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Abstract In this work we consider the problem of minimizing a continuously differ-
entiable function over a feasible set defined by box constraints. We present a decom-
position method based on the solution of a sequence of subproblems. In particular, we
state conditions on the rule for selecting the subproblem variables sufficient to ensure
the global convergence of the generated sequence without convexity assumptions. The
conditions require to select suitable variables (related to the violation of the optimality
conditions) to guarantee theoretical convergence properties, and leave the degree of
freedom of selecting any other group of variables to accelerate the convergence.

Keywords Decomposition methods · Gauss–Southwell method ·
Global convergence

1 Introduction

Let us consider the problem

minimize f (x)

s.t. l ≤ x ≤ u
(1)

where f : R
n → R is a continuously differentiable function, l, u ∈ R

n . This is a well-
studied problem and several methods have been proposed (see, e.g., [2,4,7,11,12]).
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398 A. Cassioli, M. Sciandrone

In many real applications, due to the particular structure of the problem and/or to the
large sizes, the adoption of a decomposition approach may be the practicable way to
efficiently solve the optimization problem (see, e.g., [5]).

In a general decomposition framework, at any iteration, some variables are kept
fixed to their current values, and the other variables are determined by solving the
corresponding subproblem. Formally, a general decomposition scheme is described
below.

1.1 General decomposition scheme

Data. A feasible point x0.
For k = 0, 1, . . .

choose a working set W k ⊂ {1, . . . , n};
find

xk+1 ∈ arg min f (x)

s.t.
li ≤ xi ≤ ui i ∈ W k

xi = xk
i ∀ i /∈ W k

(2)

Global convergence properties of the generated sequence {xk} depend on the rule
for selecting the working set W k , provided that (2) admits solution. Most convergent
decomposition methods require suitable convexity assumptions on the objective func-
tion to ensure that ‖xk+1 − xk‖ → 0 for k → ∞ (see, e.g., [3,8,10]). Indeed, as one
may expect, this plays an important theoretical role for the convergence of decom-
position algorithm, where the optimization is sequentially performed with respect to
different blocks of variables.

Here we are interested to the case of nonconvex problems, and we refer to working
set selection rules based on the maximum violation of the optimality conditions. Note
that the optimality conditions for box constrained problems can be expressed in two
equivalent ways: the first one involves the projected gradient, the second one involves
the so-called reduced gradient.

The well-known Gauss–Southwell decomposition method employs a working set
selection rule based on the maximum violation of the optimality conditions expressed
by means of the projected gradient. Recently the global convergence of the method
has been proved in [14] without convexity assumptions, and with the possibility of
including in the working set, besides the variable that mostly violates the optimality
conditions, any other group of variables. The decomposition methods analyzed in [14]
and including the Gauss–Southwell method are designed for a more general class of
linearly constrained problems.

Decomposition algorithms for quadratic convex problems with one linear equality
constraint and box constraints (arising in the training of support vector machines)
have been proposed in [6,8]. These methods, adapted to the case of box constrained
problems, select variables that mostly violate the optimality conditions expressed in
terms of reduced gradient. In particular, the components of the reduced gradient are
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A convergent decomposition method for box-constrained optimization problems 399

ordered in a decreasing order in terms of absolute value, and the first m ≥ 1 ordered
components define the subproblem variables. These methods are widely used since are
very efficient. Their convergence has been proved in [8] under convexity assumptions
on the objective function and under the condition that the working set is made only
by the m variables that mostly violate the optimality conditions.

In this work we present a new algorithm based on a suitable modification of the
maximum violation rule expressed in terms of reduced gradient. The rule we introduce
requires to select, similarly to algorithms of [6] and [8], variables related to the vio-
lation of optimality conditions expressed in terms of reduced gradient, and (as in the
Gauss–Southwell method) leaves the degree of freedom of selecting any other group
of variables to accelerate the convergence. We observe that this latter point can be of
great interest from a computational point of view, and that the rules computationally
advantageous for selecting the additional group of variables are problem dependent.
We prove the global convergence of the defined decomposition method without requir-
ing convexity assumptions on the objective function, and hence we extend the class
of convergent decomposition methods for nonconvex problems.

