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Abstract

In this paper we study the capacitated version of the Team Orienteering Prob-
lem (TOP), that is the Capacitated TOP (CTOP) and the impact of relaxing the
assumption that a customer, if served, must be completely served. We prove that the
profit collected by the CTOP with Incomplete Service (CTOP-IS) may be as large as
twice the profit collected by the CTOP. A computational study is also performed to
evaluate the average increase of the profit due to allowing incomplete service. The
results show that the increase of the profit strongly depends on the specific instance.
On the tested instances the profit increase ranges between 0% and 50%. We complete
the computational study with the increase of the profit of the CTOP due to split de-
liveries, that is multiple visits to the same customer, and to split deliveries combined
with incomplete service.

Keywords: Capacitated Team Orienteering Problem, Incomplete Service, Split
Deliveries, Exact Algorithms

1 Introduction

In the Team Orienteering Problem (TOP) a set of potential profitable customers is given.
The time distance between each pair of customers and each customer and the depot is
also given. A fleet of vehicles, with a time limit on the duration of each tour, is available
to serve a subset of the potential customers. The TOP consists in finding the customers
that maximize the total collected profit, while satisfying the time duration of the tour of
each vehicle. The TOP extends to the case of multiple vehicles the Orienteering Problem
(OP), the most studied of the traveling salesman problems with profits (see the survey by
Feillet et al. [10]).
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The TOP is a well studied problem that, to the best of our knowledge, was first
presented and heuristically solved by Butt and Cavalier [7]. The problem was originally
called Multiple Tour Maximum Collection Problem, whereas the name Team Orienteering
Problem was introduced by Chao et al. in [8]. Several heuristics and metaheuristics were
proposed for the solution of the TOP (see the papers by Tang and Miller-Hooks [15], by
Archetti et al. [4], Ke et al. [11] and by Vansteenwegen et al. [13]). Exact algorithms for
the TOP were proposed by Boussier et al. in [6] and Viana et al. [19]. The TOP with
time windows has been studied by Montemanni and Gambardella [12], Vansteenwegen et
al. [17], Tricoire et al. [16] and by Souffriau et al. [14]. For a survey on the OP and the
TOP the reader is referred to [18].

In the capacitated version of the TOP, called Capacitated TOP (CTOP), customers
have demands and vehicles are capacitated. The CTOP was introduced in Archetti et al.
[5] where applications are described and exact and heuristic algorithms were presented.
An improved exact method was presented in Archetti et al. [1]. In the CTOP a customer,
if served, must be completely served. This is a restrictive assumption that may lower
the profit collected by the vehicles. The possibility of serving a customer only partially
depends on the application. There may be cases where a partial service is not allowed for
organizational reasons or because the products to be delivered to a customer cannot be
split on different vehicles. However, there are situations where a partial service is possible.
In these situations one may take advantage of the possibility to partially serve a customer
and increase the collected profit thanks to a better exploitation of the vehicle capacity. In
this situation, if a customer will be served only partially, the remaining unserved demand
may be served at a later time by the same fleet of vehicles or by a different fleet of
vehicles, possibly together with the customers that have not been served. In the CTOP
with Incomplete Service (CTOP-IS), each customer is served only once, either completely
or partially. If a customer is partially served, then the profit collected is assumed to be
proportional to the demand served.

Problems related to the CTOP-IS are the Split Delivery CTOP (SDCTOP), where
customers have to be completely served but a customer may be served by more than
one vehicle, if beneficial, and the SDCTOP with Incomplete Service (SDCTOP-IS) where
customers may be served by several vehicles and the service may be incomplete. The
SDCTOP and the SDCTOP-IS have been studied in [3] and in [2], respectively. In these
papers, worst-case results are provided to show the maximum increase of the profit achiev-
able by allowing split deliveries and by combining split deliveries with incomplete service,
with respect to the CTOP. Computational results have also been presented to show the
average increase of the profit and how the increase depends on specific characteristics of
the instance, namely the ratio between the vehicle capacity and the average demand.

