
Manuscript accepted for publication on Optimization Letters
The final publication is available at Springer via
http://dx.doi.org/10.1007/s11590-014-0750-x

A branch and cut algorithm for minimum spanning trees
under conflict constraints

Phillippe Samer · Sebastián Urrutia

Received: 5 July 2013 / Accepted: 5 May 2014

Abstract We study approaches for the exact solution of the NP–hard minimum
spanning tree problem under conflict constraints. Given a graph G(V,E) and a set
C ⊂ E ×E of conflicting edge pairs, the problem consists of finding a conflict-free
minimum spanning tree, i.e. feasible solutions are allowed to include at most one of
the edges from each pair in C. The problem was introduced recently in the litera-
ture, with several results on its complexity and approximability. Some formulations
and both exact and heuristic algorithms were also discussed, but computational re-
sults indicate considerably large duality gaps and a lack of optimality certificates
for benchmark instances. In this paper, we build on the representation of conflict
constraints using an auxiliary conflict graph Ĝ(E,C), where stable sets correspond
to conflict-free subsets of E. We introduce a general preprocessing method and a
branch and cut algorithm using an IP formulation with exponentially sized classes of
valid inequalities for both the spanning tree and the stable set polytopes. Encouraging
computational results indicate that the dual bounds of our approach are significantly
stronger than those previously available, already in the initial LP relaxation, and we
are able to provide new feasibility and optimality certificates.

Keywords Optimal trees · Conflict constraints · Stable set · Branch and cut

Mathematics Subject Classification (2000) 90C27 · 90C57

Phillippe Samer
Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
Tel.: +55-31-3409 5851
Fax: +55-31-3409 5858
E-mail: samer@dcc.ufmg.br

Sebastián Urrutia
Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
Tel.: +55-31-3409 7533
Fax: +55-31-3409 5858
E-mail: surrutia@dcc.ufmg.br

ar
X

iv
:1

30
7.

14
24

v3
 [

cs
.D

S]
 3

0
Ju

n
20

14

http://dx.doi.org/10.1007/s11590-014-0750-x

2 Phillippe Samer, Sebastián Urrutia

1 Introduction

Disjunctive relations arise in many contexts of combinatorial optimization and inte-
ger programming (IP): different problems have been studied under conflict or mul-
tiple choice constraints, disjunctive cuts are implemented in several mixed-integer
programming solvers, and the Disjunctive Programming framework (Balas 2010) pi-
oneered by Egon Balas in the 1970s is still relevant and has relationships with other
IP techniques. Nevertheless, disjunctively constrained versions of classic problems in
graph theory such as shortest paths, spanning trees and matchings were studied only
recently (Darmann et al 2011).

The literature on such problems on graphs regards mainly complexity and ap-
proximability results, but a particular interest in the minimum spanning tree problem
under conflict constraints has led to the development of algorithms and benchmark
instances (Zhang et al 2011). Its feasibility version is also discussed in the context of
the quadratic bottleneck spanning tree problem (Punnen and Zhang 2011).

In this paper we discuss approaches for the exact solution of the minimum span-
ning tree problem under conflict constraints (MSTCC). Given a graph G(V,E) and
a set C ⊂ E×E of conflicting edge pairs, the problem consists of finding a conflict-
free minimum spanning tree (MST): a spanning tree of G, of minimum cost, which
includes at most one of ei or e j for each pair

{
ei,e j

}
∈C.

An equivalent definition which we exploit here uses the concept of a conflict
graph Ĝ(E,C): by denoting each edge in the original graph as a node in Ĝ, we repre-
sent each conflict constraint by an edge connecting the corresponding nodes in Ĝ. The
problem is thus to find a subset of E of minimum cost, corresponding both to a span-
ning tree of G and to a stable set in Ĝ. While this auxiliary graph is introduced with
the problem (Darmann et al 2011), conflict graphs have been used for many years in
integer programming to represent logical relations among variables (Atamtürk et al
2000) or, in a different sense, to leverage SAT conflict analysis techniques to generate
cutting planes from pruned nodes in the enumeration tree (Achterberg 2007).

Related work Darmann et al (2009, 2011) introduce problems on paths, trees and
matchings under conflict and forcing constraints (the latter requires solutions to in-
clude at least one of the edges from each pair in C). The authors establish several
results on the complexity and approximation hardness of such problems. They prove
that MSTCC is strongly NP–hard, even when every connected component of the con-
flict graph is a path of length two. Moreover, it cannot be approximated by a constant
factor of the optimal value, unless P= NP.

Both theoretical and computational results on MSTCC are further described by
Zhang et al (2011). The authors discuss special cases which are polynomially solv-
able, feasibility tests, heuristics and two exact algorithms based on Lagrangean relax-
ation schemes. One formulation is integral, as all disjunctive constraints are relaxed
and the classic MST is solved as subproblem. The other approach relaxes only part of
the conflicts and solves the NP–hard maximum edge clique partitioning as subprob-
lem. Computational results are discussed, but considerably large duality gaps are left
by such algorithms, which do not provide optimality certificates.

A branch and cut algorithm for minimum spanning trees under conflict constraints 3

Finally, we note that recent papers on different combinatorial problems under
disjunctive constraints can be found. Pferschy and Schauer (2009) discuss the com-
plexity of special cases of the knapsack problem with conflict constraints. Sadykov
and Vanderbeck (2012) describe a branch and price algorithm for the bin packing
problem with conflicts, solving conflict-constrained knapsack subproblems with dy-
namic programming. The complexity of maximum flow problems under conflict and
forcing constraints has also been studied by Pferschy and Schauer (2011). Polynomi-
ally solvable cases, a Lagrangean relaxation scheme and heuristics for minimum cost
perfect matchings under conflict constraints are described by Öncan et al (2013).

