
ar
X

iv
:1

21
2.

47
01

v7
 [

m
at

h.
O

C
]

 2
5

Se
p

20
14

On Solving Convex Optimization Problems with Linear

Ascending Constraints

Zizhuo Wang∗

November 14, 2018

Abstract

In this paper, we propose two algorithms for solving convex optimization problems

with linear ascending constraints. When the objective function is separable, we pro-

pose a dual method which terminates in a finite number of iterations. In particular,

the worst case complexity of our dual method improves over the best-known result for

this problem in Padakandla and Sundaresan [9]. We then propose a gradient projection

method to solve a more general class of problems in which the objective function is

not necessarily separable. Numerical experiments show that both our algorithms work

well in test problems.

1 Introduction

In this paper, we consider the following optimization problem:

(P1) minimize~y F (~y) = f(y1, ..., yn) (1)

subject to
∑k

i=1 yi ≤
∑k

i=1 αi, ∀k = 1, ..., n − 1 (2)
∑n

i=1 yi = (≤)∑n
i=1 αi (3)

0 ≤ yi ≤ βi, ∀i = 1, ..., n, (4)

where F (·) is strictly convex in ~y = (y1, ..., yn), and 0 ≤ αi < +∞, 0 ≤ βi ≤ +∞, for

i = 1, ..., n. We make the following contributions in this paper.

1. We develop a dual method to solve a special case of (P1) with separable objective

functions and (3) being an inequality constraint. Our dual method stops in a

finite number of iterations and improves the computational complexity over the

algorithm in [9].

∗Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, 55414.

Email:zwang@umn.edu.

1

http://arxiv.org/abs/1212.4701v7

2. Using the dual method as a subroutine, we propose a gradient projection method

to solve (P1). Our proposed method takes advantages of the structure of the

constraints so that each projection step can be completed efficiently. The gradi-

ent projection method also allows non-separable objective functions and equality

constraint in (3).

3. We perform numerical experiments on several test problems. The results show

that our proposed algorithms outperform the algorithm in [9] as well as the stan-

dard interior point method in most test problems.

1.1 An Alternative Form

We first point out an alternative form of (P1) which is sometimes used in the literature:

(P2) minimize~y G(~y) = g(y1, ..., yn)

subject to
∑k

i=1 yi ≥
∑k

i=1 αi, ∀k = 1, ..., n − 1
∑n

i=1 yi = (≥)∑n
i=1 αi

0 ≤ yi ≤ βi ∀i = 1, ..., n, (5)

where G(~y) is strictly convex in ~y. To translate (5) into (P1), we define zi = βi − yi,
1 and replace yi by zi, then the optimization problem becomes:

minimize~z F (~z) = G(β1 − z1, ..., βn − zn)

subject to
∑k

i=1 zi ≤
∑k

i=1(βi − αi), ∀k = 1, ..., n − 1
∑n

i=1 zi = (≤)∑n
i=1(βi − αi)

0 ≤ zi ≤ βi, ∀i = 1, ..., n,

which is exactly of form (P1).2

1.2 Applications

The formulation (P1) arises in many applications. One example which is a problem of

smoothing is discussed in Bellman and Dreyfus [2]. Another one that arises in a special

case of network flow problems is studied in Dantzig [4] and Veinott [13]. Both these two

examples have the form of (P2) with G(~y) =
∑

i θiy
p
i , which was also studied by Morten

[7]. Other problems of such a form arise frequently in communication networks and are

discussed in e.g., Padakandla and Sundaresan [8, 9] and Viswanath and Anantharam

[14]. In addition to the above applications, we present another motivation of this model

in operations management.

1It is without loss of generality to assume βi’s are finite, since the objective is strictly convex in ~y,

therefore, in order to be an optimal solution, yi must be bounded from above. The same argument applies

to the other direction of transformation.
2It is without loss of generality to assume that γk =

∑k

i=1
(βi − αi) is increasing in k. Otherwise, we can

iteratively redefine γk = mink≤l≤n γl from n to 1, and the resulting problem will be equivalent and having

the property that the right hand side of the inequality constraints is increasing.

2

Inventory problem with downward substitution. A firm sells a product with

n different grades, with 1 the highest and n the lowest. The firm has αi grade i products

on hand and the demand of grade i product is a random variable Di. Any product

of grade i can be used to satisfy the demand of product of grade i or lower (j ≥ i).

Before the demand realizes, the firm has to make an inventory decision yi of how many

grade i products to put into stock. Once this is done, the products are no longer

substitutable (for example, the firm has to package these products during this process,

products of different grades need different packages and will not be distinguishable

after packaging). For each grade i product, there is a unit overage cost oi if Di turns

out to be less than yi and a unit underage cost ui if Di turns out to be greater than

yi. The objective is to minimize the expected total cost. The problem can be written

as (we use E(·) to denote the expectation operator):

minimize~y
∑n

i=1 (uiE(Di − yi)
+ + oiE(yi −Di)

+)

subject to
∑k

i=1 yi ≤
∑k

i=1 αi, ∀k = 1, ..., n

yi ≥ 0, ∀i = 1, ..., n. (6)

Note that (6) is in the form of (P1). If the cumulative distribution function of each

Di is continuous and strictly increasing on the positive domain, the objective function

of (6) is also strictly convex and differentiable. As pointed out in the literature, such

inventory problems with downward substitution possibility occur in several practical

settings such as in semiconductor industry where higher quality chips can be used

to substitute lower quality ones, see [6], [1], [11] and [15]. For example, Bassok et

al. [1] study the optimal single-period inventory decision in a production system with

downward substitution. Hsu and Bassok [6] further incorporate random yield in such

systems and decide the optimal initial production quantity. Rao et al. [11] further

extend it to consider the problem with setup costs. In most of these literature, the

substitution is modeled to occur after the demand is realized and is used as a recourse

action, therefore, the optimal substitution decision can be solved from a linear program.