2 Notation and preliminary results

For convenience of the reader, we recall in this section some preliminary results
needed in Sect. 3 and in the Appendix. We introduce also some basic notation to be
used through the following sections.

The feasible set of (1) will be denoted as F . In correspondence to any feasible
point x , we define the set L(x) of active lower bounds and the set U (x) of active upper
bounds:

L(x) = {i ∈ 1 . . . n : xi = li }
U (x) = {i ∈ 1 . . . n : xi = ui }

We denote by D(x) the set of feasible direction at x :

D(x) = {d ∈ R
n : di ≥ 0 i ∈ L(x), di ≤ 0 i ∈ U (x)}

On stationarity conditions

Given x̄ ∈ F , we say x̄ is a stationary point if

∇ f (x̄)T d ≥ 0 ∀d ∈ D(x̄), (3)

where ∇ f is the gradient of f .
In correspondence to any point x ∈ R

n , we denote by [x]+ the orthogonal projection
of x onto the feasible set F , so that we have
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400 A. Cassioli, M. Sciandrone

[x]+i = max{li , min{ui , xi }} i = 1, . . . , n.

For any point x ∈ F , the reduced gradient ∇red f (x) has components ∇red
i f (x), with

i = 1, . . . , n, defined as follows

∇red
i f (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min{0,∇i f (x)} if xi = li

∇i f (x) if li < xi < ui

max{0,∇i f (x)} if xi = ui

(4)

The stationarity condition (3) is equivalent to two conditions as stated in the following
proposition.

Proposition 1 Given a point x̄ ∈ F , the following statements are equivalent:

1. x̄ is a stationary point;
2. x̄ = [x̄ − s∇ f (x̄)]+ ∀s > 0;
3. ∇red f (x̄) = 0.

For the convergence analysis presented in the next sections we need the following
result proved in [9] in a more general setting (namely in the case of feasible set defined
by linear inequalities).

Proposition 2 Let {xk} be a sequence of points such that xk ∈ F for all k. Assume
that

lim
k→∞ xk = x̄ . (5)

Then, given any direction d̄ ∈ D(x̄), there exists a scalar β̂ > 0 such that, for
sufficiently large values of k, we have

xk + βd̄ ∈ F , ∀β ∈ [0, β̂]. (6)

On the Armijo-type line search

We recall the well-known Armijo-type line search along a feasible direction, and we
state a theoretical result employed in our convergence analysis.

Let dk be a feasible direction at xk ∈ F . We denote by βk
F the maximum feasible

steplength along dk , namely βk
F satisfies

l ≤ xk + βdk ≤ u for all β ∈ [0, βk
F ],

and (since −∞ ≤ l < u ≤ ∞) we have that either βk
F = +∞ or at least an index

i ∈ {1, . . . , n} exists such that

xk
i + βk

F dk
i = li or xk

i + βk
F dk

i = ui .
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A convergent decomposition method for box-constrained optimization problems 401

Let βu be a positive scalar and set

βk = min{βk
F , βu}. (7)

Assumption 1 Assume that {dk} is a sequence of feasible search directions such that

(a) for all k we have ‖dk‖ ≤ M for a given number M > 0;
(b) for all k we have ∇ f (xk)T dk < 0.

An Armijo-type line search algorithm is described below.

Armijo-type line search ALS(xk, dk, βk)

Data: Given α > 0, δ ∈ (0, 1), γ ∈ (0, 1/2) and the initial stepsize
αk = min{βk, α}.

Step 1. Set λ = αk , j = 0.
Step 2. If

f (xk + λdk) ≤ f (xk) + γ λ∇ f (xk)T dk (8)

then set λk = λ and stop.
Step 3. Set λ = δλ, j = j + 1 and go to Step 2.

The properties of algorithm ALS are reported in the next proposition (see, e.g., [1]).

