The least covered point is shown in the lower left grid cell.

Proof. Consider a corner cellS0 and an arbitrary non-corner cellSi. We prove that for any
point P ∈ Si, there is a corresponding pointP ′ ∈ S0 such thatE(P ) > E(P ′), where
E(X) is the cumulative jamming energy from all devices received at pointX .

Let P ′ be a symmetric correspondence of pointP insideS0. Here, symmetry implies
thatP andP ′ are equidistant from the sides of their respective cells. Wesplit the square
into the four rectanglesA, B, C, andD, whereA is the rectangle containing cellsS0 and
Si (see Figure 3). Denote the other two corner cells of rectangle A by C1 andC2. Let
alsoT1 andT2 be points insideC1 andC2 respectively, such thatT1PT2P

′ is a rectangle
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Figure 3: Square Decomposition

Figure 4: Equivalent Points

with sides parallel to the sides of the square as in Figure 4. Using symmetry we get the
following relations:

E(P ′, A) = E(P, A), (3)

E(P ′, B) < E(T1, B) = E(P, B), (4)

E(P ′, D) < E(T2, D) = E(P, D), (5)

E(P ′, C) < E(P, C), (6)

whereE(X, I) is the cumulative jamming energy from all devices inside rectangleI re-
ceived by pointX . Relations (3) - (6) imply

E(P ′) = E(P ′, A) + E(P ′, B) + E(P ′, C) + E(P ′, D)

< E(P, A) + E(P, B) + E(P, C) + E(P, D) (7)

= E(P ),

and the lemma is proved. �

Below we formulate theorems for upperR and lowerR bounds for the optimal grid step
sizeR∗ : R < R∗ < R. In all formulated theorems, we consider covering a square with
side lengtha.
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Theorem 1. The unique solution of the equation

1

2R2

(

π ln(
a

R
+ 1) + π − 3

)

=
1

L2
(8)

is a lower boundR for the optimal grid step sizeR∗.

Proof. In Lemma 1, we proved that the least covered point lies insidea corner cell. Con-
sider now a grid with step sizeR. Without the loss of generality, letP (x0, y0) be a point

Figure 5: Cumulative emanation of jamming devices.

inside the bottom left corner cell as shown in Figure 5.I1, I2, andI3 are cumulative
jamming energy received atP by jamming devices located in regionsC, A, andB cor-
respondingly. Similarly,I4 is the jamming energy from the jamming device located at
the bottom left nodeO. With this, the jamming energy received at pointP is calculated
through the expression

E(P ) = I1 + I2 + I3 + I4, where (9)

I1 =

T−1
∑

i=0

T−1
∑

j=0

1

(R − x0 + i · R)2 + (R − y0 + j · R)2
, (10)

I2 =

T−1
∑

i=0

1

(R − x0 + i · R)2 + y2
0

, (11)

I3 =

T−1
∑

j=0

1

x2
0 + (R − y0 + j · R)2

, (12)

I4 =
1

x2
0 + y2

0

, (13)

T =
[ a

R

]

+ 1. (14)

Notice that we can estimateI2 + I3 as

I2 + I3 ≥ 2 ·
T−1
∑

i=0

1

R2(1 + i)2 + R2
≥ 2

R2

∫ T

0

1

1 + (1 + x)2
dx. (15)

This follows from the fact that
N

∑

i=0

f(i) ≥
∫ N+1

0

f(x)dx, (16)
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Figure 6: Integral Lower Bound.

wheref(x) is a decreasing function. This property can be easily established geometrically.
Notice in Figure 6 that the left side of inequality (16) represents the shaded region in the
figure, while the right side represents the area underf(x). Continuing from (15) above we
have

∫ T

0

1

1 + (1 + x)2
dx = arctan(T + 1) − π

4

=
π

2
− arctan

(

1

T + 1

)

− π

4
(17)

≥ π

4
− 1

T + 1
.

