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Abstract

Computational protein design aims at constructing novel or improved func-
tions on the structure of a given protein backbone and has important applica-
tions in the pharmaceutical and biotechnical industry. The underlying combi-
natorial side-chain placement problem consists of choosing a side-chain place-
ment for each residue position such that the resulting overall energy is mini-
mum. The choice of the side-chain then also determines the amino acid for
this position. Many algorithms for thisN P -hard problem have been proposed
in the context of homology modeling, which, however, reach their limits when
faced with large protein design instances.

In this paper, we propose a new exact method for the side-chain placement
problem that works well even for large instance sizes as they appear in pro-
tein design. Our main contribution is a dedicated branch-and-bound algorithm
that combines tight upper and lower bounds resulting from a novel Lagrangian
relaxation approach for side-chain placement. Our experimental results show
that our method outperforms alternative state-of-the-art exact approaches and
makes it possible to optimally solve large protein design instances routinely.

1 Introduction

Protein design aims at constructing novel or improved functions on the structure
of a given protein backbone. Since proteins are key players in virtually all biological
processes, the ability to design proteins is of great practical interest, e.g., to the phar-
maceutical and biotechnological industry. Experimental protein design methods,
such as directed evolution [3], have been applied successfully. However, since ex-
perimental methods are time- and money-consuming, computational approaches
are an attractive alternative.

Computational protein design is related to the side-chain placement (SCP) prob-
lem in protein homology modeling. Given the modeled backbone of a protein, the
amino acid side-chains have to be placed on this backbone in the energetically most
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favorable conformation. Two assumptions are commonly made: (i) side-chains
adopt only statistically dominant low-energy side-chain conformations, the so-called
rotamers [10], and (ii) the energy of a protein is the sum of intrinsic side-chain en-
ergies and pairwise interaction energies. These assumptions lead to the following
discrete optimization problem: For each residue position choose a rotamer such
that the total energy of the protein is minimum. This problem has been shown to be
NP-hard [20] and inapproximable [5].

In protein design the candidate rotamers at each position do not only come
from a single amino acid but from several potential amino acids, yielding very large
problem instances. Previous in silico approaches to protein design differ in their
choice of rotamer library, energy function, and optimization method. Utilization
of a higher-resolution rotamer library and a more accurate energy function will im-
prove the results. On the other hand, it will increase computation time and prob-
lem size. Regarding the optimization methods, computational protein design ap-
proaches generally employ computationally expensive heuristics such as the Monte
Carlo method [7, 6, 21]. Other heuristics, which have been proposed for SCP in pro-
tein homology modeling, could also be applied [24, 25, 9, 28, 22]. However, Voigt
et al. [23] have shown that these inexact algorithms become less accurate with in-
creasing problem size. Thus, exact methods capable of solving large protein de-
sign instances are desirable. Several approaches to solving the SCP problem exactly
have been proposed, including dead end elimination [8, 11, 19] (combined with sys-
tematic search [17] or residue reduction [26]), integer linear programming [1, 14],
branch-and-bound [4, 24] and tree decomposition [27]. While most of these ap-
proaches work well for homology modeling, they reach their limits when applied to
protein design.

In this paper, we propose a novel exact method for SCP that works well even for
large instance sizes as they appear in protein design. After presenting the combi-
natorial problem formally in Section 2, we describe our new method in Section 3.
Our main contribution is a dedicated branch-and-bound algorithm that combines
tight upper and lower bounds resulting from a novel Lagrangian relaxation approach
for SCP. In Section 4 we present and discuss our experimental results, in which
we show that our method outperforms alternative state-of-the-art exact approaches
and makes it possible to optimally solve large protein design instances routinely.

2 Combinatorial Problem Formulation and Notation

We study the following graph-theoretic formulation of the side-chain placement
problem:

Problem 1 (SCP). Given a k -partite graph G = (V, E ), V =V1∪. . .∪Vk , with node costs
cv , v ∈V , and edge costs cu v , u v ∈ E , determine an assignment a : {1, . . . , k }→V with
a (i )∈Vi , 1≤ i ≤ k , such that the cost

k
∑

i=1

ca (i )+
k−1
∑

i=1

k
∑

j=i+1

ca (i )a (j )
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of the induced graph is minimum.