Whereas the profit collected in the CTOP-IS is certainly not less than the profit
collected in the CTOP, we analyze the maximum possible gain and show that it may
be possible to double the profit collected by the CTOP. Moreover, we solve the CTOP-
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IS exactly and compare it with different ‘relaxations’ of the CTOP studied so far, i.e.
the SDCTOP and SDCTOP-IS, previously studied, on different classes of instances. The
results show in particular that, whereas the increase of the profit due to incomplete service
may be as large as 100%, on the tested instances the profit increase ranges between 0%
and 50%.

In Section 2 we define the CTOP-IS. In Section 3 we present properties of the prob-
lem and show the maximum profit increase with respect to the CTOP. Sections 4 and
5 are devoted to the description of the solution approach for the CTOP-IS and to the
computational results, respectively.

2 The Capacitated Team Orienteering Problem with In-
complete Service

In the TOP a complete undirected graph G = (V,E) is given, where V = 1, . . . , n is the
set of vertices and E is the set of edges. Vertex 1 is the depot and vertex i = 2, . . . , n
represents a potential customer. A nonnegative profit pi is associated with each vertex i
(p1 = 0) and a travel time cij is associated with each edge (i, j) ∈ E. We assume that
the travel times satisfy the triangle inequality. A set of m vehicles is available to visit a
subset of the potential customers. Each vehicle starts and ends its tour at vertex 1. The
duration of each tour cannot exceed a time limit Tmax. The profit of any customer i can
be collected by one vehicle at most. The TOP consists in maximizing the total collected
profit while satisfying the time limit Tmax for each vehicle.

In the CTOP each customer has a demand di and each vehicle has a capacity Q. We
assume that di ≤ Q. The objective is to maximize the total collected profit while satisfying
the time limit Tmax on the duration of each tour and the vehicle capacity constraint.

In the CTOP with Incomplete Service (CTOP-IS) a customer is allowed to be partially
served. If a customer is partially served, a proportional part of the profit is collected.

We denote by z(CTOP − IS) the value of an optimal solution of the CTOP − IS and,
in general, by z(P ) the value of an optimal solution of the problem P .

3 Properties and worst-case analysis

In this section we show that the profit collected in the CTOP may be doubled when
incomplete (partial) service of the customers is allowed.

We first show a property of the optimal solution of the CTOP-IS that will be useful
in the following. The same property has been shown to hold for the SDCTOP-IS in [2].
The proof here follows the same lines and we report it for the sake of completeness.
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Theorem 1 An optimal solution of the CTOP-IS exists where each tour has at most one
customer with incomplete service.

Proof: Let us take an optimal solution of the CTOP-IS and suppose that more than one
customer receives incomplete service. Take a tour with two such customers, say i and j,
and assume, w.l.o.g., that pi/di ≥ pj/dj . Then, we modify the optimal solution by moving
as much as possible of the demand served of the least profitable customer j to the most
profitable one i. We decrease the demand served of j to increase the demand served of
i by the same quantity. Let us observe the modified solution. If the demand served of j
was greater than or equal to the unserved demand of i, the demand of i is now completely
satisfied. In this case, the number of customers with incomplete service is reduced by
1. Moreover, the modified solution is not worse than the original, optimal, solution. If,
instead, the demand served of j was smaller than the unserved demand of i, then customer
i remains partially served but customer j is not served at all by the considered tour. In
this case, we modify the solution by removing customer j from the tour. Also in this
case the number of partially served customers is reduced by 1 with respect to the original
solution. Moreover, the modified solution is not worse than the original, optimal, solution.
We repeat this procedure until at most one customer with incomplete service remains in
the tour. Then we repeat the procedure on all the other tours.

We note that, for the property to hold, the triangle inequality assumption on the time
distances is essential.

We now analyze the increase of the profit that can be achieved by allowing incomplete
service in the CTOP. In the CTOP-IS each customer is visited by at most one tour, both
in the case the customer is completely served and in the case it is only partially served.
The proof of the result follows the lines of a similar result that shows the increase of the
profit due to the incomplete service for the SDCTOP (see [2]).

Theorem 2
z(CTOP )

z(CTOP − IS)
≥ 1

2

and this bound is tight.

