
1 

Balancing of Agricultural Census Data by using Discrete Optimization
∗∗∗∗ 

 

Bianchi Gianpiero
1
 ・・・・ Bruni Renato2 ・・・・ Reale Alessandra3 

 
 

Abstract In the case of large-scale surveys, such as a Census, data may contain errors or missing 
values. An automatic error correction procedure is therefore needed. We focus on the problem of 
restoring the consistency of agricultural data concerning cultivation areas and number of livestock, 
and we propose here an approach to this balancing problem based on Optimization. Possible 
alternative models, either linear, quadratic or mixed integer, are presented. The mixed integer 
linear one has been preferred and used for the treatment of possibly unbalanced data records. 
Results on real-world Agricultural Census data show the effectiveness of the proposed approach. 
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1 Introduction 

A Census of Agriculture is a very complex, important and expensive operation for a National 
Statistic Office. It is an essential activity, periodically performed for monitoring the agricultural 
sector (see also [14]). Data collected in such a process have therefore a great intrinsic economic 
value, and moreover, in the case of EU countries, constitute a basis for assigning financial 
resources, planning production, and for several other economical European policies. As in any 
other large-scale survey, however, those data may contain errors or missing values, due to a 
variety of reasons. Nonetheless, correct information must be published and provided to the EU 
level, also considering that large financial resources are allocated to the sector. Therefore, error 
detection and correction become crucial tasks. This kind of activity is generally called Information 
Reconstruction, or also Data Cleaning, within the field of Data Mining (see also [18,23]), or Data 
Editing and Imputation within the field of Statistics (see also [12,31]). Note that, in contexts 
different from the Census, the possibility of reconstructing exact values could be useful also for 
counteracting possible opportunistic behaviors (e.g. willingly erroneous declarations), and 
knowing that exact values can be reconstructed could indeed prevent such opportunistic behaviors. 

Data are generally organized into conceptual units called records (see also [28]). In the case of 
a Census of Agriculture, data are typically constituted by farm codes, cultivation codes, size of 
cultivation areas and other amounts, years, etc., so we restrict our attention to numerical data. 
Agriculture is a rich source of large data mining problems, and a recent overview on the use of 
data mining techniques in this field is in [25]. The above Information Reconstruction tasks, in 
particular, can be performed by following different approaches, each of which having its own 
features. A main approach is based on the use of rules, called edits, that each data record must 
respect in order to be declared exact (see e.g. [3,24]). Records not respecting such rules are 
declared erroneous. A seminal paper on the subject is [15]. However, satisfactory rules accuracy 
and computational efficiency often appear to be at odds. For this reason, rules are often converted 
into mathematical expressions, e.g. inequalities (see also [11]), and finding within a record the 
most probably erroneous fields or the most suitable values correcting those fields become 
nontrivial optimization problems (see e.g. [17] for an introduction to computational complexity). 
This allows to overcome the computational limits of other techniques (see e.g. [4,24,31]). Such a 
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methodology has been adopted within the data Editing and Imputation software system DIESIS 
[9,10] and in other works such as [12,27].  

In the described Census, each farm specifies the cultivation area used for each cultivation and 
number of livestock for each type of animal, divided in some cases also by year. Moreover, they 
specify total areas and total numbers of livestock. However, those totals may be inconsistent with 
the mentioned detailed information, and a classical problem is restoring data consistency by 
correcting errors. These errors should be corrected by mathematically “guessing” the correct 
values, since it is clearly impossible to contact again the farm or inspect it somehow. The main 
issue is doing this on large data sets both efficiently and in order to obtain corrected data as similar 
as possible to the exact (but unknown) data. This work presents an innovative procedure for 
solving this problem based on optimization. In particular, Section 2 describes in detail the specific 
problem structure, analyzing also its connections to similar problems, and explains the 
development of the proposed integer linear programming model. Section 3 reports computational 
results in the case of the Italian Census of Agriculture 2010 (“Censimento Generale 
dell’Agricoltura 2010”), both for plants cultivations and for livestock. Note that, to the best of our 
knowledge, no previous attempt to treat this large-size Census problem with a discrete 
optimization approach was made, and only ad hoc procedures, designed by experts after an 
analysis of the specific available data, were used. 
 