Proposition 3 Let {xk} be a sequence of points belonging to the feasible set F , and
let {dk} be a sequence of search directions satisfying Assumption 1. Then:

(i) Algorithm ALS determines, in a finite number of iterations, a scalar λk such that
condition (8) holds, i.e.,

f (xk + λkdk) ≤ f (xk) + γ λk∇ f (xk)T dk; (9)

(ii) if {xk} converges to x̄ and

lim
k→∞

(
f (xk) − f (xk + λkdk)

)
= 0, (10)

then we have

lim
k→∞ βk∇ f (xk)T dk = 0, (11)

where βk is given by (7).
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402 A. Cassioli, M. Sciandrone

On the Gauss–Southwell decomposition algorithm

A well-known decomposition algorithm is based on the Gauss–Southwell rule for
selection of the working set. According to the Gauss–Southwell rule, at any iteration k,
the working set W k must contain the index i k corresponding to the variable that mostly
violates the optimality condition 2 of Proposition 1, that is

|xk
ik − [xk

ik − ∇i k f (xk)]+
i k | ≥ |xk

j − [xk
j − ∇ j f (xk)]+j | j = 1, . . . , n, (12)

Formally the Gauss–Southwell algorithm is described below.

Gauss–Southwell decomposition (GSD) algorithm

Data. x0 ∈ F .
For k = 0, 1, . . .

choose any working set W k ⊂ {1, . . . , n} such that i k ∈ W k , where i k is an
index such that (12) holds;

find

xk+1 ∈ arg min f (x)

s.t.
li ≤ xi ≤ ui i ∈ W k

xi = xk
i ∀ i /∈ W k

(13)

Note that, besides the variable corresponding to the most violating index i k , any
other group of variables can be inserted in the working set. The following convergence
result follows from Theorem 4.1 of [14]. For convenience of the reader we report in
the Appendix an alternative proof.

Proposition 4 Let {xk} be the sequence generated by GSD algorithm. Every limit
point of {xk} is a stationary point.

3 A new decomposition algorithm

A decomposition algorithm based on the violation of the optimality condition 3 of
Proposition 1 has been proposed in [6] for quadratic convex problems with box con-
straints and one linear equality constraint. The decomposition algorithm, adapted to
the case of feasible set defined by box constraints, is described below.
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A convergent decomposition method for box-constrained optimization problems 403

Maximum violation decomposition algorithm

Data. x0 ∈ F .
For k = 0, 1, . . .

let {i1, i2, . . . , in} be such that

|∇i1 f red(xk)| ≥ |∇i2 f red(xk)| ≥ · · · |∇in f red(xk)|, (14)

and choose a working set W k = {i1, . . . , im} with 1 ≤ m < n;
find

xk+1 ∈ arg min f (x)

s.t.
li ≤ xi ≤ ui i ∈ W k

xi = xk
i ∀i /∈ W k

(15)

We observe that the working set selection rule requires to consider, as subproblem
variables, those that mostly violate (in a decreasing order) the optimality condition
expressed by means of the reduced gradient. Thus the degree of freedom for selecting
the whole working set is limited. Furthermore, the global convergence of the algorithm
holds under strict convexity assumptions on the objective function (see [8]).

We propose here a slightly different decomposition algorithm which overcomes the
limitations above.

For any point xk ∈ F , we denote by Ir (xk) the index set such that, i ∈ Ir (xk)

implies

|∇red
i f (x)| ≥ |∇red

j f (x)| for all j = 1, . . . , n. (16)

We also introduce, for a given scalar ε > 0, the following indices (provided they exist)

j k ∈ arg max
j

{∇ j f (xk) : ∇ j f (xk) > 0, xk
j ≥ l j + ε} (17)

pk ∈ arg min
p

{∇p f (xk) : ∇p f (xk) < 0, xk
p ≤ u p − ε} (18)

and the index sets

I k
L = {h : xk

h ≤ lh + ε and ∇red
h f (xk) > ∇red

j k f (xk)} (19)