Proof: Let us consider an optimal solution of the CTOP-IS where each tour has at most
one customer with incomplete service. Theorem 1 guarantees that such a solution exists.
We modify this solution to obtain a solution where all customers are completely served,
that is a feasible solution of the CTOP. The tours where all customers are completely
served remain unchanged.

If a tour exists where a customer has incomplete service we proceed as follows. We
consider two different ways to modify this tour. The first one is to remove the customer
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with incomplete service and keep only the customers with complete service. In this case
the profit of the customer with incomplete service is lost. We also create a tour where
only the customer with incomplete service is included and completely served. In this case
the profits of the customers with complete service are lost. Note that both tours satisfy
the capacity and time constraints. In the modified solution, we replace the tour that we
have started from with the most profitable of these two modified tours. By construction,
the profit of this tour is greater than or equal to half the profit of the tour we have started
from. We repeat the procedure on all tours with customers with incomplete service. The
procedure guarantees that the modified solution is a feasible solution of the CTOP with
profit not lower than half the optimal profit of the CTOP-IS.

To show that the bound is tight, consider the instance depicted in Figure 1 with two
customers, each with di = pi = Q

2 + 1, one vehicle with capacity Q and a large value of
Tmax. The optimal solution of the CTOP serves only one customer, whereas the optimal
solution of the CTOP-IS serves Q

2 + 1 of the demand of one customer and Q
2 − 1 of the

demand of the other customer (see Figure 1). When Q tends to infinity the ratio tends to
1/2.

We summarize in Table 1 the theoretical results known for the studied variants of the
CTOP, namely the CTOP-IS, the SDCTOP and the SDCTOP-IS. These variants are all

5



‘relaxations’ of the CTOP, where incomplete service or/and multiple visits to a customer
are allowed. In each variant the maximum theoretical increase of the profit with respect
to the CTOP is 100%. These results imply that either split deliveries or incomplete
service may increase the profit by the same maximum amount and that combining the
two relaxations does not help in increasing the profit more.

CTOP-IS SDCTOP SDCTOP-IS

CTOP 1
2

1
2

1
2

Table 1: Comparison of worst-case results for CTOP

One may also wonder what is the benefit of having split deliveries in the CTOP-IS,
that is in studying the ratio between z(CTOP−IS) and z(SDCTOP − IS). As obviously

z(CTOP − IS) ≥ z(CTOP ), then from Table 1 z(CTOP−IS)
z(SDCTOP−IS) ≥

1
2 . However, it seems

quite unlikely that this bound is tight, i.e., that split deliveries may double the collected
profit with respect to the one collected in the CTOP with incomplete service. We have
found an instance where split deliveries increase the profit by one third but could not
find instances where the profit increases by more. Let us consider three customers. All
distances are equal to 1 but the distance between customers 1 and 3 which is 2. Let us
take two vehicles with Q = 2 and Tmax = 3. Moreover, di = pi, ∀i, d1 = d3 = 1, d2 = 2. It
can be seen that z(CTOP − IS) = 3 while z(SDCTOP − IS) = 4. Thus, we conjecture

that z(CTOP−IS)
z(SDCTOP−IS) ≥

3
4 .

4 A branch-and-price algorithm

In the CTOP-IS, like in the SDCTOP and in the SDCTOP-IS, decisions have to be taken
about the quantities to deliver to each customer. Nevertheless, contrary to what happens
in the cited problems, each customer can be visited at most once. The problem can thus
be formulated by means of a set-packing model where variables are associated with the
feasible vehicle tours. Tours are circuits in the graph G starting and ending at the depot.
A tour is feasible if the total travel time and the total quantity delivered do not exceed
the given time limit Tmax and the vehicle capacity Q, respectively. According to Theorem
(1), when looking for an optimal solution of the CTOP-IS, it is sufficient to consider the
feasible tours where at most one customer is partially served.