 

2 Problem Structure and Optimization Model 

Data obtained from each farm during the described Census contain information (called microdata, 
information about details) about the cultivation area used by that farm for each cultivation and the 
number of livestock for each type of animal. Those data may sometimes be erroneous or missing, 
due to a variety of reasons. In such cases, errors should be automatically detected and corrected, 
i.e. the information that was corrupted and lost should be “reconstructed” in order to be as similar 
as possible to the unknown exact value. Moreover, each farm also declares other information 
(called macrodata, information about totals): the total cultivation area and the total number of 
livestock, and in some cases those totals are also divided into subtotals by year of planting. 
Clearly, balancing conditions must hold between all the above microdata and the corresponding 
macrodata: each total (or year subtotal) must be equal to the sum of those details concerning its 
parts. When such conditions do not hold, data are inconsistent.  

Records incurring in this problem are detected by checking the balancing conditions, which 
are called balance edits. However, when a balance edit is violated, the error could be either on the 
detail side or on the total side of the equation. The less reliable information should be changed in 
order to restore consistency. It is generally assumed, in these cases, that details constitute the less 
reliable information, since totals have already been confirmed from other sources. This 
mathematical problem of adjusting the entries (here the microdata) of a large matrix to satisfy prior 
consistency requirements (here given by the macrodata) is called matrix balancing [29] and occurs 
in several fields, such as economics, urban planning, statistics, demography, etc. The problem is 
also related to the matrix rounding problem [1], consisting in rounding off the elements of a matrix 
consistently with its row and column sums, often arising in economic statistics, and belongs to the 
broad category of matrix scaling problems [2].  

In some cases of matrix balancing problems the only aim is restoring balancing without 
further objectives, and iterative scaling algorithms can be used, e.g. the RAS algorithm [22]. In 
other cases, on the contrary, the variations introduced for balancing the matrix should pursue an 
objective that typically depends on the specific application. In the case of Census data, the choice 
of the objective is a delicate issue for avoiding data distortions, and makes this problem different 
from other types of balancing problems. Errors in microdata could broadly be divided into 
systematic errors and random errors [16]. Systematic errors are those caused by specific (and often 
traceable) mechanisms, e.g. usage of a wrong unit of measurement, OCR error, etc., and are 
generally treated during a preliminary correction phase [13]. Our central problem is therefore 
correcting microdata values affected by random errors. In this case, changes from the available 
microdata values should be minimized, according to specific distance criteria, since it is generally 
deemed that this should produce data as similar as possible to the unknown exact data (Fellegi-
Holt paradigm [15,24]). An optimization approach is therefore required.  

The models proposed for the above problem will be hereinafter explained by referring to the 
specific case of vineyards. This is one of the most important cases: dozens of grapes varieties 
exist, and they determine type and quality of wines produced. The case has great economic 
relevance and, due to its large dimension, is also computationally demanding. Moreover, those 
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data are used when allocating European financial resources and when reorganizing wine 
production. However, the proposed models are clearly not limited to that case, but can be used for 
any other similar problem. 

Each farm could have several vine types, and each of them could have been planted in a 
different time period (e.g. a specific year). Denote by 

I = {1,…, n}  the set of indices of all possible vine types; with n = 442 

K = {1,…, m} the set of indices of all possible time periods; with  m = 6. 
 

For each farm, denote by  
a

ik
  (real valued  ≥ 0) the area of vine type i  planted in period  k  declared by the farm, with        

i ∈ I  and  k ∈ K; 
a

i0
  (real valued  ≥ 0) the total area of vine type i  (planted during any of the periods) declared 

by the farm, with  i ∈ I; 
T

k
  (real valued  ≥ 0) the total vine area planted in period k  declared by the farm, with  k ∈ K; 

T   (real valued  ≥ 0) the total vine area owned by the farm. 
 
In order to reconstruct the erroneous information, we need the following set of decision variables: 

x
ik

 (real valued  ≥ 0, ≤ S) = the area of vine type  i  that, according to our reconstruction, has 

been planted in period  k  by the farm, with  i ∈ I  and  k ∈ K . 
x

i0
 (real valued  ≥ 0, ≤ mS) = the total area of vine type  i  that, according to our recon-

struction, has been planted (during any of the periods) by the farm, with  i ∈ I . 
 