Here, each node set Vi corresponds to the candidate rotamers for the residue
set at position i . Node costs model self energies of rotamers and edge costs model
interaction energies between pairs of rotamers. A solution is given by selecting for
each residue position i , 1 ≤ i ≤ k , exactly one rotamer a (i ). Clearly, the choice of
the rotamer determines also the amino acid at this position.

In the description of our algorithm we will also use a function r : V → {1, . . . , k }
that denotes the residue position of a rotamer v , that is, r (v ) = i if and only if v ∈Vi .

3 Lagrangian Relaxation Based Branch-and-Bound

We now present our novel approach to solve the SCP problem to provable optimal-
ity. Its core is the computation of sharp upper and lower bounds using a novel La-
grangian relaxation technique within a dedicated branch-and-bound approach.

3.1 Upper and Lower Bounds by Lagrangian Relaxation

Our relaxation builds on an integer linear programming (ILP) formulation for SCP
that has been introduced by Althaus et al. [1] and extended by Kingsford et al. [14]:

min
∑

v∈V

cv xv +
∑

u v∈E ′

cu v yu v (1)

s.t.
∑

v∈Vi

xv = 1 1≤ i ≤ k (2)

∑

u∈Vi

yu v = xv 1≤ i ≤ k , for all v ∈Vj with j ∈N +
i (3)

∑

u∈Vi
cu v <0

yu v ≤ xv 1≤ i ≤ k , for all v ∈Vj with j /∈N +
i (4)

xv ∈ {0, 1} for all v ∈V (5)

yu v ∈ {0, 1} for all u v ∈ E ′ (6)

The formulation contains binary variables xv , for nodes v ∈V , and yu v , for edges
u v ∈ E , with the interpretation that a variable is 1 if the corresponding node or
edge is part of the induced subgraph and 0 otherwise. Constraints (2) express that
exactly one rotamer must be chosen per residue position. Constraints (3) and (4)
link node and edge variables. When a rotamer v of a residue position j is chosen,
i.e., xv = 1, exactly one incident edge from each other residue position i 6= j must
be chosen as well for residue positions i that share positively weighted edges with
residue position j , i.e., j ∈ N +

i := {` ∈ {1, . . . , k } | ∃u v ∈ E , cu v > 0, u ∈ Vi , v ∈ V̀ }. If
the two residue positions i and j are linked only by non-positive edges, i.e., j /∈N +

i ,
the relaxed constraints (4) apply: zero-weighted edges do not have to be forced to
be in the solution and the corresponding variables can be removed from the ILP. Let
E ′ := E \ {u v ∈ E | u ∈Vi , v ∈Vj , j /∈N +

i , cu v = 0} be the set of remaining edges.
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The distinction between pairs of residues i , j with j ∈ N +
i and pairs i , j with

j /∈N +
i in constraints (3) and (4) leads to a considerably smaller number of variables

in practice and to a much better performance. Nevertheless, it is not crucial for the
understanding of our approach and we thus drop this distinction in the remainder
of this work and treat all pairs of residues as in constraint (3) for the sake of clarity
of the presentation, that is, without removing any variables. In our implementation,
however, we treat constraints (3) and (4) differently.

While previous work [1, 14] focuses on solving the linear programming (LP) re-
laxation of (1)–(6), we propose a Lagrangian relaxation approach. In the case of SCP
this leads to a much more efficient algorithm, because we exploit structural knowl-
edge of the SCP problem. The idea of Lagrangian relaxation is to relax constraints of
an intractable problem, e.g., the SCP ILP, such that the relaxed problem can be solved
efficiently. The relaxed constraints are moved to the objective function, penalized
by so-called Lagrangian multipliers. An optimal solution of the original problem,
i.e., an energy-minimum choice of candidate rotamers, is also a solution of the re-
laxed problem, and every optimal solution of the relaxed problem provides a lower
bound on the optimal score of the original problem. The Lagrangian multipliers
are adjusted iteratively such that the lower bound increases gradually. Also, after
each iteration, we can evaluate the solution of the relaxed problem and thus obtain
a new upper bound to the SCP problem. During the iterative process, the lowest
upper and highest lower bound move closer and closer together. If they coincide, a
provably optimal SCP has been found. Otherwise, we stop the process after a fixed
number of iterations and use the bounds within the branch-and-bound framework.