Our contribution We describe a preprocessing algorithm and a branch and cut ap-
proach for the solution of MSTCC, separating inequalities corresponding both to the
spanning tree polytope (to guarantee the solution is an acyclic subgraph of the original
graph G) and the stable set polytope (to tighten the representation of feasible node
subsets in the conflict graph Ĝ). Encouraging results include stronger dual bounds
already in the root LP relaxation, for all instances in a benchmark set. Finally, we
present several optimality certificates and new results for five instances whose feasi-
bility was previously unknown: two of which are feasible, and three that are proved
to be infeasible.

2 A preprocessing algorithm

As an enhancement to the solution process, we considered using MSTCC problem-
specific feasibility conditions to devise a preprocessing algorithm. Figure 1 depicts
the overall method, which we describe next. It is worth remarking that, although
designed in the context of our branch and cut approach, the following algorithm can
be integrated to any solution technique for the problem.

contract
bridges in

update

chain probing
to reduce E

pairwise
chain probing
to extend C

G(V , E)

Ĝ(E ,C)

no update no update

fixed variable(s)

included conflict(s)

<V, E, C> <V', E', C', offset>

Fig. 1 Three steps of the preprocessing algorithm, given input graphs G(V,E) and Ĝ(E,C). Both a con-
traction in the first step and a removal in the second implies fixing edge variables and updating the corre-
sponding conflicting pairs in C. The output includes the objective function offset due to contracted edges.

Let a MSTCC input instance consist of the original graph G(V,E) and the conflict
one Ĝ(E,C). The general algorithm is a three-phase iterative process, where each
phase is executed as long as the problem instance is updated. To every step fixing an
edge in G corresponds an update in the conflicting pairs in Ĝ.

4 Phillippe Samer, Sebastián Urrutia

The first phase checks for cut-edges (bridges) in G, using depth-first search. As
long as the original graph is connected, any cut-edge e1 is contracted, its cost ce1 is
added as an offset to the optimal value of the reduced problem (if any), and conflicting
pairs are removed both from G and Ĝ, i.e. we can fix variables corresponding to ek
to zero, for all ek ∈ E such that {e1,ek} ∈ C. If at any point we verify that G is not
connected, the original problem is infeasible; on the other hand, if the resulting graph
is a conflict-free tree, it is also the unique feasible solution to the problem.

The remaining phases use the probing technique (i.e. evaluating the consequences
of possibly setting a binary variable to one of its bounds), based on implications from
feasibility conditions, as Atamtürk et al (2000) denote. Nevertheless, in the context
of that work it means analyzing the structure of a general IP to derive infeasibility
implications, while our next steps analyze the combinatorial structure at hand: any
solution is required to induce a connected subgraph of G, and conflicting edge pairs
might render that infeasible after tentatively fixing variables in chain.

In the second phase, we check the connectivity of subgraphs of G including a
given edge e (with degree in the conflict graph δĜ(e) > 0). If the chain removing
conflicting pairs and fixing any cut-edges possibly implied by the selection leads to a
disconnected graph, we may remove e from E and the corresponding conflicts from
C. In this case, we return to the first phase as G might include new cut-edges.

Finally, if no edge could be fixed in the previous step, a third phase performs a
similar evaluation on the connectivity of G, now probing pairs of variables. The chain
starts fixing in the solution edges e1 and e2 (neither already in conflict with each other
nor both conflict-free in Ĝ), and proceeds by removing conflicting ones and including
any cut-edges implied by the selection. Now, if G would become disconnected, the
new conflict pair (e1,e2) is included in C, and we may return to the second phase to
check if it is possible to remove any edge.

If an iteration is completed without any update on the third phase, the reduced
instance and the objective value offset are output. Note that, if any conflict-free span-
ning tree of G is obtained during the last two phases, we may store it as a primal
feasible solution.

3 Branch and cut approach

We describe next the representations of the spanning tree and stable set polytopes on
which we build the proposed formulation for MSTCC, and our branch and cut ap-
proach. In the following, suppose we are given an input graph G(V,E), with |V |= n,
|E|=m, weights ce associated with each edge, and a set C⊂E×E of conflicting edge
pairs. Given a non-empty subset S ⊆ V , let E(S) ⊆ E be the set of edges with both
endpoints in S. Define the incidence vector x = (x1,x2, . . . ,x|E|) of a given solution
so that xe = 1 if edge e is included in the solution, and xe = 0 otherwise. Whenever
possible, we use Pname to denote Pname(G), the polyhedron of interest considering a
particular graph G.

A branch and cut algorithm for minimum spanning trees under conflict constraints 5

3.1 Integer programming formulation

Let Psec ⊂ R|E|+ denote the representation of the spanning tree polytope with subtour
elimination constraints (SEC), given by:

∑
e∈E(S)

xe ≤ |S|−1, ∀S⊂V,S 6= /0 (1)

∑
e∈E

xe = n−1 (2)

0≤ xe ≤ 1, e ∈ E (3)

While SEC (1) enforce a cycle-free condition, since any connected subgraph on
S inducing a cycle has at least |S| edges, a feasible solution is guaranteed to be a
spanning tree of G by picking n− 1 edges (2). Constraints (3) correspond to the
continuous relaxation of binary variables xe.