In other words, x

ik
 is the correct value for  a

ik
 . When reconstructing information for a Census, as 

in the case of other large-scaled surveys, it is generally assumed that the changes introduced in the 
data should be somehow minimized. This because, in absence of further information, being as 
similar as possible to the exact (unknown) data corresponds to being as similar as possible to the 
available (even if possibly erroneous) data. By following this minimum change paradigm, two 
basic alternatives exist: one is minimizing the number of changes, the other minimizing the 
amount of those changes. 

If we need to distinguish when our reconstruction provides a result which is different form the 
available declaration (i.e. a change), we need the following set of binary variables: 

 
                1   if  x

ik
 is different from a

ik
  

y
ik

 =                                                                            ∀ i = 1,…, n       ∀ k = 0,…, m   
                0   otherwise 
 

The presence of binary variables clearly has its impact on the complexity of the model: by adding 
the other constraints needed for this problem, which are linear, we obtain an Integer Linear 
Program. Minimizing the total number of changes corresponds to the following objective function 
 

min ∑
=

n

i 1
∑
=

m

k 0

y
ik

                                                                 (1) 

 
When variables y are used, they should be linked to the x variables by constraints imposing that  y

ik
  

takes value 1 when  x
ik

 < > a
ik

 (using a certain numerical precision), otherwise those variables 

could be inconsistent. There is no need for constraints imposing  y
ik

 = 0 when  x
ik

 = a
ik

 because the 

objective (1) itself does that. Value  M  is a real number greater than all possible values of the left-
hand side of the following inequalities. 
 

a
ik

 - x
ik

 ≤  M y
ik

        ∀ i = 1,…, n       ∀ k = 0,…, m                                   (2) 

x
ik

 - a
ik

 ≤  M y
ik

        ∀ i = 1,…, n       ∀ k = 0,…, m                                   (3) 

 
When, on the other hand, we are interested in measuring the difference between our reconstruction 
x

ik
 and the available declaration a

ik 
, we should consider a generic norm of this difference: 

 
|| a

ik
 - x

ik
 ||p 
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Several norm types and norm-induced functions exist [5]. We consider more suitable to our 
reconstruction problems the following three:  

• The squared Euclidean norm, defined as   (||u - v||2
 )2 =  ∑

=

q

h 1

(u
h – v

h
 )2  

• the so-called Manhattan norm, defined as   ||u - v||1
 = ∑

=

q

h 1

|u
h – v

h
 |  

• the so-called Chebyshev norm, defined as   ||u - v||∞
 = max

h
 { |u

h – v
h
 | }. 

 
Clearly, the structure of the optimization model that we must solve depends now on this choice. In 
the first case (squared Euclidean norm), minimizing the total amount of the changes corresponds to 
the following objective function, containing quadratic terms.  
 

min ∑
=

n

i 1
∑
=

m

k 0

( a
ik

 - x
ik

 )2  =   min ∑
=

n

i 1
∑
=

m

k 0

( a
ik

2  - 2 a
ik

 x
ik

  + x
ik

 2 )                  (4) 

 
However, all of them are simply squared variables (x

ik 
)2, so they are strictly convex, and a conic 

combination of those strictly convex terms produces a separable strictly convex function [8]. By 
adding to that the linear terms of (4) and the constraints needed for this problem (described later), 
which are linear, the problem remains efficiently solvable (see e.g. [6,19]). 

In the second case (Manhattan norm), there are absolute values in the objective. However, they 
can be easily linearized by introducing additional variables: 
 

 s
ik

 (real valued  ≥ 0) = the value of  | a
ik

 - x
ik

 |,           ∀ i = 1,…, n       ∀ k = 0,…, m     

 

and linear constraints enforcing their meaning 
s

ik
 ≥  a

ik
 - x

ik
 ,      s

ik
 ≥  x

ik
 - a

ik
        ∀ i = 1,…, n       ∀ k = 0,…, m             (5) 

 

We can now minimize the linear function ∑ ∑= =

n

i

m

k1 0
s

ik
 . When adding the other constraints 

needed for this problem, which are linear, the problem becomes an easily solvable Linear Program. 
In the third case (Chebyshev norm), we have a min-max objective in the problem that again 

can be easily linearized by introducing one additional variable 
 
t (real valued  ≥ 0) = the value of  max

ik
 { |a

ik – x
ik

 | },    ∀ i = 1,…, n       ∀ k = 0,…, m    

 

and linear constraints enforcing the above meaning 
t  ≥  a

ik
 - x

ik
 ,      t  ≥  x

ik
 - a

ik
          ∀ i = 1,…, n       ∀ k = 0,…, m           (6) 

 
We now simply minimize t. When adding the other constraints needed for this problem, which are 
linear, the problem becomes again an easily solvable Linear Program. 