Here and further, we use the inequalities given below:

arctan(x) ≤ x, 0 ≤ x ≤ 1, (18)

arctan(x) ≥ x − x3

3
, 0 ≤ x ≤ 1. (19)

Now combining (15) and (17), we obtain

I2 + I3 ≥
2

R2

(

π

4
−

1

T + 1

)

. (20)

We also have the following approximation forI4 which follows clearly

I4 ≥ 1

2R2
. (21)

For estimatingI1 we use a property similar to (16), but in a higher dimension. Namely,

N
∑

i=0

N
∑

j=0

f(i, j) ≥
∫ N+1

0

∫ N+1

0

f(x, y)dxdy, (22)

where as above,f(x, y) is a decreasing function ofx andy. Using this inequality, we
derive the following approximation forI1.

I1 ≥
∫ T

0

∫ T

0

dxdy

(R − x0 + x · R)2 + (R − y0 + y · R)2

≥
∫ T

0

∫ T

0

dxdy

(R + x · R)2 + (R + y · R)2
(23)

=
1

R2

∫ T+1

1

∫ T+1

1

dxdy

x2 + y2
.
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Furthermore,
∫ T+1

1

∫ T+1

1

dxdy

x2 + y2
=

∫ T+1

1

1

x
arctan

(

T + 1

x

)

dx −
∫ T+1

1

1

x
arctan

(

1

x

)

dx

≥
∫ T+1

1

1

x
arctan

(

T + 1

x

)

dx −
∫ T+1

1

dx

x2

=

∫ T+1

1

1

x

(

π

x
− arctan

(

x

T + 1

))

dx − 1 +
1

T + 1
(24)

=
π

2
ln(T + 1) − 1 +

1

T + 1
−

∫ T+1

0

1

x
arctan

(

x

T + 1

)

dx

≥ π

2
ln(T + 1) − 1 +

1

T + 1
−

∫ T+1

0

1

x

(

x

T + 1

)

dx

=
π

2
ln(T + 1) − 2

(

1 − 1

T + 1

)

.

Combining this result with (23) we have

I1 ≥ 1

R2

(

π

2
ln(T + 1) − 2

(

1 − 1

T + 1

))

. (25)

Summing (20), (21), and (25) we obtain an overestimate of thetotal coverage at point
P . That is

E(P ) ≥ 1

R2
·
(

π

2
ln(T + 1) − 2 +

2

T + 1
+

π

2
− 2

T + 1
+

1

2

)

=
1

R2

(

π

2
ln(T + 1) +

π

2
− 3

2

)

(26)

≥ 1

2R2

(

π · ln
( a

R
+ 1

)

+ π − 3
)

.

To guarantee coverage of pointP , it is sufficient to claim that

f(R) =
1

2R2

(

π · ln
( a

R
+ 1

)

+ π − 3
)

≥ 1

L2
. (27)

Sincef(R) is monotonically decreasing on(0, +∞), the largestR satisfying the above
inequality is the unique solutionR of the equation

f(R) =
1

L2
. (28)

Thus, a uniform grid with step sizeR jams any pointP inside a corner cell. According
to Lemma 1, the grid jams the least covered point in the squareimplying that the whole
square is jammed. Thus we have the desired result. �

Since the functionf(R) = 1
2R2 (π ln( a

R
+ 1) + π − 3) is monotonic, equation (8) can

be easily solved using a numerical procedure such as a binarysearch. Therefore, using
(8), we can obtain a step sizeR such that the corresponding uniform grid covers the entire
square. Further, the number of jamming devices in the grid does not exceed

N1 =

(

a

R
+ 2

)2

. (29)

A more straightforward solution of the initial problem could be based on the property that a
jamming device covers all the points inside a circle of radiusL as mentioned in Definition
1. Using that, we could reduce the problem to finding the optimal covering of a square
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with circles of radiusL. A direct result from [6] (that was mentioned in [7]) is that in the
limit, the minimum number of circles to cover an areaa2 is