The key idea of our Lagrangian relaxation approach is to define a total order, de-
noted by<, on the residue positions, to split the constraints that link node and edge
variables into a left and a right part and then relax the right part of the constraints.
W.l.o.g. and for ease of notation we assume that the residue positions have already
been ordered, that is, residue position i denotes the i th residue position according
to <.

First, we rewrite constraints (3) as left and right parts, that is, (3) becomes

∑

u∈Vi

yu v = xv 1≤ i ≤ k −1, for all v ∈Vj with j > i (7)

∑

u∈Vi

yu v = xv 2≤ i ≤ k , for all v ∈Vj with j < i (8)

We dualize constraints (8) for all non-neighboring residues, i.e., constraints for which
i > j + 1, with Lagrangian multipliers λi

v . To simplify notation, we further intro-
duce λi

v := 0 for neighboring residues, i.e., for which r (v ) + 1 = i holds. For fixed
Lagrangian multipliers λi

v we obtain the following relaxation, which we denote by
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(LRλ):

min
k
∑

j=1

∑

v∈Vj






cv +
∑

i>j+1

λi
v






xv +
∑

u v∈E
r (u )<r (v )

�

cu v −λr (v )
u

�

yu v (9)

s.t.
∑

v∈Vi

xv = 1 1≤ i ≤ k (10)

∑

u∈Vi

yu v = xv 1≤ i ≤ k −1, for all v ∈Vj with j > i (11)

∑

u∈Vi

yu v = xv 2≤ i ≤ k for all v ∈Vi−1 (12)

xv , yu v ∈ {0, 1} (13)

Note that a distinction between pairs of residues according to constraints (3) and (4)
requires the Lagrangian multipliersλi

v associated with constraints (4) to be restricted
in sign in order to guarantee that an optimal solution to (LRλ) yields a lower bound
on the optimal score of the SCP problem.

An integral variable assignment that satisfies constraints (10), (12), and con-
straints (11) for neighboring residues, i.e., for j = i + 1, encodes a path p in the
corresponding k -partite graph from a node in V1 to a node in Vk that traverses ex-
clusively edges between neighboring residues. The remaining constraints of (11)
involve y -variables that do not appear in any other constraint and can thus be cho-
sen independently of each other. In other words, we can determine the best possible
contribution of a vertex v to the overall objective value, under the assumption that v
lies on path p , by simply picking for every residue i < r (v )−1 the edge of minimum
weight between v and a node in Vi . More formally, we define the profit δ of a node
v as

δ(v ) = (cv +
∑

i>r (v )+1

λi
v )+

r (v )−2
∑

i=1

min
u∈Vi

(cu v −λr (v )
u ) ,

where the first term in brackets denotes the coefficient of variable xv in the objective
function. Then the score of a feasible solution to (LRλ) that induces a path p =
(v1, v2, . . . , vk )with vi ∈Vi in graph G is

k
∑

i=1

δ(vi )+
k−1
∑

i=1

cvi vi+1 .

Let graph G ′ be derived from G by removing all edges between non-neighboring
residues, i.e., edges u ′v ′ with |r (u ′)− r (v ′)| > 1, and by defining the weights of the
remaining edges u v as cu v +δ(v ). Then, an optimal solution to (LRλ) corresponds
to a shortest path in G ′ from a node in V1 to a node in Vk , see Figure 1.

Theorem 1. An optimal solution to (LRλ) can be computed in time O (|V |2).

Proof. The profits of all nodes can clearly be computed in time O (|V |2). Graph G ′

is acyclic and thus a shortest path can be computed in time linear in the number of
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v1

v2

v3 v4

Figure 1: The structure of a feasible solution to (LRλ). The polygon drawn in solid line denotes
the corresponding path p = (v1, v2, v3, v4). Every node on path p has exactly one incident edge
to every residue left of it, except to its direct neighbor, depicted by the dashed lines.

edges in G ′, i.e., O (
∑k−1

i=1 |Vi | · |Vi+1|). Note that a topological sorting of the vertices is
implicitly given by the k -partition.