Clearly, also a combination of the above alternatives can be considered. The characteristics of 
the specific real problem will determine, from case to case, the choice of the objective among the 
described ones or their possible combinations. In our case, we consider more representative of the 
real problem’s aim the minimization of the total number of changes, and, in second place, the 
minimization of the amount of those changes. This because a change with respect to a value that 
has been deliberately declared has intrinsically a very high cost. Therefore, we prefer maintaining 
the maximum number of those declared values, even if this may result in a greater amount of the 
changes that we are forced to introduce. The objective function becomes: 

min  (M’ ∑
=

n

i 1
∑
=

m

k 0

y
ik

  + ∑
=

n

i 1
∑
=

m

k 0

s
ik

 )                                             (7) 

 
where the first sums are multiplied by a numerical value M’ weighting the relative importance of 
the first part with respect to the second one. We chose M’=S, so that a single change weights as 
much as the maximum amount of a change.  
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We now describe the balancing conditions that should be respected in our case. The sum of vine 
areas of any type planted in period k must be equal to the total vine area planted in period k (called 
balancing over vine types) 

∑
=

n

i 1

 x
ik

  =  T
k
           ∀  k ∈ K                                             (8) 

 
The sum of the areas of vine type  i  planted in periods from 1 to m must be equal to the area of the 
same vine type planted along all the periods (called balancing over time periods) 

x
i0

 = ∑
=

m

k 1

 x
ik

           ∀ i ∈ I                                                  (9) 

 
The sum of vine areas of any type planted in any period must be equal to the total vine area owned 
by the farm (called overall balancing) 

∑
=

n

i 1
∑
=

m

k 1

 x
ik

  =  T                                                          (10) 

 
Clearly, any other type of balancing condition could be expressed as other linear constraints. Note 
that the structure of balancing constraints (8) and (9) could be considered as defining a 
transportation problem (see e.g. [5,30]) with a set of origins I  and a set of destinations K, values 
a

i0
  being the supply at origin i, values T

k
 being the demand at destination k, variables  x

ik
 being the 

amount to be shipped from source i to destination k. However, the values a
i0

 are in our case 

declared values that we may change (using the x
i0

 variables), and moreover there is no guarantee 

that the following condition, essential for the feasibility of a transportation problem, is respected: 

∑
=

n

i 1

 a
i0

 =  ∑
=

m

k 1

 T
k
 

 
The complete mixed integer linear programming model is therefore the following: 

min  (M’ ∑
=

n

i 1
∑
=

m

k 0

y
ik

  + ∑
=

n

i 1
∑
=

m

k 0

s
ik

 )  

∑
=

n

i 1

 x
ik

  =  T
k
                ∀  k ∈ K 

x
i0

 = ∑
=

m

k 2

 x
ik

                  ∀  i ∈ I 

∑
=

n

i 1
∑
=

m

k 1

 x
ik

  =  T 

                                                                                                   (11) 
a

ik
 - x

ik
 ≤  M y

ik
        ∀ i = 1,…, n       ∀ k = 0,…, m  

x
ik

 - a
ik

 ≤  M y
ik

        ∀ i = 1,…, n       ∀ k = 0,…, m  

s
ik

 ≥  a
ik

 - x
ik

             ∀ i = 1,…, n       ∀ k = 0,…, m  

s
ik

 ≥  x
ik

 - a
ik

             ∀ i = 1,…, n       ∀ k = 0,…, m  

 

0 ≤  x
ik

  ≤ S              ∀  i ∈ I       ∀  k ∈ K 

0 ≤  x
i0

  ≤ mS           ∀  i ∈ I 

s
ik
  ≥ 0                     ∀ i = 1,…, n       ∀ k = 0,…, m 

x
ik

 ,  s
ik

 ∈ ℜ             ∀ i = 1,…, n       ∀ k = 0,…, m 

y
ik

 ∈ {0,1}               ∀ i = 1,…, n       ∀ k = 0,…, m 
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3 Computational Analysis 