N2 =
2a2

3
√

3L2
. (30)

To compare the approaches, we consider the ratio

N2

N1
=

(

R

L2

)

2

3
√

3

1

(1 + 2R

a
)2

=
2x2

3
√

3

1

(1 + 2x
k

)2
, (31)

wherex = R

L
andk = a

L
. Using these substitutions, equation (8) can be rewritten in terms

of variablesx andk as follows

1

x2

(

π ln

(

k

x
+ 1

)

+ π − 3

)

= 2. (32)

By solving (32) for different values ofk, one can find corresponding values ofx and N2

N1

.
To evaluate the advantage of the uniform grid approach over the naive one, we provide
some computational results in the Table 1. From the table, wesee that ask increases, the

k x N2

N1

102 2.44 2.3
104 3.54 4.8
106 4.40 7.5
108 5.14 10.2

Table 1: ComparingN2

N1

for various values ofk.

advantage of using our approach becomes more significant. Infact, it can be proved that
lima→∞

N2

N1

= ∞. This will follow as a corollary of Theorem 3.
To establish the quality of the lower bound rigorously, we need to first establish a similar

result for an upper bound. This follows in the next theorem.

Theorem 2. The unique solution of the equation

1

R2

(

π

2
ln

(

2a

R
+ 1

)

− 1

6( a
R

+ 1)
+

π

2
+

19

3

)

=
1

L2
(33)

is an upper boundR of the optimal grid step sizeR∗.

Proof. Let P (x0, y0) be the least jammed point, that lies inside a corner cell according
to Lemma 1. Without the loss of generality, as in the proof of Theorem 1, we assume
that P is inside the bottom left corner cell. The jamming energy received at pointP
is calculated through the expressions (9) - (14). SinceP is the least covered point, the
following inequality holds.
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E(P ) ≤ E

(

P ′

(

x =
R

2
, y = 0

))

= I ′1 + I ′2 + I ′3 + I ′4, where (34)

I ′1 =
T−1
∑

i=0

T−1
∑

j=0

1

(R
2 + i · R)2 + (R + j · R)2

, (35)

I ′2 =

T−1
∑

i=0

1

(R
2 + i · R)2

, (36)

I ′3 =

T−1
∑

j=0

1

(R
2 )2 + (R + j · R)2

, (37)

I ′4 =
1

(R
2 )2

. (38)

I ′2 andI ′3 can be estimated through integrals similarly to the techniques used in the proof
of Theorem 1. The following inequality holds

N
∑

i=1

f(i) ≤
∫ N

0

f(x)dx, (39)

wheref(x) is a decreasing function. This property can also be proven geometrically.
Figure 7 represents a graphical interpretation of this relation. The left side of the inequality

Figure 7: Integral Upper Bound.

is represented by the shaded area. The right side of (39) is the area underf(x). With this
property we have from (36) that

I ′2 ≤ 1

(R
2 )2

+

∫ T−1

0

dx

(R
2 + x · R)2

=
1

R2

(

6 − 1

T − 1
2

)

. (40)
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Furthermore, using inequalities (18) and (19), we see that (37) is estimated by

I ′3 ≤ 1

(R
2 )2 + (R + x · R)2

=
2

3R2
+

2

R2

(

arctan

(

1

2

)

− arctan

(

1

2T

))

≤ 2

3R2
+

2

R2

(

1

2
− 1

2T
+

1

24T 3

)

(41)

=
1

R2

(

5

3
− 1

T
+

1

12T 3

)

.