We apply a standard subgradient optimization technique [12] to find those La-
grangian multipliers λi

v that yield the largest lower bound to our relaxation. This
iterative adaption of the Lagrangian multipliers only requires the profits of a small
fraction of the vertices to be recomputed from scratch in each iteration. In practice,
the shortest path computation for given profits by a simple dynamic programming
scheme dominates the overall running time needed to resolve the Lagrangian relax-
ation (LRλ) for modified multipliers λi

v . In other words, the running time will be
linear in the number of edges in G ′ rather than G .

In order to improve the practical performance of our approach we sort the residues
by increasing number of rotamers. This ordering results in a minimum total number
of dualized constraints.

3.2 Branch-and-Bound

We embed our Lagrangian bounding scheme into a branch-and-bound framework
to obtain an energy-minimum rotamer assignment. The general idea is to divide
the overall SCP problem into easier subproblems by fixing rotamers at individual
residue positions and to solve the resulting problems recursively. To avoid a com-
plete enumeration of all possible rotamer assignments, we employ our Lagrangian
bounds to prune large parts of the enumeration tree. In particular, let Sk be a sub-
problem in which certain residue positions have been assigned a rotamer, and let
x̂ be an arbitrary solution to the original SCP problem. If the lower bound z k on
the minimal energy assignment for subproblem Sk is larger than z (x̂ ), i.e., the total
energy of rotamer assignment x̂ , then no optimal solution to the original problem
can be obtained from Sk and we can prune the subtree rooted at Sk from the search
space.

Branching scheme. Starting from an SCP problem instance S, a straightforward
branching rule is to impose the constraint x i j = 1 in the left child node of the search
tree, and x i j = 0 in the right, i.e., fixing and forbidding a rotamer j at residue position
i , respectively. However, since every rotamer j is contained in a constraint (2) for a
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residue position i , this leads to an unbalanced search tree, because the right child
node leaves k − 1 possible rotamers for residue position i , whereas the left child
leaves only one possibility. While partitioning the set of rotamers of a given residue
position into two roughly equally sized sets avoids this imbalance, we experienced,
however, a significantly smaller number of nodes in the tree with the following, al-
ternative branching scheme. Instead of creating two subproblems, we create one for
each rotamer of a selected residue position i , by fixing rotamer jk in subproblem k .
Only for very large design instances, we first partitioned the sets of possible rotamers
that were larger than some threshold p , into two smaller sets. The effectiveness of
this scheme is mainly based on two properties. First, when fixing a rotamer j for a
residue position i , we reduce the problem instance by incorporating the interaction
energy between rotamer j and any other rotamer j ′ of all residue positions i ′ 6= i
into the self energy of j ′. In contrast, in our relaxation only the profits δ of rotamers
of residue positions i ′ > i would take into account a further subdivision of the set of
rotamers of residue position i . The rotamer assignment to residue positions i ′ < i
would still rely on a correct choice of the incoming edges for the remaining rotamers
of residue position i , which could only be accomplished by iteratively adapting the
Lagrangian penalties. Second, a large enough set of child nodes will give our depth-
first search traversal of the branch-and-bound tree the freedom to pick a promising
node first.

Choosing a constraint. The question remains which position constraint (2) to choose
for a branching step. We adopt the idea of strong branching [2]. The rough idea is to
estimate the progress, i.e., increase in lower bound, for the residue positions before
actually branching on one of them. This is done by successively fixing each rotamer
of a given residue position and solving the resulting Lagrangian subproblem. Based
on the progress of the single rotamers, we compute an overall score of the residue
position, see below, and pick the one with the highest score as the next residue po-
sition to branch on. Since the computation time per node of this procedure would
be enormous, we try to estimate the locally best residue position by simplifying this
search in three different aspects.

• First, we restrict the evaluation to the most promising residue positions. More
precisely, we order the residue positions in increasing order of their maxi-
mum (primal) fractional value of its rotamers. We recover the primal solu-
tions by taking the convex combinations of the last k solutions x t produced
in the course of the subgradient optimization. Then, at a node of depth l of
the branch-and-bound tree, we consider the first γ(l ) percent of the sorted
residue positions. Note that the concept of a residue position with minimal
maximal fractional value of its rotamer variables can be considered as a gen-
eralization of the most infeasible branching rule for binary variables, to con-
straints of the form (2).

