
ar
X

iv
:1

40
4.

24
27

v1
  [

m
at

h.
O

C
] 

 9
 A

pr
 2

01
4

Projection onto simplicial cones by a semi-smooth Newton method ∗
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Abstract

By using Moreau’s decomposition theorem for projecting onto cones, the problem of project-
ing onto a simplicial cone is reduced to finding the unique solution of a nonsmooth system of
equations. It is shown that a semi-smooth Newton method applied to the system of equations
associated to the problem of projecting onto a simplicial cone is always well defined, and the
generated sequence is bounded for any starting point and under a somewhat restrictive assump-
tion it is finite. Besides, under a mild assumption on the simplicial cone, the generated sequence
converges linearly to the solution of the associated system of equations.

1 Introduction

The interest in the subject of projection arises in several situations, having a wide range of applica-
tions in pure and applied mathematics such as Convex Analysis (see e.g. [12]), Optimization (see e.g.
[2], [4], [5], [11], [24], [26]), Numerical Linear Algebra (see e.g. [25]), Statistics (see e.g. [3], [8], [14]),
Computer Graphics (see e.g. [10] ) and Ordered Vector Spaces (see e.g. [1], [16], [17], [21], [22], [23]).
More specifically, the projection onto a polyhedral cone, which has as a special case the projection
onto a simplicial one, is a problem of high impact on scientific community1. The geometric nature
of this problem makes it particularly interesting and important in many areas of science and tech-
nology such as Statistics (see e.g. [14]), Computation (see e.g. [15]), Optimization (see e.g. [20], [26])
and Ordered Vector Spaces (see e.g. [21]).

In this paper we particularize the Moreau’s decomposition theorem for simplicial cones. This
leads to an equivalence between the problem of projecting a point onto a simplicial cone and the
one of finding the unique solution of a nonsmooth system of equations. We apply a semi-smooth
Newton method for finding a unique solution of the obtained associated system. We show that
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the method is always well defined and the generated sequence is bounded for any starting point,
and under a somewhat restrictive assumption it is finite. Besides, under a mild assumption on the
simplicial cone, the generated sequence converges linearly to the solution of the associated system
of equations. It is worth pointing out that a similar approach has been considered by Mangasarian
in [18] for finding solutions of NP-hard absolute value equations.

2 Preliminaries

Consider R
m endowed with an orthogonal coordinate system and let 〈·, ·〉 be the canonical scalar

product defined by it. Denote by ‖·‖ be the norm generated by 〈·, ·〉. If a ∈ R and x = (x1, . . . , xm) ∈
R
m, then denote a+ := max{a, 0}, a− := max{−a, 0} and

x+ :=
(

(x1)+, . . . , (xm)+
)

.

For x ∈ R
m, the vector sgn(x) will denote a vector with components equal to 1, 0 or −1 depending

on whether the corresponding component of the vector x is positive, zero or negative. We will call
a closed set K ⊂ R

m a cone if the following conditions hold:

(i) λx+ µy ∈ K for any λ, µ ≥ 0 and x, y ∈ K,

(ii) x,−x ∈ K implies x = 0.

Let K ⊂ R
n be a closed convex cone. The polar cone of K is the set

K⊥ := {x ∈ R
n | 〈x, y〉 ≤ 0,∀ y ∈ K}.

For any positive integer p denote by Ip the p× p identity matrix. Denote Im = I and diag(x) will
denote a diagonal matrix corresponding to elements of x. For an m × m matrix M consider the
norm defined by ‖M‖ := maxx 6=0{‖Mx‖ : ‖x‖ = 1}, this definition implies

‖Mx‖ ≤ ‖M‖‖x‖, ‖LM‖ ≤ ‖L‖‖M‖, (1)

for any m×m matrices L and M .
The following lemma is Theorem 3.1.4 on page 45 of [7].

Lemma 1 (Banach’s Lemma) Let E be m × m matrix and I the m × m identity matrix. If
‖E‖ < 1, then E − I is invertible and ‖(E − I)−1‖ ≤ 1/ (1− ‖E‖) .

Denote R
m
+ = {x = (x1, . . . , xm) ∈ R

m : x1 ≥ 0, . . . , xm ≥ 0} the nonnegative orthant. Let A
be an m×m nonsingular matrix. Then, the cone

K := ARm
+ ,

is called a simplicial cone. Let z ∈ R
m, then the projection PK(z) of the point z onto the cone K

is defined by
PK(z) := argmin {‖z − y‖ : y ∈ K} .
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Remark 1 It easy to see that PR
m
+
(z) = z+ and it is well know that the projection onto a convex

set is continuous and nonexpansive, see [12].

