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Abstract A 0-1 matrix is d-disjunct if no column is covered by the union of any d
other columns. A 0-1 matrix is (d; z)-disjunct if for any column C and any d other
columns, there exist at least z rows such that each of them has value 1 at column C
and value O at all the other d columns. Let ¢ (d, n) and ¢ (d, n; z) denote the minimum
number of rows required by a d-disjunct matrix and a (d; z)-disjunct matrix with n
columns, respectively. We give a very short proof for the currently best upper bound
on t(d, n). We also generalize our method to obtain a new upper bound on ¢ (d, n; z).

Keywords Disjunct matrices - Cover free families - Superimposed codes

1 Introduction

A 0-1 matrix is d-disjunct if no column is covered by the union of any d other columns,
by union we mean the bitwise boolean sum of these d column vectors. In other words,
a 0-1 matrix is called d-disjunct if for any column C and any d other columns, there
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exists at least one row such that the row has value 1 at column C and value O at
all d other columns. The same structure is also called cover free family [9,10,15] in
combinatorics, and superimposed code [6,8,12] in information theory. It is called a
d-disjunct matrix in group testing [4,11,13]. A 0-1 matrix is (d; z)-disjunct [8,13] if
for any column C and any d other columns, there exist at least z rows such that each of
them has value 1 at column C and value 0 at all the other d columns. Thus, d-disjunct
is (d; 1)-disjunct. Besides other applications, d-disjunct and (d; z)-disjunct matrices
form the basis for error-free and error-tolerant nonadaptive group testing algorithms,
respectively. These algorithms have applications in many practical areas such as DNA
library screening [2—4,14] and multi-access communications [16], etc.

Let #(d, n) denote the minimum number of rows required by a d-disjunct matrix
with n columns. The bounds on #(d, n) have been extensively studied in the fields of
combinatorics, information theory, and group testing, using different terminologies.
For lower bounds, 7(d, n) = Q(dfolgin) [7,10,15] (throughout the paper log is of
base 2 if no base is specified). In particular, D’yachkov and Rykov [7] proved that

td,n) > %(1 + o(1)) logn, which is the best lower bound so far. For upper

bounds on 7(d, n), it is known that ¢(d, n) = O(d> logn) [8,11]. In [11] (also see
[4, p. 57]), Hwang and Sés gave a greedy type construction which results in # X n
d-disjunct matrices with ¢ < 16d2(1 — log; 2 4 (log; 2) log, n). In [8], D’yachkov
et al. obtained the following asymptotic upper bound on ¢ (d, n) with a rather involved
proof, which is currently the best.

Theorem 1.1 (D’yachkov et al. [8]) For d constant and n — oo, t(d, n) < Aid[l +

o(1)]logn, where Ay =maxo<p<1 maxo<p<i {—(1—P) log(l—pd) +d[P log % +
(1 —P)log 11:—1‘2]}. Moreover, Ag — @ asd — oo.
For (d; z)-disjunct matrices, let 7(d, n; z) denote the minimum number of rows

required by a (d; z)-disjunct matrix with n columns. For given d and z, D’yachkov et al.
d*logn
+

[8] studied lim,,—s oo 10# among others, and they proved that 7 (d, n; z) > c[ Togd

(z — 1)d] where c is a constant.

In this paper, by using the concept of g-ary (d, 1)-disjunct matrices [4,5] and
the probabilistic method (see, e.g., [1]), we give a very short proof for the currently
best upper bound on 7(d, n). In contrast to the previous result in [8] (Theorem 1.1)
which is an asymptotic upper bound, our upper bound on 7 (d, n) does not contain the
asymptotic term o(1). Also, we generalize our method to obtain a new upper bound
on t(d, n; z). Since our new proof is very short and concise, we hope that it can shed
new light on this old problem and stimulate new research on it.

2 Upper bounds on ¢ (d, n)

In this section we prove the following theorem.

—log[1-(1-1)"]

Theorem 2.1 Forn>d>1,1(d, n) <% logn, where By = max -1 ;

1
Moreover, By — Toge 5 d — oo.
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Before the proof, we first introduce the concept of g-ary (d, 1)-disjunct matrix. A
matrix is called g-ary (d, 1)-disjunct if it is g-ary, and for any column C and any set
D of d other columns, there exists an element in C such that the element does not
appear in any column of D in the same row.