I k
U = {h : xk

h ≥ uh − ε and ∇red
h f (xk) < ∇red

pk f (xk)} (20)

Note that we set

– I k
L = {h : xk

h ≤ lh + ε and ∇red
h f (xk) > 0} whenever j k is not defined;

– I k
U = {h : xk

h ≥ uh − ε and ∇red
h f (xk) < 0} whenever pk is not defined.
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404 A. Cassioli, M. Sciandrone

ε-MVD algorithm

Data. x0 ∈ F , ε > 0.
For k = 0, 1, . . .

if there exists an index i k ∈ Ir (xk) such that one of the following conditions
holds

(a) lik + ε ≤ xk
ik ≤ uik − ε;

(b) xk
ik ≤ lik + ε and ∇i k f (xk) < 0;

(c) xk
ik ≥ uik − ε and ∇i k f (xk) > 0

then choose any working set W k such that i k ∈ W k ;
otherwise choose any working set W k such that

(
I k

L ∪ I k
U ∪ { jk} ∪ {pk}

) ⊆ W k ;
find

xk+1 ∈ arg min f (x)

s.t.
li ≤ xi ≤ ui i ∈ W k

xi = xk
i ∀i /∈ W k

(21)

Before stating the convergence result of the algorithm, we briefly explain the working
set selection rule. In particular, the underlying rationale is to select the variables by
means of an estimate of the active constraints to prevent possible “pathological” cases,
due to the fact that the reduced gradient is not continuous. For instance, assume that

– i is the unique index that mostly violates the optimality condition at iteration k;
– ∇i f (xk) > 0;
– xk

i is sufficiently close to the lower bound li .

In this case, the value of ∇i f (xk) = ∇red
i f (xk) does not contain enough informa-

tion about the violation of the optimality conditions. Indeed, an high positive value of
∇i f (xk) says that the optimality conditions are strongly violated at the current point
with respect to the i-th component, namely that |∇red

i f (xk)| >> 0, and hence the
index i must be inserted in the working set. On the other hand, as the lower bound
li is “quasi-active”, we could roughly state that |∇red

i f (xk)| is small, so that other
suitable indices must be inserted in the working set to better capture the violation of
the optimality conditions. Note that a “pathological” case can not occur whenever the
component xk

i is sufficiently far from the bounds [see condition (a)], or is close to the
lower bound but we have ∇i f (xk) < 0 [see condition (b)], or is close to the upper
bound but we have ∇i f (xk) > 0 [see condition (c)]. In the other cases, we must insert
in the working set:

– the two indices j k, pk (provided they exist) corresponding to variables which “suf-
ficiently” violate the optimality conditions and in the limit cannot have a “patho-
logical” behaviour;
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A convergent decomposition method for box-constrained optimization problems 405

– all the indices corresponding to variables which locally “strongly” violate the opti-
mality conditions but in the limit can have a “pathological” behaviour as above,
namely the indices of I k

L and of I k
U .

Proposition 5 Let {xk} be the sequence generated by ε-MVD algorithm. Every limit
point of {xk} is a stationary point.

Proof We proceed by contradiction. Let us assume that there exists an infinite subset
K ⊆ {0, 1, . . .} such that

lim
k→∞,k∈K

xk = x̄ (22)

and x̄ is not a stationary point, that is, there exists an index î ∈ {1, . . . , n} such that

|∇red
î

f (x̄)| > η > 0. (23)

The instructions of the algorithm imply

f (xk+1) ≤ f (xk),

and hence, using (22) and the continuity of f , it follows that the nonincreasing sequence
{ f (xk)} converges, i.e.,

lim
k→∞ f (xk) = f (x̄). (24)

From (23) it follows that there exists a direction d ∈ {−eî , eî } which is a feasible
descent direction at x̄ . One of the following two cases can occur:

(I) there exists an infinite subset K̂ ⊆ K such that î ∈ W k for all k ∈ K̂ ;
(II) for k ∈ K and k sufficiently large î /∈ W k .