We addressed the CTOP-IS by means of a branch-and-price algorithm. Let us first
formulate the Master Problem (MP). We define R as the set of all feasible tours. For each
tour r ∈ R, let pr be the profit collected by the tour and air be a binary coefficient equal
to 1 if customer i ∈ V \ {1} is visited by the tour. The MP can be formulated as follows:
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max
∑
r∈R

prλr (1)∑
r∈R

airλr ≤ 1 ∀i ∈ V ′ = V \ {1} (2)∑
r∈R

λr ≤ m (3)

λr ∈ {0, 1} ∀r ∈ R (4)

where binary variable λr, r ∈ R, is equal to 1 if the corresponding tour is selected in
the optimal solution. The objective function (1) aims at maximizing the overall collected
profit, constraints (2) guarantee that each customer is visited at most once while (3)
establishes that at most m vehicles are used.

The Linear relaxation of the MP (LMP) is solved by means of column generation.
The MP, when restricted to a subset of variables (columns), is called Restricted Master
Problem (RMP). We initially solve the linear relaxation of a RMP (RLMP), restricted to
an initial set of columns. Then, the dual information obtained from the optimal solution
of the RLMP is used to find new positive reduced cost columns to be inserted in the
RLMP. The procedure is repeated until no such column exists. The optimal solution of
the final RLMP is the optimal solution of the LMP. In order to find positive reduced
cost columns, a pricing problem is solved which corresponds to a Shortest Path Problem
with Resource Constraints (SPPRC), where the resources correspond to tour duration
and quantity delivered. As we know that an optimal solution exists where at most one
customer is partially served in any tour, an additional resource is used to limit to one the
number of partially served customers along a tour. The pricing problem is solved through
a labeling algorithm adapted from the one presented in [3] for the SDCTOP.

As the optimal solution of the LMP can be fractional, branching is needed. Branching
on the fractional use of arcs is sufficient to guarantee the integrality of the λ variables.

Feasible solutions of the CTOP-IS can be obtained by solving the RMP restricted to
any subset of columns, that is by running a restricted master heuristic. At each node of the
branch-and-bound tree we solve a RMP restricted to a subset of the columns generated by
the pricing problem. The RMP is solved through a commercial solver. These solutions give
primal bounds and speed-up the solution approach. For more details on the computation
of the primal bounds we refer to [1] where a similar approach is described.

5 Computational results

In this section we computationally test the increase of the profit due to incomplete service
or/and split deliveries.
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The experiments were carried out on an Intel Xeon processor E5520, 2.26 GHz machine
with 12 GB of RAM. CPLEX 12.2 was used to solve the linear relaxation of the MPs and
the restrcted MPs of the restricted master heuristic. The overall execution time limit
for each run was set to 6 hours. The parameters setting is the one proposed in [3].
In particular, the restricted master heuristic is run at the root node of the tree before
each exact solution of the pricing problem, whereas, at non-root nodes, it is run after
the solution of the LMP. The time limit for each individual run of the restricted master
heuristic has been set to 1800 seconds. These settings have been chosen according to the
results obtained in [1] and [3], where it is shown that the use of the restricted master
heuristic improves the performance of the branch-and-price approach.

The tests were made on the set of instances proposed in [2] with up to 100 customers.
They were generated as follows. Starting from 5 benchmark instances for the Vehicle Rout-
ing Problem (see [9]), for each of them 11 different instances were defined by randomly gen-
erating the demand of the customers from a uniform distribution on the interval [αQ, βQ],
with the following 11 pairs of values for (α, β): (0.01, 0.10), (0.10, 0.30), (0.10, 0.50),
(0.10, 0.70), (0.10, 0.90), (0.30, 0.50), (0.30, 0.70), (0.30, 0.90), (0.50, 0.70), (0.50, 0.90) and
(0.70, 0.90).

The comparison between the SDCTOP and the CTOP was reported in [3], while in
[2] the SDCTOP was compared with the SDCTOP-IS. Our aim here is to give a global
overview of the comparison of the profit collected by the CTOP with the profit collected
by all the studied ‘relaxations’, namely the CTOP-IS, SDCTOP and SDCTOP-IS.