To estimateI ′1 a property similar to (39) can be used. This inequality is given by
N

∑

i=1

N
∑

j=1

f(i, j) ≤
∫ N

0

∫ N

0

f(x, y)dxdy +

∫ N

0

f(x, 0)dx +

∫ N

0

f(0, y)dy, (42)

wheref(x, y) is a decreasing function ofx andy. With the above inequality,

I ′1 ≤ 1

(R
2

2
) + R2

+

∫ T−1

0

dx

(R
2 )2 + (R + x · R)2

+

∫ T−1

0

dx

(R
2 + x · R)2 + R2

+

+

∫ T−1

0

∫ T−1

0

dxdy

(R
2 + x · R)2 + ((R + y · R)2

=
4

5R2
+

C

R2
+

1

R2

∫ T−1

0

∫ T−1

0

d(x + 1
2 )dy

(1
2 + x)2 + (y + 1)2

, where (43)

C = 2 arctan(2T ) − arctan(2) + arctan

(

T − 1

2

)

− π

2

=
π

2
− 2 arctan

(

1

2T

)

+ arctan

(

1

2

)

− arctan

(

2

2T − 1

)

(44)

≤ π

2
− 2

(

1

2T
− 1

24T 3

)

+
1

2
−

(

2

2T − 1
− 8

3(2T − 1)3

)

≤ π + 1

2
.

The double integral in (43) is bounded as follows
∫ T−1

0

∫ T−1

0

d(x + 1
2 )dy

(1
2 + x)2 + (y + 1)2

=

∫ T−
1

2

1

2

∫ T

1

dtdy

t2 + y2

=

∫ T−
1

2

1

2

1

t

(

arctan

(

T

t

)

− arctan

(

1

t

))

dt

≤
∫ T−

1

2

1

2

1

t

(

π

2
− arctan

(

t

T

))

dt −
∫ T−

1

2

1

2

1

t

(

1

t
−

1

3t3

)

dt (45)

≤ π

2

(

ln

(

T − 1

2

)

− ln

(

1

2

))

−
∫ T−

1

2

1

2

1

t

(

t

T
− t3

3T 3

)

dt −

−
(

4

3
− 1

T − 1
2

+
1

6(T − 1
2 )2

)

=
π

2
ln(2T − 1) − 20

3
+

5

6T
+

1

12T 2
− 1

36T 3
+

1

T − 1
2

− 1

6(T − 1
2 )2

<
π

2
ln(2T − 1) − 20

3
+

5

6T
+

1

T − 1
2

− 1

12(T − 1
2 )2

.
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Combining the results from (43), (44), and (45) gives the overestimate forI ′1 as

I ′1 <
1

R2

(

π

2
ln(2T − 1) +

π

2
− 16

3
+

5

6T
+

1

T − 1
2

− 1

12(T − 1
2 )2

)

. (46)

Recall equation (34) statedE(P ) ≤ I ′1 + I ′2 + I ′3 + I4. So using the expression forI ′4
given in (38) and the overestimates forI ′1, I

′

2, andI ′3 derived in equations (46), (40), and
(41) respectively, we obtain

E(P ) ≤ 1

R2

(

π

2
ln(2T − 1) − 1

6T
+

π

2
+

19

3

)

. (47)

Finally, if we letT = [ a
R

] + 1 ≤ a
R

+ 1, we get

E(P ) <
1

R2

(

π

2
ln

(

2a

R
+ 1

)

− 1

6( a
R

+ 1)
+

π

2
+

19

3

)

(48)

The functionf(R) = 1
R2

(

π
2 ln

(

2a
R

+ 1
)

− 1
6( a

R
+1) + π

2 + 19
3

)

is monotone, hence the

equationf(R) = 1
L2 has a unique solutionR. Equation (48) implies that a grid with

step sizeR does not cover the entire square. That is, there exists at least one pointP
that remains uncovered. ThusR is an upper bound for the optimal grid covering problem.
Since the optimal grid step sizeR∗ < R, the theorem is proved. �

In Figure 8, we see an example in which we are covering at40 × 40 square and the
required jamming level at each point is3.0 units. In part (a), we see the coverage associated
with the required number of devices from the lower bound of Theorem 2. In this case,
202 = 400 jamming devices are used to cover the area. Notice that thereare no holes in
the region. This, together with the scallop shell outside the bounding box indicates that
all points within the region are covered. In part (b), we see the coverage corresponding to
the placement of the jamming devices on a uniform grid according to the upper bound of
Theorem 3. Here, the required number of devices is192 = 361. Notice the holes located
at the four corners of the region indicating that these points are uncovered. This validates
the theoretical results obtained in Theorem 2 and Theorem 3.
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Figure 8: (a) The coverage when jamming devices are placed according to the lower bound
from Theorem 2. The total number of jamming devices requiredis 202 = 400. (b) We see
the coverage associated with the result obtained from Theorem 3. In this case,192 = 361
devices are placed. Notice the corner points are not jammed.
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Now that we have established both upper and lower bounds for an optimal grid step
size, we can determine the quality of the bounds. The result is obtained in the following
theorem.

Theorem 3.

lim
a→∞

R

R
= 1, (49)

whereR andR are bounds obtained from equations (8) and (33), correspondingly. More-
over, the following inequality holds:

1 ≤
R

R
≤

√

1 +
c

ln(a)
, (50)

for constantsM ∈ R, c ∈ R, such thatR > M .

Proof. By letting x = R

L
andy = R

L
, equations (8) and (33) can be respectively rewritten

as

a = L · x
(

e
2

π
(x2+ 3

2
)−1 − 1

)

, and (51)

π

2
ln

(

2a

L · y
+ 1

)

= y2 − 19

3
− π

2
+

L · y
6(a + L · y)

. (52)

To prove the theorem, we need to show that

lim
a→∞

y

x
= 1, (53)

wherex > 0 andy > 0 are solutions of (51) and (52), correspondingly. From (52),we
obtain

π

2
ln

(

2a

L · y
+ 1

)

> y2 − C1, where (54)

C1 =
19

3
+

π

2
, and (55)

a >
L · y

2

(

e
2

π
(y2

−C1) − 1
)

. (56)

From (51) and (56) we see that

x
(

e
2

π
(x2+C2) · C3 − 1

)

>
y

2

(

e
2

π
(y2

−C1) − 1
)

, where (57)

C2 =
3

2
, and (58)

C3 = e−1. (59)

Sincey · L andx · L are upper and lower bounds, correspondingly, the followingrelation
holds

y

x
> 1. (60)

With (51) and (60) above, we can also conclude that

lim
a→∞

x = ∞ and lim
a→∞

y = ∞. (61)

For allM ∈ R, whereM >
√

C1, there existsQ ∈ R such that (57) can be reduced to
y

x
< Q · e 2

π
(x2

−y2), andy > M. (62)

Moreover, forc = π
2 ln(Q) the following inequality holds

(y

x

)2

− 1 ≤ c

x2
, andy > M. (63)
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Assume for the sake of contradiction that the inequality in (63) does not hold for some

(x∗, y∗). That is assume that
(

y∗

x∗

)2

− 1 > c
x∗2 . Using (62) we have

y∗

x∗
< Q · e−

2

π
x∗2

�
( y∗

x∗
)2−1

�
< Q · e−

2

π
x∗2

·
c

x∗2 = 1, (64)

which contradicts (60).
Applying (60) and (63) we get

1 <
y

x
≤

√

1 +
c

x2
, andy > M. (65)

Lettinga tend to∞ and taking (61) into account, we see that in fact

lim
a→∞

y

x
= 1. (66)

Finally, by using (65) and (51), the following relation can be obtained

1 <
y

x
≤

√

1 +
k

ln(a)
, (67)

for some constantk ∈ R, wheny > M . Thus, the theorem is proved. �

4. CONCLUSION

In this paper, we introduced the problem of jamming a communication network under
complete uncertainty. We examined the case when the networkis known to lie in a square
with areaa2. We derived upper and lower bounds for the optimal number of jamming
devices required when they are located at the vertices of a uniform grid. We also provided
a convergence result indicating that the proposed bounds are tight. Furthermore, we proved
that our approach is more efficient than the solution provided by optimally covering the
square with circles of radiusL.
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