The above remark shows that projection onto the nonnegative orthant is an easy problem. On the
other hand, the projection onto a general simplicial cone is difficult and computationally expensive,
this problem has been studied e.g. in [9, 11, 21, 26]. The statement of the problem that we are
interested is:

Problem 1 (projection onto a simplicial cone) Given A an m × m nonsingular matrix and
z ∈ R

m, find the projection PK(z) of the point z onto the simplicial cone K = ARm
+ .

As we will see in the next section, by using Moreau’s decomposition theorem for projecting onto
cones, solving Problem 1 is reduced to solving the following problem.

Problem 2 (nonsmooth equation) Given A an m × m nonsingular matrix and z ∈ R
m, find

the unique solution u of the nonsmooth equation

(

A⊤A− I
)

x+ + x = A⊤z. (2)

In this case, PK(z) = Au+ where K = ARm
+ .

We will show in Section 4 that Problem 2 can be solved by using a semi-smooth Newton method.

3 Moreau’s decomposition theorem for simplicial cones

We recall the following result of Moreau [19]:

Theorem 1 (Moreau’s decomposition theorem) Let K,L ⊆ R
m be two mutually polar cones

in R
m. Then, the following statements are equivalent:

(i) z = x+ y, x ∈ K, y ∈ L and 〈x, y〉 = 0,

(ii) x = PK(z) and y = PL(z).

The following result follows from the definition of the polar. For a proof see for example [1].

Lemma 2 Let A be an m×m nonsingular matrix. Then,

(ARm
+ )⊥ = −(A⊤)−1

R
m
+ .

The following result has been proved in [1] by using Moreau’s decomposition theorem and Lemma 2.

Lemma 3 Let A be an m × m nonsingular matrix and K = ARm
+ the corresponding simplicial

cone. Then, for any z ∈ R
m there exists a unique x ∈ R

m such that the following two equivalent
statements hold:

(i) z = Ax+ − (A⊤)−1x−, x ∈ R
m,
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(ii) Ax+ = PK(z) and −(A⊤)−1x− = PK⊥(z).

The following result is a direct consequence of Lemma 3, it shows that solving Problem 1 is reduced
to solving Problem 2.

Lemma 4 Let A be a nonsingular matrix, K = ARm
+ the corresponding simplicial cone and z ∈ R

m

arbitrary. Then, equation (2) has a unique solution u and PK(z) = Au+.

Proof. Since A is an m × m nonsingular matrix, multiplying by A⊤, item (i) of Lemma 3 is
equivalently transformed into

A⊤Ax+ − x− = A⊤z.

As −x− = x− x+, the above equation is equivalent to (2). Therefore, equation (2) is equivalent to
the equation in item (i) of Lemma 3. Hence, we conclude from Lemma 3 that equation (2) has a
unique solution u and PK(z) = Au+. ✷

4 Semi-smooth Newton method

The semi-smooth Newton iteration for solving equation (2) or equivalently for finding the zero of
the function

F (x) :=
(

A⊤A− I
)

x+ + x−A⊤z,

is formally defined by

F (xk) + Sk (xk+1 − xk) = 0, Sk ∈ ∂F (xk), k = 0, 1, 2, . . . , (3)

where ∂F (xk) denotes the Clarke generalized Jacobian of F at xk. From the definition of Clarke
generalized Jacobian of the function F at x (see [6]) it easy to conclude that

(

A⊤A− I
)

diag(sgn(x+)) + I ∈ ∂F (x).

Therefore, by using the last inclusion, the semi-smooth Newton iteration (3) reduces to
(

A⊤A− I
)

x+k + xk −A⊤z +
((

A⊤A− I
)

diag(sgn(x+k )) + I
)

(xk+1 − xk) = 0,

and as diag(sgn(x+k ))xk = x+k , the latter equality becomes
((

A⊤A− I
)

diag(sgn(x+k )) + I
)

xk+1 = A⊤z, k = 0, 1, 2, . . . , (4)

which formally defines a sequence {xk} with starting point x0, called the semi-smooth Newton
sequence for solving equation (2) or for projecting a point z ∈ R

m onto the simplicial cone K.

Lemma 5 Let A be an m×m nonsingular matrix. Then the matrix
(

A⊤A− I
)

diag(sgn(x+)) + I, (5)

is nonsingular for all x ∈ R
m. As a consequence, the semi-smooth Newton sequence {xk} is well

defined from any starting point.
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Proof. To simplify the notations define B = A⊤A. Thus, the matrix in (5) becomes

C := (B − I) diag(sgn(x+)) + I.