• Second, to estimate the increase of the objective function when fixing a ro-
tamer, only a few subgradient iterations are performed, along with an aggres-
sive multiplier adjustment.
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• Finally, we choose our scoring function of the residue positions in such a way,
that they can be computed quickly while still giving a good estimate on the
overall progress in the dual (lower) bound. Let Q be the subproblem corre-
sponding to the current node of the tree and let problemQ j

i be obtained from
Q by fixing rotamer j in residue ri . Then the score of a residue position ri is
given by

ξ(ri ) =min
j∈ri

∆j
i ,

where∆j
i = z (Q j

i )−z (Q). To determine the score of a given residue position i ,
we test the rotamers in decreasing order of their fractional values. The goal is
to evaluate rotamers j with small progress∆j

i first, since the subgradient opti-
mization for the remaining rotamers can be aborted as soon as their increase
in objective function exceeds the smallest progress seen so far. Also notice that
sorting the residue positions as described above is beneficial for the computa-
tion of the residue scores. Whenever we encounter a rotamer with a progress
∆j

i that is smaller than the smallest progress determined for a previous residue
position i ′ 6= i , we do not have to consider the remaining rotamers of i ′, since
we are interested in the residue position with maximal score.

Choosing a node. A primal feasible solution that gives a good upper bound on
the minimum total energy is necessary to prune the enumeration tree significantly.
Therefore we follow a depth-first search (DFS) strategy to descend in the branch-
and-bound tree as quickly as possible, increasing the chances of finding a new and
hopefully better feasible solution. Furthermore, the Lagrangian subproblems cor-
responding to a node and to one of its immediate descendants differ only in one
residue position. Therefore, a subproblem can be resolved faster when starting from
the multiplier vector λ determined in the immediate parent node. On the downside,
once being in a wrong branch, one may spend a long time in this subtree before get-
ting back on a path leading to an improved solution. We thus combine the advan-
tages of DFS and a best-node first strategy. We fix the rotamers of a given residue
position in increasing order of their dual (lower) bounds. Following this approach
led to a considerably smaller number of nodes evaluated in the tree, and we were
able to find the optimal solution much faster in most of the cases.

4 Experimental Results

We have implemented our combinatorial algorithm for finding an optimal solution
to the Lagrangian relaxation (LRλ) in C++ using the LEDA and BALL libraries [18,
13]. We iteratively improve the obtained lower bounds on the optimal solution of
the SCP problem by applying a standard subgradient approach. In each iteration,
we derive from the Lagrangian solution a feasible solution to the original problem
and thus an upper bound on the optimal score by evaluating the subgraph induced
by the nodes lying on the shortest path from V1 to Vk , see Section 3.1. We exploit the
upper and lower bounds in a branch-and-bound manner to prune large parts of the
search space and to derive a provably optimal solution to the SCP problem.
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In order to determine an initial upper bound for the branch-and-bound frame-
work, we employ a simple local search procedure: Given an initial configuration
in which each residue position is assigned the rotamer with the lowest self energy,
residue positions are selected randomly and optimized, i.e., the respective position
is assigned the rotamer yielding the best energy within the current conformation.
This minimization proceeds until the energy could not be improved several times in
a row or a maximum of 100 iterations is reached.

The only state-of-the-art exact method for SCP that can cope with protein design
instances is the ILP based method proposed by Kingsford et al. [14]. Available soft-
ware packages for DEE or treewidth based approaches such as R3 [26] or TreePack
[27] do not allow several candidate amino acids at each position and are thus not ap-
plicable to protein design instances. Furthermore, our experiments show that even
small protein design instances already have treewidths of 10 to 20 as compared to 3
to 4 for most homology modeling instances [27]. Since the complexity of the TreeP-
ack algorithm grows exponentially in the treewidth, a reasonable performance on
protein design instances is not to be expected. For DEE-based methods, a similar ar-
gument holds because reduced protein design instances are still too large to be pro-
cessed in reasonable time by residue unification or other enumeration techniques.
We therefore compare our Lagrangian based approach only to an implementation
that solves the ILP proposed by Kingsford et al. [14] using CPLEX 12.21 with Concert
Technology.