By sequentially solving the above model for each farm, we perform the requested Information 
Reconstruction process. This procedure was implemented in C++, using ILOG Concert 
Technology [20] in order to express the described optimization models. The models themselves 
are solved by means of the state-of-the-art branch-and-cut (see e.g. [5,26]) procedure implemented 
by the solver ILOG Cplex [21], running on a 16 cores server having 128Gb of RAM and Linux 
Operating System. The resulting software system has been tested for the treatment of data from the 
Italian Census of Agriculture 2010 (“Censimento Generale dell’Agricoltura 2010”), with specific 
respect to the cases of:  
 

(I) Vineyards suitable for “controlled origin” wine, considered in Table 1;  
(II) Vineyards not suitable for “controlled origin” wine, considered in Table 2;  
(III) Generic cultivations, considered in Table 3;  
(IV) Livestock, considered in Table 4. 

 
Note that, in the last two cases, microdata are not subdivided by year of planting but by 
geographical area. In the above four cases, we report results for each Italian region and for all Italy 
(1st column): the total number of farms not respecting the balancing conditions (2nd column); the 
total number of records involved in those unsatisfied balancing conditions (3rd column); the total 
number of changes operated by the reconstruction process (4th column). Moreover, we analyze in 
greater detail those changes: we report the percentages of area (or heads) modified by the 
procedure, computed with respect to the total area involved in that case (or to the total number of 
animals). Such modifications can be done by adding (5th column) and/or by subtracting (6th 
column), and note that those quantities are not bounded to be equal, since errors are not so. Finally, 
we report the total processing time in seconds (7th column).  

The practical behavior of the proposed procedure should now be evaluated both from the 
computational and from the data quality points of view. As observable, the procedure is very fast: 
each single model is solved to optimality in extremely short times (generally about 0.02 sec.) so 
that the processing of all the Italian farms requires, for the 4 cases together, only about 50 minutes. 
The quality of the obtained data has been evaluated by considering: (i) the ability to restore 
balancing; and (ii) the variation produced in the data by the reconstruction process.  
 
 
 

Region Farms # Records Changes Added Area 
Subtracted  

Area 
Time (sec.) 

Piemonte 696 2055 1866 0.15% -1.70% 23.5 

Valle d’Aosta 22 55 46 0.00% 0.00% 0.6 

Lombardia 468 1488 1423 0.16% -0.75% 17.0 

Veneto 3817 6916 5602 4.23% -0.96% 79.2 

Friuli-Venezia Giulia 286 1528 945 0.13% -0.38% 17.5 

Liguria 124 257 493 0.01% -0.04% 2.9 

Emilia-Romagna 336 940 640 0.07% -0.74% 10.8 

Toscana 3392 6099 4332 3.20% -1.01% 69.8 

Umbria 73 248 173 0.05% -0.13% 2.8 

Marche 1359 2243 1541 0.79% -0.21% 25.7 

Lazio 432 925 1455 0.13% -0.55% 10.6 

Abruzzo 197 324 300 0.04% -0.36% 3.7 

Molise 407 479 428 0.12% -0.01% 5.5 

Campania 420 953 1212 0.13% -0.41% 10.9 

Puglia 6854 7895 8016 3.04% -0.72% 90.4 

Basilicata 61 78 104 0.02% -0.06% 0.9 

Calabria 168 223 369 0.04% -0.12% 2.6 

Sicilia 620 973 1764 0.43% -0.94% 11.1 

Sardegna 221 394 668 0.05% -0.45% 4.5 

Bolzano 125 446 241 0.01% -0.35% 5.1 

Trento 268 899 482 0.04% -0.34% 10.3 

Italy total 20346 35418 32100 12.85% -10.21% 405.5 

 
Table 1: Results on vineyards suitable for controlled origin wine 
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Region Farms # Records Changes Added Area 
Subtracted  

Area 
Time (sec.) 