As described in [4,5], one can transform a g-ary (d, 1)-disjunct matrix M to a
(binary) d-disjunct matrix M’ as follows. Replace each row R; of M by several rows
indexed with entries of R;. For each entry x of R;, the row with index x is obtained
from R; by turning all x’s into 1’s and all others into 0’s. From this transformation,
we have the following theorem which is useful in our proof.

Theorem 2.2 (Theorem 3.6.1in [4]) At X n g-ary (d, 1)-disjunct matrix M yields a
t' x n d-disjunct matrix M' with t' < tq.

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1 Givenn > d > 1, first construct a random 7 x n g-ary (g > 1)
matrix M with each entry assigned randomly and uniformly from {1, 2, ..., g}, where
g and t will be specified later. For each column C and a set D of d other columns,
for each element ¢; (i = 1,2,...,1) of C, the probability that ¢; appears in some
column of D in the same row is 1 — (1 — [ll)d . Thus the probability that every element
of C appears in some column of D in the same row is [1 — (1 — é)d]’. M is not
(d, 1)-disjunct if and only if there exist a column C and a set D of d other columns
such that the above holds. Therefore, the probability that M is not (d, 1)-disjunct is
no more than (n — d)())[1 — (1 — g)d]'.

We try to minimize tq, the number of rows of the d-disjunct matrix M’ as in
Theorem 2.2, under the condition that g and ¢ satisfy

d t
ndtl [1 — (1 - 1) ] <1. 2.1
q

Notice that Eq. (2.1) implies (n —d) () [1 — (1 — qi)d]’ < 1, thus the probability that M
is (d, 1)-disjunct is greater than zero. Therefore, by probabilistic argument Eq. (2.1)
implies the existence of a t x n g-ary (d, 1)-disjunct matrix, and so a d-disjunct matrix
with n columns and at most g rows.

. _ (d+1)logn _
To satisfy Eq. (2.1), let t = ———"—=7— log[l—(l—é)"]' Define By(g) =

1\d
ol (=" oo

q

_ (d+1)logn

—  Balg)

can estimate that go = ®(d) and By = @(%), since the proof here can stand alone

without this observation, we put it in appendix). By assigning ¢ = g, we obtain

tq . Let go be the point that maximizes By (q), and let B; = B4(qo) (one

(d+1)logn  (d+1)logn
Bi(q0) By '

td,n) < (tq)lg=qy =

Finally, we estimate B; as d — oo. Since (1 — 5)" < % forg > 1, (1 — é)d

1.4 _d Ind 4
< (3)9 = e 7, and —log[l — (1 — 5) ] < —log(l — e ). It follows that
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—logll-(1-1)7] o104 _d _d
Bu(q) = —i— < "g(qe ) — Tisl—4In(1 —e79)]. Let x = 7,
then —;—l = Inx, and B;(q) < ﬁ Inx In(1 — x). Since Inx In(1 — x) achieves its
maximum at x = %,
On the other hand, when ¢ satisfies (1 — [ll)d = %, as d — oo, it is easy to see that

q 1 1 In2 2 _ 1
7= m3-and By(q) = 7~ d . Therefore, as d — 00, By — =

we obtain B;(q) < % for g > 1. Thus B; < % ford > 1.

O

~ dloge-

3 New upper bounds on ¢(d, n; z)

In this section, we generalize the above method to obtain new upper bounds for (d; z)-
disjunct matrices. We establish the following theorem.

Theorem 3.1 For d, z constants, and n — oo, t(d,n;z) < %logn + Bidlog

—log[1-(1-1)"]
q

. Moreover, B; — L asd — 0.

logn + O(1), where By =max =1 Tloge

A g-ary matrix is called (d, 1; z)-disjunct if for any column C and any set D of d
other columns, there exists at least z elements in C such that each of these elements
does not appear in any column of D in the same row. Clearly, by using the same
method mentioned above, one can transform a ¢ x n g-ary (d, 1; z)-disjunct matrix to
a (d; z)-disjunct matrix with n columns and at most tq rows.