An important result by Edmonds (1971) is that the above formulation is tight, as
all its vertices are integer-valued. Next, we want to describe the polyhedral region
corresponding to conflict-free incidence vectors. In this paper, we use a particular
representation of the stable set polytope Pstab to regard the feasibility of a solution
with respect to the conflict graph Ĝ(E,C). Unfortunately, as the stable set problem is
NP-hard (and assuming P 6= NP), an ideal description of Pstab is not available.

First, consider the stable set polytope relaxation Prstab ⊂ R|E|+ , given by (3) and:

xe1 + xe2 ≤ 1, ∀{e1,e2} ∈C (4)

Edge inequalities (4) guarantee a conflict-free solution. Together with non-negativi-
ty inequalities in (3), these are enough to formulate the simplest relaxation of Pstab,
which yields the convex hull of stable sets in Ĝ if and only if the conflict graph is
bipartite (Padberg 1979).

We strengthen this representation with the intersection of two tighter polyhedra,
as we describe next. The first is known as the cycle-constraint stable set polytope
Pcstab ⊂ Prstab ⊂ R|E|+ , given by (3), (4) and odd-cycle inequalities:

∑
i∈U

xi ≤
|U |−1

2
, ∀U ⊂ E inducing an odd-cycle in Ĝ (5)

These are valid for Pstab since the cardinality of any stable set in a subset U of ver-
tices of Ĝ inducing an odd-cycle (with or without chords) is at most b |U |2 c =

|U |−1
2 .

Still, Pcstab yields the convex hull of stable sets in Ĝ if and only if the conflict graph
is t-perfect (Grötschel et al 1988, Section 9.1). Although this is a quite restrictive
condition, the separation of odd-cycle inequalities remarkably improves the quality
of dual bounds for MSTCC benchmark instances, as we describe in Section 4.

Finally, an additional relaxation consists of the clique-constraint stable set poly-
tope Pqstab ⊂ Prstab ⊂ R|E|+ , described by (3) and clique inequalities:

∑
i∈Q

xi ≤ 1, ∀Q⊂ E inducing a clique in Ĝ (6)

6 Phillippe Samer, Sebastián Urrutia

The unit upper bound is clearly valid for Pstab, as no stable set in Ĝ could include more
than one vertex from any complete subgraph. The class of graphs for which Pstab and
Pqstab coincide is precisely that of perfect graphs (Grötschel et al 1988, Section 9.2).

We remark that, when they induce odd-holes (chordless odd-cycles), inequali-
ties (5) might define facets of Pstab, and the sequential lifting procedure of Padberg
(1973) could be used for that purpose. Padberg also proved that inequalities (6) are
facet-defining for Pstab if and only if the clique induced by Q is maximal. We build
on this last result to include exactly those non-dominated inequalities in the model
(see Section 3.2). Unfortunately, while clique inequalities traditionally had a strong
impact in solving stable set problems, the impact of these in MSTCC benchmark
instances was less expressive, as we evaluate in Section 4.

In conclusion, we formulate the MSTCC problem as

min

{
∑
e∈E

cexe : x ∈ Psec∩Pstab ⊆ B|E|
}

(7)

and will therefore approximate Pstab as Pcstab∩Pqstab.

3.2 General algorithm

After preprocessing the problem instance with the algorithm described in Section 2,
we propose a branch and cut approach for MSTCC, solving (7) with the generation
of cutting planes corresponding to SEC (1) and odd-cycle inequalities (5).

In general, the separation problem associated with clique inequalities (6) is NP-
hard; in fact, the optimization problem over Pqstab itself is NP-hard (Grötschel et al
1988, Section 9.2). Nevertheless, we verified that conflict graphs in the set of chal-
lenging benchmark instances for MSTCC used in the literature have a limited num-
ber of maximal cliques: except for one instance, Ĝ(E,C) has less than |C| maximal
cliques, leading to a smaller model than using edge-inequalities (4). In fact, after the
preprocessing phase, that was the case for the complete benchmark set.

We could therefore successfully use the maximal clique enumeration algorithm of
Tomita et al (2006) to actually include the corresponding (non-dominated subset of)
maximal clique inequalities a priori. It is extremely fast in practice, with negligible
runtime for MSTCC instances. The authors also prove that the worst-case complexity
of the algorithm (O(3m/3), in an m-vertex graph) is optimal with respect to m, since
there can be at most T (m) ≤ 3m/3 maximal cliques. We consider that our method-
ology could be used when T (m) is in O(|C|). Alternatively, when using the present
formulation to solve a different instance set, which renders the enumeration method
infeasible, one could use a greedy heuristic to: (i) replace edge-inequalities by any
maximal clique containing it; (ii) lift any violated triangle identified during the sepa-
ration procedure for odd-cycle inequalities to a larger clique (Rebennack et al (2012)
suggests that it could be effective in the context of stable set instances).

Now, the algorithm starts with the solution of min{∑e∈E cexe} subject to (2), (3)
and (6). Let x be the solution to such linear program (LP). Clearly, if x is integral and
a depth-first search from any vertex i ∈V reaches every other vertex in V\{i}, then x
is also the optimal solution of the original IP (7).