Piemonte 528 866 1961 0.05% -0.28% 9.9 
Valle d’Aosta 168 254 173 0.01% -0.01% 2.9 
Lombardia 2312 3761 3172 0.38% -0.25% 43.1 
Veneto 1346 3811 2593 0.33% -1.05% 43.7 
Friuli-Venezia Giulia 1489 2931 2223 0.19% -0.19% 33.6 
Liguria 868 1465 1321 0.06% -0.04% 16.8 
Emilia-Romagna 436 918 814 0.10% -0.62% 10.5 
Toscana 4558 11481 6747 0.83% -4.88% 131.6 
Umbria 2200 4924 2466 0.18% -0.17% 56.4 
Marche 3005 5850 3472 0.33% -0.09% 67.0 
Lazio 4333 7363 7768 0.43% -0.80% 84.4 
Abruzzo 5392 10664 5673 0.71% -0.94% 122.2 
Molise 1732 3392 1841 0.24% -0.05% 38.9 
Campania 10904 18092 13728 0.92% -0.67% 207.3 
Puglia 10897 15251 13383 2.86% -1.48% 174.8 
Basilicata 370 486 659 0.04% -0.15% 5.6 
Calabria 2455 3391 4513 0.41% -0.89% 38.9 
Sicilia 4224 7497 9630 2.00% -3.54% 85.9 
Sardegna 642 1385 2528 0.07% -0.72% 15.9 
Bolzano 11 21 19 0.00% -0.01% 0.2 
Trento 1936 2400 1977 0.13% -0.05% 27.5 
Italy total 59806 106203 86661 10.25% -16.87% 1217.0 

 
Table 2: Results on vineyards not suitable for controlled origin wine 
 
 
As for the first aspect, data obtained by the procedure were able to satisfy the balancing conditions 
in the totality of the cases (100%). As for the second aspect, a positive feature for a general 
information reconstruction procedure is satisfying the requirements while not changing the data 
exceedingly. In the analyzed cases, in addition to the theoretical guarantee that the number of 
changes is minimal, we observe that the amount of the variations is always a small percentage. 
This means that the procedure was able to reconstruct information without distorting the data. 
 
 
 

Region Farms # Records Changes Added Area 
Subtracted  

Area 
Time (sec.) 

Piemonte 624  1682  1191  0.037% -0.016% 19.2  

Valle d’Aosta 84  221  157  0.000% 0.000% 2.5  

Lombardia 1436  3784  2162  0.030% -0.069% 43.3  

Veneto 5715  13604  11033  0.383% -0.670% 155.8  

Friuli-Venezia Giulia 734  1955  1123  0.010% -0.002% 22.4  

Liguria 264  645  458  0.001% 0.000% 7.3  

Emilia-Romagna 252  742  976  0.168% -0.042% 8.5  

Toscana 3006  6571  6274  0.486% -0.319% 75.2  

Umbria 513  1160  931  0.007% -0.003% 13.2  

Marche 2210  5347  4615  0.229% -0.088% 61.2  

Lazio 912  2023  1553  0.009% -0.002% 23.1  

Abruzzo 1960  4540  2650  0.038% -0.103% 52.0  

Molise 2006  4649  3817  0.047% -0.035% 53.2  

Campania 2854  6538  4403  0.015% -0.003% 74.9  

Puglia 18205  41924  34881  0.561% -0.527% 480.3  

Basilicata 433  996  710  0.011% -0.005% 11.4  

Calabria 506  1166  851  0.007% -0.008% 13.3  

Sicilia 1117  2546  1772  0.035% -0.002% 29.1  

Sardegna 223  512  407  0.006% -0.004% 5.8  

Bolzano 23  96  83  0.012% -0.037% 1.1  

Trento 889  2280  1344  0.005% -0.003% 26.1  

Italy total 43966  102981  81391  2.098% -1.938% 1180.0 

 
Table 3: Results on other cultivations 
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Region Farms # Records Changes Added Heads 
Subtracted  

Heads 
Time (sec.) 