We first present, in Table 2, the computational results concerning the branch-and-
price algorithm for the CTOP-IS. The first column contains the name of the instance.
The last two numbers appearing in the name are the values of α and β, respectively. The
following four columns report instance data. Finally, computational results are reported:
‘z∗’ is the final upper bound, ‘z∗’ is the best feasible solution found and ‘gap(%)’ is the
percentage difference between the two. A gap equal to 0 means that the instance is solved
to optimality and in the last column we report the computational time needed to solve
it. From the table we can see that the branch-and-price algorithm was able to solve 22
instances over 55, 7 of which with 101 nodes.

The approach was not able to solve the root node of the branch-and-bound tree within
the time limit in only 4 cases. In all instances not solved to optimality and for which the
value of z∗ is available, the final gap is always lower than 0.3%.

Table 3 is devoted to the comparison of the CTOP with the CTOP-IS, SDCTOP and
SDCTOP-IS. Values in columns 6 and 9 are taken from [3] while values in column 11 are
taken from [2]. Each entry in these columns represents the best feasible solution found for
the corresponding problem instance. A ‘*’ means that the solution value is optimal. In
columns ‘(%)’ we report the improvements, in percentage, over the corresponding CTOP
solution value. Note that a negative value in the column corresponding to the improvement
of the CTOP-IS with respect to the CTOP is due to the fact that the corresponding CTOP-
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IS instance was not solved to optimality. It is important to note that, although for many
instances the optimal solution is not available, the optimality gaps reported in Table 2 for
the CTOP-IS and in [2] and [3] for the SDCTOP-IS and SDCTOP, respectively, guarantee
that the value of the solutions reported in Table 3 are very close to optimality. Therefore,
the columns ‘(%)’ provide very good estimates of the percentage increase of the profit
collected by the CTOP that is achieved by allowing incomplete service, split deliveries or
by allowing both.
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Figure 2. Average percentage improvements with respect to the CTOP

Figure 2 reports the average improvements of the profit achieved by the CTOP-IS,
SDCTOP and SDCTOP-IS with respect to the CTOP, classified on the basis of the values
of α and β. On the x-axis the tested pairs of 100α and 100β are indicated. The increase of
the profit always depends on the specific instance and is on average substantially smaller
than the maximum theoretical increase. On the tested instances the profit increase due to
incomplete service only ranges between 0% and 50%, whereas the maximum improvement
is 100%. Split deliveries and incomplete service show a similar behavior and give the
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largest improvement when customers demands are high, especially when they are just
above half of vehicles capacity. The combination of incomplete service and split deliveries
allows a small increase of the profit achieved by either incomplete service or split deliveries.
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Table 2: Computational results