In our experiments, we used two different benchmark sets. The first set con-
sists of protein design energy files provided by Kingsford et al. [14]. It comprises
25 proteins with 11 to 124 flexible residue positions. Surface residues are fixed. At
each core position up to six different amino acids are allowed. The employed energy
function comprises statistical potentials and van der Waals interactions. We omit
the experimental results on the simpler homology modeling instances, since almost
all of these instances can be solved in a fraction of a second by both our Lagrangian
relaxation approach and the CPLEX based method. The second set of protein de-
sign instances was taken from Yanover et al. [28]. This set comprises 97 proteins
with 40 to 180 amino acids. All residue positions are flexible and at each position all
20 amino acids are allowed yielding very large problem instances. Here, the more
realistic Rosetta energy function [16]was used to determine self and interaction en-
ergies.

In a preprocessing phase, we apply established rules [11, 26] to decrease the size
of the problem instances while preserving optimality properties. Tables 1 and 2
show the running times of our Lagrangian relaxation branch-and-bound approach
and the CPLEX based method using default settings on the resulting instances on a
compute cluster with two 2.26 GHz Intel Quad Core processors with 24 GB of RAM
on each node, running 64 bit Linux. We applied a time limit of 12 hours and a mem-
ory limit of 16 GB. Computations exceeding one of these limits were aborted.

The first three columns of the table give the characteristics of the instances,
i.e., their PDB identifier, the number of residues and the total number of rotamers.
The following two columns give characteristics of the branch-and-bound proce-

1http://www.cplex.com
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Instance Lagrangian B&B CPLEX
Name #res #rot N H time/s time/s S
1aac 105 1523 2 1 1.73 3.40 2.0
1aho 64 981 1 0 0.01 0.02 2.0
1b9o 123 2056 3 1 2.09 2.56 1.2
1c5e 95 1108 1 0 0.12 0.25 2.1
1c9o 66 1130 2 1 0.33 1.96 5.9
1cc7 72 1396 1 0 0.28 0.59 2.1
1cex 197 2556 9 2 13.37 33.25 2.5
1cku 85 1093 1 0 0.03 0.09 3.0
1ctj 89 1021 1 0 0.07 0.27 3.9
1cz9 139 2332 1 0 3.7 18.10 4.9
1czp 98 1170 1 0 0.54 4.32 8.0
1d4t 104 1636 1 0 0.37 2.36 6.4
1igd 61 926 1 0 0.01 0.02 2.0
1mfm 153 2134 25 5 21.89 145.63 6.7
1plc 99 1156 2 1 1.50 6.08 4.1
1qj4 256 4080 313 10 8,424.56 31,636.40 3.8
1qq4 198 2045 16 4 32.56 38.89 1.2
1qtn 152 2516 1 0 1.50 3.22 2.1
1qu9 126 1817 2 1 0.31 0.66 2.1
1rcf 169 2396 2 1 4.76 12.85 2.7
1vfy 67 939 1 0 0.01 0.01 1.0
2pth 193 3077 66 6 322.28 518.51 1.6
3lzt 129 2074 7 2 3.20 10.64 3.3
5p21 166 2874 52 4 106.09 115.01 1.1
7rsa 124 1958 1 0 0.78 3.31 4.2

Table 1: Running times of our Lagrangian relaxation branch-and-bound approach and the
CPLEX based method on the design instances from [14]. We further give the number of
residues (#res) and the total number of rotamers (#rot) of the instance, the number of nodes
(N) and height (H) of the branch-and-bound tree as well as the speedup S (ratio of running
times).

dure: Columns N and H give the total number of evaluated nodes and the height of
the branch-and-bound tree, respectively. The remaining columns give the running
times in seconds of our Lagrangian based approach and the CPLEX based method
as well as the ratio of running times S. Note that we include the time spent in the
local search heuristic for the Lagrangian branch-and-bound approach.

On the first dataset, our Lagrangian based approach outperforms the state-of-
the-art CPLEX based method on all 25 instances. The small number of nodes eval-
uated in the course of the branch-and-bound procedure indicates sharp lower and
upper bounds derived from the Lagrangian solutions. On the more challenging sec-
ond dataset, our method could solve 52 of the 97 instances within 12 h, whereas the
CPLEX based method could only finish 12 instances within the time and memory
limits.