Proof of Theorem 3.1 For givenn, d and z, similarly we constructarandom ¢ x n g-ary
(¢ > 1) matrix M with each entry assigned randomly and uniformly from {1, 2, ..., g},
q and r will be specified later. For each column C and a set D of d other columns,
for each element ¢; of C, the probability that ¢; appears in some column of D in the
same row is 1 — (1 — 1)?. Thus the probability that there exist + — z + 1 elements
of C such that each of ttflern appears in some column of D in the same row is at most
(L )n—a- 5)6’]1—ZJrl = )n-a- L-i)d]f—zH. M is not (d, 1; z)-disjunct
if and only if there exists a column C and a set D of d other columns such that the
above holds. Therefore, the probability that M is not (d, 1; z)-disjunct is no more than
(n=d) () (L) =A==t

We want to minimize ¢¢q, the number of rows of the corresponding (d; z)-disjunct
matrix, under the condition that

1“1
nd*1z [1—(1—3) } <1. (3.1

Notice that Eq. (3.1) implies (n — d)(g) (zil)[l —(1 - %)d]t—Z-H < 1. Thus the
probability that M is (d, 1; z)-disjunct is greater than zero, which similarly implies
the existence of a t x n g-ary (d, 1; z)-disjunct matrix, and a (d; z)-disjunct matrix
with n columns and at most g rows.

. - —log[1-(1- )] .
Let go be the point that maximizes By(q) = ——————. Assign ¢ = qo. To

q
satisfy Eq. (3.1), which is equivalent to (d + 1)logn + zlogt < —(t — z) log[1 —

_ 1\d _ (d+1)logn .
(I =) letr = Tlogli—(1- 171 + z + 1. Then, #; should satisfy
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d+1)1 1\¢
zlog (d+1)logn y +z+1 5—[110g|:1—<1——) :| 3.2)
—1og[1—(1—L) } 40
q0
zloglogn

Lett = + 1, from Eq. (3.2), t should satisfy that

—log[1—(1- )]

z d+1)

log y
—10g|:1 -~ (1 - qlo) ]

1 zloglogn
+10 n = d
£ —log[l—(l—i)}
40

For d and z constants (thus g is also constant), as n — 00, the minimum value of

1 satisfying Eq. (3.3) is 1 = log Tt = O(1). Thus,
40

+z4+06 |t <n. (3.3)

y 1
—log[1—(1—7)7]

d+1)logn zloglogn
f=_ @+ Dlog + g8 +0()

“log [1 - (1 - qio)d} —log [1 . (1 . qio)d]

satisfies Eq. (3.1) (where the constant term z in ¢ is absorbed in O(1)). Therefore, the
number of rows of the corresponding (d; z)-disjunct matrix is at most

1
tqo = logn—i—iloglogn—i—O(l),
d By
—log[1—(1—-1)d] 1
where By = Bg(qo) = max,~ + Also, B; — TToge 3 d — o0, as
proved in Theorem 2.1. O

Appendix A: Estimating ¢ and B,

Lemma A.1 Given d > 1, let qo = qo(d) be the point that maximizes By(q) =
—log[1—(1—1)4

Mfor q>1.Then, as d — 00, qo(d) = O(d), and By = Ba(qo) =
Oh.

Proof Notice that if g1 satisfies (1 — J-)? = 3, then g1 = ©(d) since 4 — {5 as

d — oo. Moreover, B;(q1) = L= @(%). We prove the lemma by contradiction.
First assume that g9 = O(d) does not hold, that is, for any ¢ > 0 and any dy > O,
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there exists d > dp such that go(d) > cd. Then, since ZI—O > c,as ¢ — 00, By(qo)d =

~logli—(1—gp)l | —logll- (1—;‘O>]d _ log a9
90 q0

= o(1) (here by a ~ b we mean that

lime_s o % = 1). Thus, By(qo) = %1). It contradicts since gg is the maximum point
of By(g) and By(q1) = @(%) with (1 — ql—l)d = % On the other hand, assume that
qo = S2(d) does not hold, that is, for any ¢ > 0 and any dy > 0, there exists d > dy

d
—log[1—(1—2-)9] —In{l—[(1— L4010 }
such that go(d) < cd. Then, By(qo)d = o N d = 0 = )
Since 0 < (1 — qio)qo < éfOfCIO > l,adSc—>0, ;—0 > %—) 00, and [(1 — qlo)‘io]% <
_d [ _qi)tm]% | d A
e % — 0. Thus By(qo)d ~ q001n2 d = 1n2qo[(1 — )qo]qo < hame Ta =
o(1), which also contradicts (here by a ~ b we mean that llmc_>0 Z—’ = 1). Therefore,
qo(d) = ©(d). Then, (1 — 1) < 1is ©(1), and thus By(qo) = 252 = ©(}). O
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