Instance CTOP-IS
Branch-and-price

name n m Q Tmax z∗ z∗ gap(%)
p03 1 10 101 15 200 200 1409.0000 1406.000 0.213
p03 10 30 1305.1930 1303.000 0.168
p03 10 50 1117.4490 1116.000 0.130
p03 10 70 961.3103 961.000 0.032
p03 10 90 1006.2174 1005.500 0.071
p03 30 50 927.7140 927.686 0.003
p03 30 70 811.7869 811.249 0.066
p03 30 90 752.8447 752.820 0.003
p03 50 70 - 737.695 -
p03 50 90 - 636.193 -
p03 70 90 - 585.880 -
p06 1 10 51 10 160 200 761.0000 761.000 0.000 ( 1138”)
p06 10 30 758.3333 758.333 0.000 ( 7911”)
p06 10 50 689.2982 689.298 0.000 ( 14446”)
p06 10 70 584.1488 584.060 0.015
p06 10 90 497.5631 497.531 0.006
p06 30 50 538.3997 538.350 0.009
p06 30 70 490.2505 490.250 0.000 ( 2897”)
p06 30 90 434.1991 434.199 0.000 ( 5177”)
p06 50 70 430.0833 430.083 0.000 ( 6221”)
p06 50 90 397.4848 397.485 0.000 ( 5021”)
p06 70 90 337.3898 337.390 0.000 ( 9701”)
p07 1 10 76 20 140 160 1327.0000 1327.000 0.000 ( 72”)
p07 10 30 1327.0000 1327.000 0.000 ( 302”)
p07 10 50 1292.1154 1292.115 0.000 ( 3798”)
p07 10 70 1181.5652 1180.000 0.132
p07 10 90 1077.7119 1077.699 0.001
p07 30 50 1138.1391 1138.097 0.004
p07 30 70 980.7741 980.774 0.000 ( 1224”)
p07 30 90 893.7880 893.788 0.000 ( 1818”)
p07 50 70 878.2732 878.273 0.000 ( 2982”)
p07 50 90 805.2451 805.241 0.000
p07 70 90 720.2753 720.275 0.000 ( 3340”)
p08 1 10 101 15 200 230 1409.0000 1409.000 0.000 ( 5536”)
p08 10 30 1326.7895 1324.000 0.210
p08 10 50 1159.4400 1157.000 0.210
p08 10 70 1046.2935 1045.000 0.124
p08 10 90 910.5037 910.437 0.007
p08 30 50 935.7564 935.741 0.002
p08 30 70 838.3221 838.322 0.000 ( 10743”)
p08 30 90 777.0167 776.979 0.005
p08 50 70 724.3128 724.313 0.000 ( 16209”)
p08 50 90 692.3763 672.486 2.873
p08 70 90 587.0910 587.091 0.000 ( 21590”)
p14 1 10 101 10 200 1040 1710.0000 1710.000 0.000 ( 611”)
p14 10 30 1319.7692 1309.000 0.816
p14 10 50 1041.3793 1040.000 0.132
p14 10 70 931.8780 930.000 0.202
p14 10 90 824.9325 824.003 0.113
p14 30 50 863.1202 863.119 0.000
p14 30 70 755.1489 755.140 0.001
p14 30 90 649.3793 649.379 0.000 ( 4483”)
p14 50 70 617.8339 617.834 0.000 ( 4061”)
p14 50 90 569.7406 559.762 1.751
p14 70 90 - 490.155 -
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Table 3: Improvements with respect to the CTOP