Hence, to prove the first part of the lemma we need to show that C is a nonsingular matrix. Let
x = (x1, . . . , xm) and the sets P (x) = {i ∈ {1, . . . ,m} : xi > 0} and P̃ (x) = {1, . . . ,m}\P (x). For

an m×m matrix M define MP (x) and M P̃ (x) the matrices defined, respectively, by

M
P (x)
ij =

{

Mij if j ∈ P (x),
0 if j /∈ P (x).

M
P̃ (x)
ij =

{

Mij if j ∈ P̃ (x),

0 if j /∈ P̃ (x).

Let k := m−|P (x)|. Then, from the definitions of the matrix C and the index sets P (x) and P̃ (x),
it is easy to see that

C = BP (x) + I P̃ (x),

and there is an m × m permutation matrix Π such that Π⊤CΠ is upper block triangular of the
form

Π⊤CΠ =

[

Ik E
0 F

]

, (6)

where F is a principal submatrix of B. Since A is nonsingular, B = A⊤A is positive definite and F
is a principal submatrix of B, we conclude that the principal minor detF 6= 0 (see Corollary 7.1.5
of [13]). Hence, using (6) it follows that

det(Π⊤) detC detΠ = det(Π⊤CΠ) = det Ik detF = detF 6= 0.

As det(Π⊤) = (detΠ)−1, the last relation implies detC = detF 6= 0, hence the first part of the
lemma is proven.

The proof of the second part of the lemma is immediate consequence of the definition of the
sequence {xk} in (4) and the first part of the lemma. ✷

The next proposition give a condition for the Newton iteration (4) to finish in a finite number
of steps.

Proposition 1 If in (4) it happens that sgn(x+k+1) = sgn(x+k ), then xk+1 solves equation (2) and

PK(z) = Ax+k+1.

Proof. If sgn(x+
k+1) = sgn(x+

k
) in equation (4), then it becomes

((

A⊤A− I
)

diag(sgn(x+k+1)) + I
)

xk+1 = A⊤z. (7)

Since diag(sgn(x+
k+1))xk+1 = x+

k+1, (7) yields
(

A⊤A− I
)

x+
k+1 + xk+1 = A⊤z,

which implies that xk+1 is a solution of (2) and, by using Lemma 4, we have PK(z) = Ax+k+1. ✷

The next proposition shows that the semi-smooth Newton sequence {xk} is bounded and gives
a formula for any accumulation point of it.
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Proposition 2 The semi-smooth Newton sequence {xk} is bounded from any starting point. More-
over, for each accumulation point x̄ of {xk} there exists x̂ ∈ R

m such that

((

A⊤A− I
)

diag(sgn(x̂+)) + I
)

x̄ = A⊤z.

Proof. First suppose that {xk} is unbounded. Then, since {xk} is unbounded, the unit sphere is
compact, and there are only finitely many vectors sgn(x+k ) with coordinates 0 or 1, it follows that
there exists a vector x̃ ∈ R

m and a subsequence {xkj} of {xk} such that

lim
j→∞

‖xkj+1‖ = ∞, lim
j→∞

xkj+1

‖xkj+1‖
= v 6= 0, sgn(x+kj ) ≡ sgn(x̃+). (8)

Therefore, as sgn(x+kj ) = sgn(x̃+) for all j, the definition of the semi-smooth Newton sequence {xk}

in (4) implies

((

A⊤A− I
)

diag(sgn(x̃+)) + I
) xkj+1

‖xkj+1‖
=

A⊤z

‖xkj+1‖
, j = 0, 1, 2, . . . .

By tending with j to infinity in the above equality and by taking into account (8), it follows that

((

A⊤A− I
)

diag(sgn(x̃+)) + I
)

v = 0,

which contradicts the first part of the Lemma 5 since v 6= 0. Therefore, the sequence {xk} is
bounded, which proves the first part of the proposition.

For proving the second part of the lemma, let x̄ be an accumulation point of the sequence {xk}.
Then, since there are only finitely many vectors sgn(x+

k
) with coordinates 0 or 1, there exists a

vector x̂ ∈ R
m and a subsequence {xkj} of {xk} such that

lim
j→∞

xkj+1 = x̄, sgn(x+
kj
) ≡ sgn(x̂+),

Since sgn(x+kj) = sgn(x̂+) for all j, the definition of the semi-smooth Newton sequence {xk} in (4)
implies

((

A⊤A− I
)

diag(sgn(x̂+)) + I
)

xkj+1 = A⊤z, j = 0, 1, 2, . . . .