A branch and cut algorithm for minimum spanning trees under conflict constraints 7

Otherwise, we search for SEC (1) as well as odd-cycle inequalities (5) violated
by x, which strengthen the relaxed polyhedron. This is performed by the separation
procedures we describe next. We check both classes of inequalities for violation at
a given solution x. If any procedure is able to separate x, we add the corresponding
cuts globally, and solve the new, reinforced LP. If both separation procedures fail to
find a violated inequality, we branch on variables and iterate.

3.3 Separation procedures

We describe next the algorithms for solving the exact separation problem for SEC (1)
and for odd-cycle inequalities (5). Apart from details of our implementation, these
are actually quite standard, and the reader is referred to classic expositions.

Subtour elimination constraints

Magnanti and Wolsey (1995) describe a standard procedure to look for violated SEC
in a solution x to the relaxation of Psec. First, a directed network corresponding to x
is built, with the capacity of both arcs (i, j) and (j, i) set to the current value of edge
variable xi, j. We also set an arbitrary vertex as root r; we use r = 1. Now, x satisfies
all subtour elimination constraints if and only if we can send one unit of flow from r
to every other vertex in the capacitated network.

Therefore, by performing n− 1 maximum flow (minimum cut) computations,
from r to every vertex i ∈ V\{r}, we may check in polynomial time if x is feasi-
ble in Psec: if the value of any minimum cut is less than 1, we have found a violated
inequality. To find a minimum (r, i) cut, we use an implementation of the highest-label
preflow-push algorithm of Goldberg and Tarjan (1988), available in the open-source
Library for Efficient Modeling and Optimization in Networks (Dezső et al 2011).

Odd-cycle inequalities

Gerards and Schrijver (1986) introduce an exact separation procedure for odd-cycle
inequalities, which is clearly described in the tutorial of Rebennack et al (2012).
Much like the separation of SEC, we may check in polynomial time if every odd-cycle
inequality is satisfied by computing a minimum cost cycle in an auxiliary graph.

We start by defining a new weight function w for adjacencies in the conflict graph
Ĝ(E,C): let w(u,v) = (1−xu−xv)

2 for each {u,v} ∈C. Since constraints (3) and (4) are
satisfied a priori, we have that w : C→ [0, 1

2]. We also construct an auxiliary bipartite
graph H by duplicating Ĝ as follows: H has two vertices u+ and u− for each u ∈ E,
as well as edges {u+,v−} and {u−,v+} for each {u,v} ∈C, both with weight w(u,v).

Then, for each u ∈ E, we compute a shortest (u+,u−) path in the auxiliary graph
H. Note that, as the weight function w is non-negative, we may use Dijkstra’s algo-
rithm, stopping its execution as soon as the goal vertex u− is selected. By the con-
struction of H, the vertices u+ and u− are in different sets of the bipartition, implying
that the path has odd length. By omitting the + and − indices, the path corresponds to
a closed odd-walk in Ĝ. However, this walk might include repeated nodes and edges,

8 Phillippe Samer, Sebastián Urrutia

since the shortest path is determined in H; in fact, H might as well not be connected.
An odd-cycle is possibly retrieved after removing such repetitions, by inspecting the
vertices in the sequence. Note that the remaining sequence may not be a closed walk,
and the shortest path computation for this u yields no cycle in Ĝ for the current solu-
tion x.

The weight of any such odd-cycle U ⊂ C in the conflict graph, disregarding
any chords it might have, is w(U) = ∑{i, j}∈U w(i, j) = ∑{i, j}∈U

(1−xi−x j)
2 = |U |

2 −
1
2 ∑{i, j}∈U (xi + xu) =

|U |
2 −∑i∈V (U) xi, where V (U) ⊆ E denotes the set of nodes in-

duced by U . That is, ∑i∈V (U) xi =
|U |
2 −w(U), implying that x violates the correspond-

ing odd-cycle inequality ∑i∈V (U) xi ≤ |U |−1
2 = |U |

2 −
1
2 if and only if w(U)< 1

2 .

Implementation details

We highlight that, in the special case of an integral solution x ∈ Bm, there can be no
violated odd-cycle inequality, since the edge inequalities (4) guarantee a stable set in
Ĝ. Hence, we try to find a violated SEC. In this case, we need reduced asymptotic
complexity than in the fractional case: x is feasible in Psec if and only if the corre-
sponding edges induce exactly one connected component in G, which we check in
O(m) time with DFS. If there are different components, inspecting them yields the
subtour and the inequality to add, and we terminate the procedure without consider-
ing the above algorithms to separate a fractional x.

Rebennack et al (2012) also indicate some implementation tweaks for the sepa-
ration of odd-cycle inequalities. Among those, we include two simple and effective
adjustments in our approach. First, the auxiliary graph H can be greatly reduced by re-
moving nodes u+ and u− whenever xu is integer, since no odd-cycle including u could
yield a violated constraint, as we explain next. Suppose U is an odd-cycle in Ĝ(E,C),
and that it includes j ∈ E, with x j = 0. Now, ∑i∈U xi = ∑i∈U,i 6= j xi ≤ |U\{ j}|

2 = |U |−1
2 ,

where the inequality holds because every two consecutive nodes can contribute at
most 1 to the sum in the left hand side, provided edge inequalities (4) are satisfied.
Similarly, x j = 1 implies two neighbors in U with null value, and the above argument
applies. The second refinement regards the case of x such that xu +xv = 1 for a given
(u,v) ∈C. The definition of the weight function w provides that both edges (u+,v−)
and (u−,v+) in H would have null cost. It is more interesting, though, to add a small
weight ε instead, to avoid unnecessary vertices in the shortest path. We use ε = 10−6,
as the authors suggest.