Piemonte 704 947 719 0.317% -0.107% 9.7 

Valle d’Aosta 38 51 38 0.000% 0.000% 0.5 

Lombardia 528 784 574 0.390% -0.130% 8.0 

Veneto 3797 4449 4489 7.348% -2.763% 45.4 

Friuli-Venezia Giulia 164 210 169 0.017% -0.285% 2.1 

Liguria 71 92 71 0.000% 0.000% 0.9 

Emilia-Romagna 333 593 500 5.585% -8.403% 6.1 

Toscana 1554 1878 1973 0.265% -0.037% 19.2 

Umbria 124 160 124 0.000% -0.554% 1.6 

Marche 1171 1488 1592 0.823% -0.428% 15.2 

Lazio 302 380 305 0.000% 0.000% 3.9 

Abruzzo 215 286 217 1.634% 0.000% 2.9 

Molise 1003 1303 1281 0.437% -0.477% 13.3 

Campania 387 471 394 0.001% 0.000% 4.8 

Puglia 3734 4144 4556 0.595% -0.570% 42.3 

Basilicata 123 173 126 0.001% 0.000% 1.8 

Calabria 266 320 270 0.000% 0.000% 3.3 

Sicilia 338 441 340 0.000% 0.000% 4.5 

Sardegna 276 489 281 0.004% 0.000% 5.0 

Bolzano 127 181 127 0.000% 0.000% 1.8 

Trento 97 111 97 0.000% 0.000% 1.1 

Italy total 15352 18951 18243 17.418% -13.754% 193.5 

 
Table 4: Results on livestock 
 
 
The accuracy of the reconstructed information has been further evaluated by setting up a specific 
experiment. A large dataset of 274687 records representing all vineyards obtained from about 
126000 farms, all exact, were perturbed by introducing random errors with uniform distribution at 
3 different intensities, so that respectively about 1%, 5% and 10% of the microdata values have 
been changed. This was performed 20 times, in order to obtain statistically significant results, so 
60 different large erroneous datasets were obtained. After this, the reconstruction procedure was 
applied to all of them, and the 60 obtained (corrected) data sets were compared to the original 
exact one.  

Statistical indicators commonly used for measuring the differences between real and predicted 
values, such as the Relative Root Mean Square Error (RRMSR), are practically 0 (< 10-5) for all 
the corrected datasets. This means that the quality of the reconstruction is fully satisfactory. 
However, in order to obtain more insight, we analyzed the reconstruction at an even greater detail: 
we compared each single reconstructed value to its original value, and checked whether it was 
exactly identical or not. Note that such test is extremely strict, probably beyond the requirements 
of a similar reconstruction process. The results are presented in Table 5. The percentage of 
reconstructed values that are exactly equal to the original values has been computed by 
subdividing the datasets on the basis of the number of errors actually introduced in each farm. 
Clearly, those percentages lower when the number of errors introduced in the farm increases, but 
accuracy is anyway extremely high. Even when the farm data contain a considerable number of 
errors (from 4 to 10, that is often more than what happens in usual practice), the reconstructed 
values are exactly equal to the original ones in a very high percentage of the cases. 
 
 

Percentage of Exactly Reconstructed Values 
Errors per 

Farm Perturbation at 

1% 

Perturbation at 

5% 

Perturbation at 

10% 

1 99.9% 99.9% 99.9% 
2 98.1% 98.2% 98.2% 
3 86.0% 86.6% 83.4% 

4 ÷10 81.8% 56.3% 49.1% 

 
Table 5: Accuracy of the reconstruction process 
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4 Conclusions 

Information Reconstruction is a crucial task in the case of large surveys, such as a Census of 
Agriculture, as well as for other applications of database processing. A typical problem arising in 
the described Census consists in checking, and correcting when needed, the areas declared by each 
farm for each cultivation. This type of balancing problem is extremely important and has a great 
economical relevance. Moreover, in contexts different from the Census, the possibility of 
reconstructing exact values could be useful for counteracting opportunistic behaviors, e.g. 
willingly erroneous declarations for influencing resources allocation or production plans. 

Similar problems could be formulated in different manners. This particular Census problem 
has very specific aims and requirements, and it was deemed that they were better represented by 
the proposed mixed integer linear model (11). The procedure has been tested in the case of the 
Italian Census of Agriculture 2010 with specific respect to the 4 most important cases. Clearly, the 
proposed class of models is not limited to the case of an Agricultural Census, but can be used for 
other problems sharing the same characteristics, in particular the presence of balance requirements 
and minimum change objective. Results are very encouraging both from the computational and 
from the data quality point of view. The sequence of arisen mixed integer problems can be solved 
to optimality by using a state-of-the-art implementation of branch-and-cut procedures. Each single 
model is solved in extremely short times. In the totality of the cases the reconstructed information 
was able to satisfy the balancing conditions without excessively distorting the data, as resulted 
from the analysis of the variations introduced in the whole datasets. Moreover, a specific 
experiment proves that the reconstructed information was exactly equal to the original uncorrupted 
one in an exceedingly high percentage of the cases. 
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