In case (I), as î ∈ W k for all k ∈ K̂ , we have that the instructions of the algorithm
imply

f (xk+1) ≤ f (xk + λkd) ≤ f (xk) + γ λk∇ f (xk)T d (25)

where λk is the stepsize determined by means of Armijo algorithm.
Assumption 1 holds for the subsequence {dk}K setting dk = d for all k ∈ K .

Further, from (22), (24), and (25) we have that the assumptions of Proposition 3 hold
for the subsequence {xk}K , and hence we have

lim
k→∞,k∈K

βk∇ f (xk)T d = 0, (26)

where βk = min{βk
F , βu}, βk

F being the maximum feasible steplength along d, and
βu a prefixed positive number. Proposition 2 implies that βk ≥ β̄ > 0 for k ∈ K and
k sufficiently large, so that, recalling (26) and that d ∈ {eî ,−eî }, we obtain
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406 A. Cassioli, M. Sciandrone

lim
k→∞,k∈K

|∇ f (xk)T d| = |∇ f (x̄)T d| = |∇red
î

f (x̄)| = 0, (27)

and this contradicts (23).
In case (II), we have two possibilities:

(IIa) there exist an infinite subset K̄ ⊆ K and an index ī ∈ Ir (xk) such that, for all
k ∈ K̄ , one of the conditions (a), (b), (c) holds with i k = ī ;

(IIb) for k ∈ K and k sufficiently large conditions (a), (b), (c) are never satisfied, and
we necessarily have

(
I k

L , I k
U , { j k}, {pk}) ⊆ W k .

Case (IIa)
First we observe that, as ī ∈ Ir (xk), we can write for k ∈ K̄ and k sufficiently large

|∇red
ī

f (xk)| ≥ |∇red
î

f (xk)| ≥ η > 0. (28)

Assume that condition (a) holds for an infinite subsequence. Then we have lī < x̄ī <

uî . In this case {eī ,−eī } ∈ D(x̄) are both feasible directions at x̄ , and one of them,
denoted by d, is a descent direction, and as consequence, for k ∈ K sufficiently large
we can write

∇ f (xk)T d < 0.

Now we can repeat the same reasonings used above to prove (27) and we obtain

lim
k→∞,k∈K̄

|∇ f (xk)T d| = |∇ f (x̄)T d| = |∇red
ī

f (x̄)| = 0,

and this contradicts (28).
Whenever either condition (b) or condition (c) holds for an infinite subsequence

we would obtain, in a similar way, a contradiction with (28).
Case (IIb)

Assume that ∇î f (x̄) > 0. If xk
i ≤ li + ε then, as î /∈ W k , we have

î /∈ I k
L ,

and hence, from the definition of I k
L given in (19), we can write

0 < ∇î f (xk) ≤ ∇ j k f (xk) (29)

where j k is defined in (17).
If xk

i > li + ε then again, as î /∈ W k , it follows that î �= j k and (29) holds.
Then we can find an index j ∈ W k and an infinite subset K̃ ⊆ K such that for all

k ∈ K̃

l j + ε ≤ xk
j , (30)

∇ j f (xk) ≥ ∇î f (xk) ≥ η > 0. (31)
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A convergent decomposition method for box-constrained optimization problems 407

From (30) and (31) we have that the direction d = −e j is a feasible descent direction
at x̄ . Using the fact that j ∈ W k and repeating the same reasonings employed above
to prove (27) we can write

lim
k→∞,k∈K

|∇ f (xk)T d| = |∇ f (x̄)T d| = |∇ j f (x̄)| = 0,

which contradicts (31).
By assuming that ∇î f (x̄) < 0 and by repeating similar reasonings we would obtain