Taking the limit in the last equality as kj goes to ∞ , the second part of the proposition follows. ✷

The next lemma gives a condition for the convergence of the semi-smooth Newton sequence {xk}.

Lemma 6 Let a ∈ (0, 1/2). If for any diagonal matrix G, with diagonal elements 0 or 1

∥

∥

∥

∥

((

A⊤A− I
)

G+ I
)−1 (

A⊤A− I
)

∥

∥

∥

∥

< a, (9)

then the semi-smooth Newton sequence {xk} converges linearly to the unique solution u of the
equation (2) from any starting point and PK(z) = Au+.
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Proof. Let u be the solution of equation (2) and {xk} be the sequence defined in (4). To simplify
the notations, denote

B = A⊤A, Dk = diag
(

sgn(x+
k
)
)

.

Since u is the solution of equation (2), using the above notations and the definition of {xk} in (4),
we have

(B − I)u+ + u = A⊤z,
(

(B − I)Dk + I
)

xk+1 = A⊤z.

By subtracting the two equalities above, and by taking into account that Dkxk = x+k , we obtain,
after some straightforward manipulations, that

(B − I)(x+k − u+) + (B − I)Dk(xk+1 − xk) + xk+1 − u = 0,

or equivalently,
(

(B − I)Dk + I
)

(xk+1 − u) + (B − I)
(

x+k − u+ +Dk(u− xk)
)

= 0,

Since Dk = diag
(

sgn(x+
k
)
)

, by using the last equality and Lemma 5, we get

xk+1 − u = −
(

(B − I)Dk + I
)−1

(B − I)
(

Dk(xk − u) + (x+
k
− u+)

)

.

By using the first inequality in (1), the Cauchy inequality, ‖Dk‖ ≤ 1, and the nonexpansivity of
the projection mapping x 7→ x+ onto the nonnegative orthant (see Remark 1), the latter relation
and assumption (9) gives

‖xk+1 − u‖ ≤

∥

∥

∥

∥

(

(B − I)Dk + I
)−1

(B − I)

∥

∥

∥

∥

2‖xk − u‖ < 2a‖xk − u‖,

where 2a < 1. As the last inequality holds for all k, we conclude that the sequence {xk} converges
linearly to u and Lemma 4 implies PK(z) = Au+. ✷

The next theorem provides a sufficient condition for the linear convergence of the Newton
iteration.

Theorem 2 Let b ∈ (0, 1/3). If
‖A⊤A− I‖ < b, (10)

then the semi-smooth Newton sequence {xk} converges linearly to the unique solution u of equation
(2) from any starting point and PK(z) = Au+.

Proof. To simplify the notations, denote B = A⊤A. By Lemma 6 it is enough to show that

‖((B − I)G+ I)−1(B − I)‖ <
b

1− b
<

1

2
,

for any diagonal matrix G with diagonal elements 0 or 1. By using the properties (1) of the norm,
it is enough to show that

‖(I − (I −B)G)−1‖‖(I −B)‖ <
b

1− b
. (11)
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Since ‖G‖ ≤ 1, assumption (10) and the properties (1) of the norm imply

‖(I −B)G‖ ≤ ‖I −B‖‖G‖ ≤ ‖I −B‖ < b < 1.

Thus, by applying Lemma 1 with E = (I −B)G and by using the last inequality, we conclude that

‖(I − (I −B)G)−1‖‖I −B‖ ≤
‖I −B‖

1− ‖(I −B)G‖
<

b

1− b
,

which is exactly the required relation (11). By using Lemma 4, we have PK(z) = Au+. ✷

5 Conclusions

In this paper we studied the problem of projection onto a simplicial cone which, via Moreau’s
decomposition theorem for projecting onto cones, is reduced to finding the unique solution of a
nonsmooth system of equations. Our main result shows that, under a mild assumption on the
simplicial cone, we can apply a semi-smooth Newton method for finding a unique solution of the
obtained associated system and that the generated sequence converges linearly to the solution
for any starting point. It would be interesting to see whether the used technique can be applied
for finding the projection onto more general cones. As has been shown in [26], the problem of
projection onto a simplicial cone is reduced to a certain type of linear complementarity problem
(LCP). Then, another interesting problem to address is to compare the four methods for projecting
onto a simplicial cone, namely, semi-smooth Newton method, the methods proposed in [9, 20, 26]
and the Lemke’s method for LCPs.
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