Finally, preliminary experiments indicated that different strategies for reinforcing
the relaxed polyhedron when separating the current solution have a major impact on
computational performance. Standard strategies include returning as soon as a first
cut is found, looking for the most violated inequality, or including all violated cuts.
We could verify the best overall results with an alternative strategy looking for some
of the best cuts: we include not only the most violated inequality, but also others
which are close enough to being orthogonal to it. Pilot studies suggested accepting
hyperplanes with an inner product of 0.1 or less. This enhanced strategy seems to
balance the strength and diversity of included cuts, allowing to solve the LP relaxation
in time similar to that of including all violated cuts, while limiting the model size.

A branch and cut algorithm for minimum spanning trees under conflict constraints 9

4 Computational results

The goals of the computational evaluation we present are twofold: to assess the im-
pact of the preprocessing algorithm and the strengthening inequalities from Pstab, and
to indicate how stronger are the bounds we provide than those previously available
in the literature. To the best of our knowledge, these correspond to the Lagrangean
relaxation scheme of Zhang et al (2011), where a maximum edge clique partitioning
subproblem is solved. As for the primal bounds reported by such authors, we consider
the best result achieved by one of the heuristics they propose.

The algorithm we describe is implemented in C++, using the callback mechanism
in the Concert API of CPLEX 12.5. We turn off all preprocessing, heuristics and cut
generation options – only user cuts are separated. We consider a numerical precision
of 10−5, even when looking for violated constraints. Experiments were carried on a
machine with an Intel Core i7 980 (3.33GHz) CPU, with 24GB of RAM. We use the
benchmark instances proposed by Zhang et al (2011); as these are integer-valued, we
set the absolute MIP gap tolerance parameter of CPLEX to 0.9999. We refer to an
instance defined on a graph (V,E) and conflict set C by the identifier |V |− |E|− |C|.
We set an overall (wall-clock) time limit of 5000 seconds. Note that Zhang et al
(2011) used a different but comparable experimental setup. Their experiments were
conducted on a Dell PC with 3.40 GHz Intel Pentium processor and 2.0 GB memory
running Windows XP operating system and a Dell workstation with a 2.0 GHz Intel
Xeon processor and 512 MB of memory running the Linux operating system. They
used CPLEX 9.1 on the workstation to solve the integer programs and also used an
overall (wall-clock) time limit of 5000 seconds.

The benchmark includes type 1 and type 2 instances. The first set includes harder
problems, and several instances have neither optimality nor feasibility certificates
available. The latter set is much easier in practice, possibly because its instances are
made feasible through a heuristic. In fact, the preprocessing algorithm had major
impact on this set, as its denser conflict graphs are more amenable to the probing
techniques we apply. Table 1 presents the effectiveness of the algorithm with type 1
(upper section of the table) and type 2 problems (lower section). The fourth column
indicates the total number of edges fixed, while the fifth reports the number of new
conflict pairs included in the last phase of the algorithm. The next column indicates
the resulting instance dimensions, or the certificate provided (when that is the case),
followed by the total execution time.

All type 2 instances become trivial problems, with an empty conflict set in most
cases, resulting in a standard MST problem. The branch and cut algorithm systemati-
cally solves them to optimality in the root LP relaxation node, executing in negligible
wall clock time. We therefore present no further results for these instances. Note,
however, that considerably large duality gaps are left by the algorithms discussed by
Zhang et al (2011).

On the other hand, no similar effect was verified for type 1 instances. In most
cases, no edge could be fixed at all, even though the conflict graph could be extended
by the pair probing technique of the last phase in the algorithm. Moreover, actually
solving the resulting models indicated a minor impact on solution bounds, in com-
parison to solving the original instance without preprocessing.

10 Phillippe Samer, Sebastián Urrutia

Table 1 Instance reduction using the preprocessing algorithm.