Instance CTOP CTOP-IS SDCTOP SDCTOP-IS
name n m Q Tmax z∗ z∗ (%) z∗ (%) z∗ (%)
p03 1 10 101 15 200 200 1409* 1406.000 -0.21 1409* 0 1409.000* 0
p03 10 30 1305* 1303.000 -0.15 1305* 0 1305.193* 0.01
p03 10 50 1117* 1116.000 -0.09 1117* 0 1117.449* 0.04
p03 10 70 961* 961.000 0 961* 0 961.310* 0.03
p03 10 90 1005* 1005.500 0.05 1005* 0 1006.217* 0.12
p03 30 50 892* 927.686 4.00 927 3.92 928.876* 4.13
p03 30 70 807* 811.249 0.53 810 0.37 811.357* 0.54
p03 30 90 704* 752.820 6.93 755* 7.24 755.673* 7.34
p03 50 70 549* 737.695 34.37 739 34.61 741.633* 35.09
p03 50 90 517* 636.193 23.05 643* 24.37 643.794* 24.52
p03 70 90 517* 585.880 13.32 585 13.15 592.800* 14.66
p06 1 10 51 10 160 200 761* 761.000* 0 761* 0 761.000* 0
p06 10 30 757* 758.333* 0.18 757* 0 758.333* 0.18
p06 10 50 687* 689.298* 0.33 687* 0 689.298* 0.33
p06 10 70 581* 584.060 0.53 581* 0 584.162* 0.54
p06 10 90 493* 497.531 0.92 495* 0.41 497.640* 0.94
p06 30 50 504* 538.350 6.82 538* 6.75 539.600* 7.06
p06 30 70 477* 490.250* 2.78 490* 2.73 490.563* 2.84
p06 30 90 409* 434.199* 6.16 432 5.62 435.342* 6.44
p06 50 70 289* 430.083* 48.82 428 48.10 434.511* 50.35
p06 50 90 308* 397.485* 29.05 396 28.57 400.875* 30.15
p06 70 90 289* 337.390* 16.74 335 15.92 342.993* 18.68
p07 1 10 76 20 140 160 1327* 1327.000* 0 1327* 0 1327.000* 0
p07 10 30 1327* 1327.000* 0 1327* 0 1327.000* 0
p07 10 50 1292* 1292.115* 0.01 1292* 0 1292.115* 0.01
p07 10 70 1180* 1180.000 0 1180* 0 1181.565* 0.13
p07 10 90 1075* 1077.699 0.25 1076 0.09 1077.752* 0.26
p07 30 50 1076* 1138.097 5.77 1142* 6.13 1142.215* 6.15
p07 30 70 966* 980.774* 1.53 980* 1.45 981.125* 1.57
p07 30 90 852* 893.788* 4.90 894* 4.93 895.000* 5.05
p07 50 70 631* 878.273* 39.19 884* 40.10 884.350* 40.15
p07 50 90 627* 805.241 28.43 811 29.35 813.650* 29.77
p07 70 90 619* 720.275* 16.36 723 16.80 728.840* 17.74
p08 1 10 101 15 200 230 1409* 1409.000* 0 1409* 0 1409.000* 0
p08 10 30 1326* 1324.000 -0.15 1326* 0 1326.790* 0.06
p08 10 50 1158* 1157.000 -0.09 1158 0 1159.440* 0.12
p08 10 70 1045* 1045.000 0 1045* 0 1046.294* 0.12
p08 10 90 909* 910.437 0.16 910* 0.11 910.509* 0.17
p08 30 50 893* 935.741 4.79 936 4.82 937.786* 5.02
p08 30 70 805* 838.322* 4.14 838 4.10 839.148* 4.24
p08 30 90 750* 776.979 3.60 777* 3.60 777.873* 3.72
p08 50 70 517* 724.313* 40.10 725 40.23 733.288* 41.84
p08 50 90 517* 672.486 30.07 678 31.14 680.646* 31.65
p08 70 90 517* 587.091* 13.56 585 13.15 594.966* 15.08
p14 1 10 101 10 200 1040 1710* 1710.000* 0 1710* 0 1710.000* 0
p14 10 30 1319* 1309.000 -0.76 1319* 0 1319.769* 0.06
p14 10 50 1040* 1040.000 0 1040 0 1041.379* 0.13
p14 10 70 930* 930.000 0 930 0 931.878* 0.20
p14 10 90 822* 824.003 0.24 823 0.12 824.943* 0.36
p14 30 50 835* 863.119 3.37 862 3.23 863.798* 3.45
p14 30 70 732* 755.140 3.16 754 3.01 755.768* 3.25
p14 30 90 611* 649.379* 6.28 647 5.89 650.303* 6.43
p14 50 70 418* 617.834* 47.81 619 48.09 625.227 49.58
p14 50 90 414* 559.762 35.21 561 35.51 564.796 36.42
p14 70 90 407* 490.155 20.43 498 22.36 500.103 22.88
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Conclusions

In this paper we studied the impact of allowing incomplete (partial) service in the CTOP.
We analyzed the possible gainings both from the worst-case point of view and from the
experimental side. We proved that the maximum gaining is equal to 100% the value
of the CTOP solution. From the computational point of view, we compared the gainings
achieved by allowing incomplete service with the gainings that can be achieved by allowing
split deliveries and by simultaneously allowing incomplete service and split deliveries.

From the theoretical point of view, the profit of the CTOP may double by allowing
incomplete service or split deliveries or by allowing simultaneously both. The computa-
tional results confirm the theoretical analysis, that is that the combination of incomplete
service and split deliveries does not significantly increase the profit with respect to the in-
crease achieved by incomplete service or split deliveries only. The computational analysis
enlightens the fact that the amount of increase of the profit with respect to the CTOP
strongly depends on the instance and in particular on the ratio between the average de-
mand of the customers and the vehicles capacity. The highest profit increase is obtained
when the customers demand is above half of the vehicle capacity.

The results of this paper suggest to practitioners that, in routing problems with profits,
it is worthwhile to allow incomplete service or split deliveries, especially when the customer
demands are large compared to the vehicle capacity.
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