10



Instance Lagrangian B&B CPLEX
Name #res #rot N H time/s time/s S
1brf 44 3524 9 4 293.97 469.87 1.6
1bx7 25 1048 1 0 0.54 5.77 10.7
1d3b 66 5732 1 0 530.37 9,577.68 18.1
1en2 59 2689 1 0 19.41 39.94 2.1
1ezg 58 1653 2 1 185.11 441.23 2.4
1g6x 51 3190 1 0 23.96 160.64 6.7
1gcq 65 5442 4 2 903.82 5,270.08 9.8
1i07 52 3186 4 1 187.45 166.20 0.9
1kth 49 3330 18 4 798.57 642.42 0.8
1rb9 43 3307 7 2 127.93 9,535.72 74.5
1sem 54 4348 192 8 5,020.55 6,470.37 1.3
1vfy 58 3951 16 2 2,540.86 † n/a
4rxn 45 3636 1 0 220.33 3,034.57 13.8
1a8o 62 4510 6 2 1,418.71 † n/a
1b67 66 5543 27 4 3,822.09 † n/a
1bbz 52 3935 7 2 1,329.26 † n/a
1bf4 60 5289 12 3 1,875.32 † n/a
1c75 63 4323 25 2 7,175.69 † n/a
1cc8 69 6515 26 2 16,508.10 † n/a
1d3b 66 5732 1 0 530.37 † n/a
1fr3 61 5100 22 4 6,997.76 † n/a
1gut 62 4945 22 2 7,745.17 † n/a
1hg7 65 5047 5 2 987.51 † n/a
1i27 69 5934 39 6 4,070.20 † n/a
1igd 60 5207 18 4 3,163.14 † n/a
1igq 53 4582 18 5 4,294.16 † n/a
1iqz 75 5412 15 2 2,137.58 † n/a
1j75 55 4861 14 4 5,704.83 † n/a
1jo8 54 4680 41 4 1,830.23 † n/a
1kq1 58 5244 7 1 3,990.65 † n/a
1l9l 69 5518 4 2 1,514.50 † n/a
1ldd 71 6383 8 1 4,582.84 † n/a
1ljo 69 6428 14 3 5,624.10 † n/a
1mhn 53 4454 3 2 570.15 † n/a
1nkd 56 4148 9 4 1,119.56 † n/a
1oai 56 4330 73 3 20,021.10 † n/a
1plc 92 7955 34 4 24,308.50 † n/a
1pwt 58 4876 2 1 886.94 † n/a
1r69 60 4926 49 2 27,862.50 † n/a
1wap 65 5551 14 3 5,267.68 † n/a
2igd 59 5262 13 3 6,332.26 † n/a
1c4q 65 5598 843 10 30,789 † n/a
1c9o 60 5305 97 8 11,627.20 † n/a
1ctj 84 6232 265 10 7,083.65 † n/a
1dj7 69 5571 22 4 12,581.90 † n/a
1e0b 58 4715 147 6 30,840.10 † n/a
1erv 101 9150 76 8 31,539.70 † n/a
1fk5 81 5714 28 5 14,625.30 † n/a
1g2b 59 4926 129 8 6,880.45 † n/a
1mgq 71 6250 4 1 2,613.06 † n/a
1vie 56 4803 3 1 866.54 † n/a

Table 2: Running times of our Lagrangian relaxation branch-and-bound approach and the
CPLEX based method on the design instances from [28]. Instances which cannot be solved
by both approaches within a time limit of 12 hours are omitted. The † sign indicates that a
computation exceeded either the time limit (12 h) or the memory limit (16 GB).
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5 Conclusions and Outlook

We have constructed a Lagrangian relaxation of the Kingsford ILP formulation of
the SCP problem that allowed us to obtain strong bounds by solving a modified
shortest path problem on the underlying k -partite graph. By utilizing these bounds
within a branch-and-bound framework we achieved running times that outperform
a state-of-the-art exact method that uses the professional mathematical program-
ming solver CPLEX. Our implementation of the Lagrangian branch-and-bound ap-
proach as well as the data sets used in this paper are freely available as the package
SCP of the planet lisa software library [15].

Future work on exact side-chain placement should explore possible connections
to the recently introduced method by Sontag et al. [22], which is based on belief
propagation. This heuristic algorithm is currently the best non-exact method and
finds optimal solutions astonishingly often. In our opinion, underlying ideas from
the area of belief propagation may be useful also in a truly exact method.

The mathematical model of the SCP problem as studied in this work appears in a
wide range of applications including image understanding, error correcting codes,
and frequency assignment in telecommunications. We believe that our approach
can be applied successfully in these areas, too.
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