|V | |E| |C| # Edges Fixed # Conflicts Included Resulting Instance Time (s)
50 200 199 0 0 |V |= 50, |E|= 200, |C|= 199 0.05
50 200 398 0 0 |V |= 50, |E|= 200, |C|= 398 0.05
50 200 597 0 0 |V |= 50, |E|= 200, |C|= 597 0.06
50 200 995 0 11 |V |= 50, |E|= 200, |C|= 1006 0.13
100 300 448 0 23 |V |= 100, |E|= 300, |C|= 471 0.4
100 300 897 1 135 |V |= 100, |E|= 299, |C|= 1026 0.77
100 300 1344 1 188 |V |= 100, |E|= 299, |C|= 1472 0.9
100 500 1247 0 0 |V |= 100, |E|= 500, |C|= 1247 0.79
100 500 2495 0 0 |V |= 100, |E|= 500, |C|= 2495 0.86
100 500 3741 0 2 |V |= 100, |E|= 500, |C|= 3743 1.81
100 500 6237 0 31 |V |= 100, |E|= 500, |C|= 6268 1.99
100 500 12474 8 2747 |V |= 100, |E|= 492, |C|= 12720 13.8
200 600 1797 0 126 |V |= 200, |E|= 600, |C|= 1923 3.96
200 600 3594 0 504 |V |= 200, |E|= 600, |C|= 4098 7.34
200 600 5391 – – Infeasible 9.05
200 800 3196 0 6 |V |= 200, |E|= 800, |C|= 3202 7.75
200 800 6392 0 27 |V |= 200, |E|= 800, |C|= 6419 8.46
200 800 9588 0 175 |V |= 200, |E|= 800, |C|= 9763 8.93
200 800 15980 1 1220 |V |= 200, |E|= 799, |C|= 16558 55.44
300 800 3196 – – Infeasible 41.42
300 1000 4995 0 201 |V |= 300, |E|= 1000, |C|= 5196 46.32
300 1000 9990 1 661 |V |= 300, |E|= 999, |C|= 10477 42.04
300 1000 14985 – – Infeasible 60.23
50 200 3903 159 1 |V |= 33, |E|= 41, |C|= 12 0.05
50 200 4877 167 3 |V |= 27, |E|= 33, |C|= 10 0.03
50 200 5864 175 1 |V |= 21, |E|= 25, |C|= 7 0.09
100 300 8609 287 0 |V |= 12, |E|= 13, |C|= 0 0.05
100 300 10686 291 0 |V |= 9, |E|= 9, |C|= 0 0.03
100 300 12761 291 0 |V |= 9, |E|= 9, |C|= 0 0.06
100 500 24740 464 35891 |V |= 32, |E|= 36, |C|= 2 2.25
100 500 30886 469 0 |V |= 28, |E|= 31, |C|= 0 0.24
100 500 36827 465 0 |V |= 33, |E|= 35, |C|= 1 0.21
200 400 13660 368 0 |V |= 30, |E|= 32, |C|= 1 0.01
200 400 17089 382 0 |V |= 17, |E|= 18, |C|= 1 0.01
200 400 20469 392 0 |V |= 8, |E|= 8, |C|= 0 0.01
200 600 34504 567 0 |V |= 32, |E|= 33, |C|= 0 0.59
200 600 42860 584 0 |V |= 16, |E|= 16, |C|= 0 0.19
200 600 50984 588 0 |V |= 12, |E|= 12, |C|= 0 0.09
200 800 62625 785 0 |V |= 14, |E|= 15, |C|= 0 0.29
200 800 78387 755 0 |V |= 42, |E|= 45, |C|= 0 0.24
200 800 93978 786 0 |V |= 14, |E|= 14, |C|= 0 0.69
300 600 31000 – – Optimal 0.45
300 600 38216 555 0 |V |= 44, |E|= 45, |C|= 1 0.02
300 600 45310 575 0 |V |= 23, |E|= 25, |C|= 0 0.02
300 800 59600 795 0 |V |= 5, |E|= 5, |C|= 0 0.03
300 800 74500 775 0 |V |= 25, |E|= 25, |C|= 0 0.03
300 800 89300 780 0 |V |= 20, |E|= 20, |C|= 0 0.04
300 1000 96590 984 0 |V |= 16, |E|= 16, |C|= 0 2.08
300 1000 120500 – – Optimal 9.12
300 1000 144090 – – Optimal 17.18

Finally, note that six instances are solved during the preprocessing phase. Three
type 2 instances are reduced to a problem defined on a tree without conflicting edges,
in which case the solution is unique. Three type 1 instances were proved to be in-
feasible. Interestingly, while the branch and cut algorithm could also prove two of
the problems to be infeasible within the time limit, the certificate for the largest one
(300−1000−14985) was only provided by the preprocessing algorithm, which is always
executed in the remaining evaluations.

We consider next the impact of using the constraints obtained from the poly-
tope of stable sets in the conflict graph. Table 2 presents the percentual improvement
on dual bounds over the plain formulation without these inequalities: i.e. columns
OCI correspond to the impact of intersecting the spanning tree polytope with the
cycle-constrained relaxation Pcstab instead of the simplest relaxation Prstab; analo-
gously, columns Cliques use Pqstab instead of Prstab, while OCI+Cliques compare
Pqstab∩Pcstab with Prstab. We report on percentual strengthening on both the initial LP
relaxation and on the final bound provided by the branch and cut algoritm, using all
type 1 instances which are not proved to be infeasible.

A branch and cut algorithm for minimum spanning trees under conflict constraints 11

Table 2 Impact of odd-cycle and clique inequalities on dual bounds.

Instance LP Relaxation Bound MIP Lower Bound
OCI Cliques OCI+Cliques OCI Cliques OCI+Cliques

50−200−199 0.0 0.0 0.0 0.0 0.0 0.0
50−200−398 1.7 1.4 1.4 0.1 0.0 0.0
50−200−597 2.3 0.7 2.0 0.1 0.0 0.1
50−200−995 22.9 7.1 23.3 0.0 0.0 0.0
100−300−448 0.0 0.0 0.0 0.0 0.0 0.0
100−300−897 6.2 2.4 6.4 0.0 0.0 0.0

100−300−1344 18.3 6.5 18.5 -1.5 2.8 -0.9
100−500−1247 0.0 0.0 0.1 0.0 0.0 0.0
100−500−2495 6.6 1.6 6.6 0.0 0.0 -0.7
100−500−3741 17.0 7.6 17.0 2.6 4.6 2.7
100−500−6237 30.4 23.0 30.8 13.5 15.9 14.6
100−500−12474 44.1 62.2 62.8 6.3 19.8 14.1
200−600−1797 3.7 0.7 3.7 -0.5 -0.1 -1.2
200−600−3594 26.2 10.5 26.2 14.2 7.2 16.5
200−800−3196 3.2 0.8 3.4 -0.9 0.5 -0.4
200−800−6392 24.1 9.1 24.0 18.6 8.5 18.8
200−800−9588 38.5 31.2 39.2 26.5 24.2 26.4
200−800−15980 48.1 52.6 53.7 31.8 46.0 37.8
300−1000−4995 15.8 3.3 15.8 12.5 2.8 12.0
300−1000−9990 33.8 21.8 33.8 26.9 17.0 25.4