again a contradiction. 
�
The decomposition algorithm proposed in this work has the same theoretical con-
vergence properties of the known Gauss–Southwell algorithm. Both the approaches
are based on the strategy of selecting the variables that mostly violate the optimal-
ity conditions. The Gauss–Southwell algorithm refers to optimality conditions for a
general class of problems with convex feasible set. These conditions are expressed
in terms of distance between the current point and the one obtained by the projected
gradient (involving 2n comparisons, 2n subtractions), so that they do not take into
account the specificity of box constrained problems. The proposed algorithm exploits
information of the reduced gradient (involving n comparisons) whose opposite identi-
fies the normalized feasible steepest descent direction (see [5]). Then we may expect
that the working set selection rule of the proposed algorithm may identify promising
subproblem variables and could lead to faster convergence, preserving theoretical con-
vergence properties and the possibility of including any other group of variables as in
the Gauss–Southwell algorithm. However, in order to draw significant computational
conclusions, extensive numerical experiments on different types of problems should
be conducted, and this may be the object of a future work.

Appendix

Proof of Proposition 4 We proceed by contradiction. Let us assume that there exists
an infinite subset K ⊆ {0, 1, . . .} such that

lim
k→∞,k∈K

xk = x̄ (32)

and x̄ is not a stationary point, that is, there exists an index î ∈ {1, . . . , n} such that

|x̄î − [x̄ − ∇ f (x̄)]+
î
| ≥ η > 0. (33)

The instructions of the algorithm imply

f (xk+1) ≤ f (xk),

and hence, using (32) and the continuity of f , it follows that the nonincreasing sequence
{ f (xk)} converges, i.e.,

lim
k→∞ f (xk) = f (x̄). (34)
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Since i k ∈ {1, . . . , n}, we can extract a further subset, relabelled by K , such that
i k = ī,∀k ∈ K .

By definition we have

|xk
ī

− [xk − ∇ f (xk)]+
ī
| ≥ |xk

ī
− [xk − ∇ f (xk)]+

î
|,

and thus, using (33) and the continuity of the projection mapping, we can write

|x̄ī − [x̄ − ∇ f (x̄)]+
ī
| ≥ η > 0.

Let ȳ be the point defined as follows

ȳh =
{

x̄h h �= ī
(x̄ − ∇ f (x̄))h h = ī

As [ȳ]+ belongs to the convex set F , the direction

d = [ȳ]+ − x̄

is a feasible direction at x̄ , and is such that dī �= 0 and dh = 0 for h �= ī .
Using the properties of the projection mapping, we have

(
ȳ − [ȳ]+)T

(x̄ − [ȳ]+) =
(

x̄ī − ∇ī f (x̄) − [ȳ]+
ī

)
(x̄ī − [ȳ]+

ī
) ≤ 0,

from which we get

∇î f (x̄)([ȳ]+
ī

− x̄ī ) ≤ −(x̄ī − [ȳ]+
ī
)2 ≤ −η2,

so that we can write

∇ f (x̄)T d = ∇ī f (x̄)([ȳ]+
ī

− x̄ī ) < 0. (35)

From (35) and the continuity assumption on the gradient ∇ f it follows that for k ∈ K
and k sufficiently large

∇ f (xk)T d < 0, (36)

that is d is a descent direction for f at xk . Note that, by the working set selection rule
of the algorithm, ī ∈ W k for k ∈ K and k sufficiently large. Therefore, the instructions
of the algorithm imply

f (xk+1) ≤ f (xk + λkd) ≤ f (xk) + γ λk∇ f (xk)T d (37)

where λk is the stepsize determined by means of Armijo algorithm.
From (36) it follows that Assumption 1 holds for the subsequence {dk}K setting

dk = d for all k ∈ K . Further, from (32), (34), and (37) we have that the assumptions
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of Proposition 3 hold for the subsequence {xk}K , and hence we have

lim
k→∞,k∈K

βk∇ f (xk)T d = 0, (38)

where βk = min{βk
F , βu}, being βk

F the maximum feasible steplength along d, and
βu a prefixed positive number. Proposition 2 implies that βk ≥ β̄ > 0 for k ∈ K and
k sufficiently large, so that, recalling (38), we obtain

lim
k→∞,k∈K

∇ f (xk)T d = ∇ f (x̄)T d = 0,

which contradicts (35). 
�
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