Average 17.2 12.1 18.4 7.5 7.5 8.3

In general, OCI contributes more to tightening the LP dual bound. Still, the com-
plete formulation using both classes is never worse (disregarding a factor of 0.1%), as
expected. The point supporting the methodology of using the strongest formulation is
clearer for the final branch and cut bounds. On average, OCI and clique inequalities
provide equivalent contribution, though one of them is remarkably more effective in
each particular instance. The intuition on using both of them is therefore to capture
each scenario in the proposed algorithm. In this sense, the complete formulation (with
OCI+Cliques) performs better, on average, than isolated counterparts. It is worth not-
ing that the improvement is greater for larger problem instances.

Finally, we indicate how stronger are the bounds provided by the present ap-
proach, comparing them with the best results described by Zhang et al (2011). Table
3 presents the results of the branch and cut algorithm with formulation (7), consider-
ing all type 1 instances. The third column indicates LP relaxation bounds, while the
fourth presents [primal, dual] bounds provided by branch and cut. The last column
depicts our percentual improvement on the best dual bound previously available.

Two new feasibility certificates are provided, yielding the first primal bounds on
instances 200−600−1797 and 200−800−3196, as well as the the new optimality certifi-
cate for instance 100−300−897 (in bold on Table 3). We also note that the improvement
on previous results varies interestingly among instances, ranging from 14% to 89%,
motivating further work and different approaches for the MSTCC problem.

A key result in this work regards the consistent improvement of previous known
dual bounds already by the initial LP relaxation bound of the proposed formulation.
On average, the bounds on the third column are 25% stronger than those achieved by
the Lagrangean lower bounding scheme of Zhang et al (2011) after hours of compu-
tation; in fact, they report execution times of up to 28421.5 seconds.

12 Phillippe Samer, Sebastián Urrutia

Table 3 Comparing results with Zhang et al (2011) on type 1 instances.

Instance Bounds of Branch and cut with (7)
Zhang et al (2011) LP Bound MIP Bounds Improvement (%)

50−200−199 [702.793 , 708] 701 708 0.7
50−200−398 [757.816 , 785] 758 770 1.6
50−200−597 [807.745 , 1044] 852.9 917 13.5
50−200−995 [877.495 , 1424] 1179.2 1324 50.9

100−300−448 [3991.18 , 4102] 3991.3 4041 1.2
100−300−897 [4624.24 , –] 5196.8 5658 22.4
100−300−1344 [4681.27 , –] 6059.3 [6621.2 , –] 41.4
100−500−1247 [4165.68 , 4293] 4247.6 4275 2.6
100−500−2495 [4805.40 , 6603] 5557 [5951.4 , 6006] 23.8
100−500−3741 [4871.27 , 8787] 6259.4 [6510.8 , 9440] 33.7
100−500−6237 [4968.99 , –] 7189.2 [7568.7 , –] 52.3

100−500−12474 [5194.67 , –] 9011.5 [9816.9 , –] 89.0
200−600−1797 [11425.8 , –] 12906.2 [13072.9 , 14707.0] 14.4
200−600−3594 [12487 , –] 16791.5 [17532.7 , –] 40.4
200−600−5391 [12873.2 , –] – infeasible –
200−800−3196 [17992.6 , –] 20303.2 [20744.2 , 21852.0] 15.3
200−800−6392 [19705.7 , –] 25929.1 [26361.3 , –] 33.8
200−800−9588 [20684.8 , –] 29230 [29443.6 , –] 42.3

200−800−15980 [20226.9 , –] 32271.9 [33345.1 , –] 64.9
300−800−3196 [30190.1 , –] – infeasible –

300−1000−4995 [40732.7 , –] 51066.3 [51451.3 , –] 26.3
300−1000−9990 [42902.5 , –] 59884.6 [60907.8 , –] 42.0
300−1000−14985 [44639.1 , –] – infeasible –

5 Final remarks

This work contributes with an exact solution approach to MSTCC. We present a gen-
eral preprocessing algorithm based on implications from feasibility conditions, which
might be integrated to different methodologies for the problem. We introduce an IP
formulation building on classic polyhedral descriptions to represent the feasibility
of a solution with respect to both input graphs G(V,E) and Ĝ(E,C). Computational
results with the preprocessing and a branch and cut algorithm indicate a consistent
improvement on the best results previously available in the literature, and provide
new feasibility and optimality certificates for benchmark instances of the problem.

Further research could elaborate on a specific analysis of the MSTCC polytope,
and possibly indicate the form of valid inequalities, whether also valid for the stable
set relaxation or not. It would be interesting to know under which conditions are odd-
hole and maximal clique inequalities also facet-defining for the new polytope. While
such issues are interesting in their own right, the algorithmic approach may require
enhanced formulations and to leverage more established techniques from the stable
set literature, e.g. the balanced branching rule of Balas and Yu (1986), or the edge
projection technique to separate rank inequalities, a large class which generalize both
odd-cycle and clique inequalities (Rossi and Smriglio 2001; Rebennack et al 2012).

We also seek to gain insight into the hardness and tractability of related problems
under disjunctive constraints, such as the ones described by Darmann et al (2011).
Note that our approach might be appropriate for these problems as well.

Acknowledgements The authors wish to thank the anonymous reviewers for carefully reading the ma-
nuscript and for the suggestions that helped improving our presentation. Phillippe Samer is supported by a
grant from CAPES (Coordenadoria de Aperfeiçoamento de Pessoal de Nı́vel Superior, Brazil). Sebastián

A branch and cut algorithm for minimum spanning trees under conflict constraints 13

Urrutia is partially supported by CNPq (Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico,
Brazil) grant 303442/2010-7.

References

Achterberg T (2007) Conflict analysis in mixed integer programming. Discrete Optimization 4(1):4 – 20,
DOI 10.1016/j.disopt.2006.10.006

Atamtürk A, Nemhauser GL, Savelsbergh MW (2000) Conflict graphs in solving integer programming
problems. European Journal of Operational Research 121(1):40 – 55, DOI 10.1016/S0377-2217(99)
00015-6

Balas E (2010) Disjunctive programming. In: 50 Years of Integer Programming 1958-2008, Springer
Berlin Heidelberg, pp 283–340

Balas E, Yu C (1986) Finding a maximum clique in an arbitrary graph. SIAM Journal on Computing
15(4):1054–1068, DOI 10.1137/0215075

Darmann A, Pferschy U, Schauer J (2009) Determining a minimum spanning tree with disjunctive con-
straints. In: Rossi F, Tsoukias A (eds) Algorithmic Decision Theory, Lecture Notes in Computer
Science, vol 5783, Springer Berlin Heidelberg, pp 414–423, DOI 10.1007/978-3-642-04428-1\ 36

Darmann A, Pferschy U, Schauer J, Woeginger GJ (2011) Paths, trees and matchings under disjunctive
constraints. Discrete Applied Mathematics 159(16):1726 – 1735, DOI 10.1016/j.dam.2010.12.016

Dezső B, Jüttner A, Kovács P (2011) LEMON – an Open Source C++ Graph Template Library. Electronic
Notes in Theoretical Computer Science 264(5):23 – 45, DOI 10.1016/j.entcs.2011.06.003

Edmonds J (1971) Matroids and the greedy algorithm. Mathematical Programming 1:127–136, DOI 10.
1007/BF01584082

Gerards A, Schrijver A (1986) Matrices with the edmondsjohnson property. Combinatorica 6(4):365–379,
DOI 10.1007/BF02579262

Goldberg AV, Tarjan RE (1988) A new approach to the maximum-flow problem. J ACM 35(4):921–940,
DOI 10.1145/48014.61051, URL http://doi.acm.org/10.1145/48014.61051

Grötschel M, Lovász L, Schrijver A (1988) Geometric algorithms and combinatorial optimization.
Springer Berlin Heidelberg

Magnanti TL, Wolsey LA (1995) Chapter 9 Optimal trees. In: Ball M, Magnanti T, Monma C, Nemhauser
G (eds) Network Models, Handbooks in Operations Research and Management Science, vol 7, Else-
vier, pp 503 – 615

Öncan T, Zhang R, Punnen AP (2013) The minimum cost perfect matching problem with conflict pair
constraints. Computers & Operations Research 40(4):920 – 930, DOI 10.1016/j.cor.2012.10.022

Padberg M (1973) On the facial structure of set packing polyhedra. Mathematical Programming 5(1):199–
215, DOI 10.1007/BF01580121, URL http://dx.doi.org/10.1007/BF01580121

Padberg MW (1979) Covering, packing and knapsack problems. In: Hammer PL, Johnson EL, Korte BH
(eds) Annals of Discrete Mathematics, vol 4, Elsevier, pp 265 – 287

Pferschy U, Schauer J (2009) The knapsack problem with conflict graphs. Journal of Graph Algortihms
and Applications 13(2):233–249, DOI 10.7155/jgaa.00186

Pferschy U, Schauer J (2011) The maximum flow problem with disjunctive constraints. Journal of Combi-
natorial Optimization pp 1–11, DOI 10.1007/s10878-011-9438-7

Punnen AP, Zhang R (2011) Quadratic bottleneck problems. Naval Research Logistics (NRL) 58(2):153–
164, DOI 10.1002/nav.20446

Rebennack S, Reinelt G, Pardalos PM (2012) A tutorial on branch and cut algorithms for the maximum
stable set problem. International Transactions in Operational Research 19(1-2):161–199, DOI 10.
1111/j.1475-3995.2011.00805.x

Rossi F, Smriglio S (2001) A branch-and-cut algorithm for the maximum cardinality stable set problem.
Operations Research Letters 28(2):63 – 74, DOI 10.1016/S0167-6377(00)00060-2

Sadykov R, Vanderbeck F (2012) Bin packing with conflicts: A generic branch-and-price algorithm. IN-
FORMS Journal on Computing DOI 10.1287/ijoc.1120.0499

Tomita E, Tanaka A, Takahashi H (2006) The worst-case time complexity for generating all maximal
cliques and computational experiments. Theoretical Computer Science 363(1):28 – 42, DOI 10.1016/
j.tcs.2006.06.015

Zhang R, Kabadi SN, Punnen AP (2011) The minimum spanning tree problem with conflict constraints
and its variations. Discrete Optimization 8(2):191 – 205, DOI 10.1016/j.disopt.2010.08.001

http://doi.acm.org/10.1145/48014.61051
http://dx.doi.org/10.1007/BF01580121

	1 Introduction
	2 A preprocessing algorithm
	3 Branch and cut approach
	4 Computational results
	5 Final remarks