However, one can easily envision that in some practical problems, substitution decision

has to be made prior to the demand realization. For example, the firm may need to

package different products before delivering to the markets. In such cases, (6) will be

a more appropriate model.

In practice, one has strong incentive to solve (6) faster. For example, the firms

may also need to decide the upfront production quantities αi’s for each grade with

production cost ciαi. The actual yield of grade i product is αiUi where Ui’s are some

known random yield distributions. In this case, the firm’s problem is the following

two-stage stochastic programming problem:

minimize~α

n
∑

i=1

ciαi+ EU{minimize~y

n
∑

i=1

(

uiE(Di − yi)
+ + oiE(yi −Di)

+
)

}

subject to
k
∑

i=1

yi ≤
k
∑

i=1

αiUi, ∀k = 1, ..., n

yi ≥ 0, ∀i = 1, ..., n. (7)

3

This is a similar problem as introduced in [6] except the substitution decision has to

be made before demand realization. A natural approach to solve (7) is to use the

stochastic gradient method [12]. However, this requires one to evaluate the inside

problem repeatedly. Therefore, improving the efficiency of solving (6) could be of

strong interest.

1.3 Literature Review

The main related literature to this paper is [9]. In [9], the authors propose a dual

method for solving (P2) with separable objective functions. We call the algorithm in

[9] the “P-S algorithm” in the rest of the discussions. The P-S algorithm is currently the

state-of-the-art algorithm for solving this problem. It finishes in O(n) outer iterations.

In each iteration, it solves up to n nonlinear equations, and sets at least one primal

variable based on the solutions to the equations. The efficiency of the P-S algorithm

depends on how fast one can solve those equations. When the equations have closed

form solutions, the P-S algorithm performs very well, otherwise, it may not. In this

paper, we propose a dual algorithm which does not attempt to set primal variables

in each iteration. Instead, we set one dual variable in each iteration and maintain

the optimality conditions for the variables that have been set. Our dual algorithm

also finishes in O(n) outer iterations and in each iteration, we solve no more than one

equation. We show that the equations we solve are simply the equations in the P-S

algorithm with lower bound on each term. When the equations in the P-S algorithm

do not have a closed form solution, solving both equations usually have the same

complexity. In those cases, our dual algorithm reduces the computational complexity

of the P-S algorithm by an order of n.

In addition to the dual method, we propose a gradient projection method to solve

the more general problem (P1) allowing non-separable objective functions. Gradient

projection methods are widely used to solve a variety of convex optimization problems.

We refer the readers to [3] for a thorough discussion of this method. In particular, the

key element in the gradient projection method is the design of the projection step. In

this paper, we propose an efficient projection step under linear ascending constraints

which leads to an efficient implementation of the gradient projection algorithm for the

problem.

Another popular method that solves nonlinear convex optimization is the interior

point method. However, we focus on the first order method in this paper because of

its low memory requirement and thus the ability to solve large problems. Performance

comparisons between our proposed algorithms and the interior point algorithm (im-

plemented by CVX) are shown in the numerical tests and the results indicate that our

algorithms are usually much more efficient.

We note that there is abundant literature on solving a special case of (P1) when

there is only one equality/inequality constraint (usually called the simplex constraint

or l1 constraint). We refer the readers to [10] for a survey on this problem. Although

the dual method is widely used in those studies, the detail of our algorithm differs

significantly because of the special structure of this problem.

4

1.4 Structure of the paper

In Section 2, we develop a dual method to solve a special case of (P1) with separable

objective functions and (3) being an inequality constraint. In Section 3, we further

propose a gradient projection method to solve the general problem (P1). Numerical

tests are shown in Section 4 to examine the performances of our algorithms. Section 5

concludes this paper.

2 A Dual Method

In this section, we study a special case of (P1) in which the objective function F

is separable, i.e., F (~y) =
∑n

i=1 fi(yi) and (3) is an inequality constraint. There are

two reasons why we consider separable objectives. First, in most of the applications

mentioned in Section 1.2, the objective functions are indeed separable. Second, the

study of separable objective functions will lay the foundation for the analysis of the

gradient projection method in Section 3 which can solve more general problems.

In the following, we develop a dual method to solve the following problem:

(P3) minimize~y
∑n

i=1 fi(yi) (8)

subject to
∑k

i=1 yi ≤
∑k

i=1 αi, ∀k = 1, ..., n (9)

0 ≤ yi ≤ βi, ∀i = 1, ..., n. (10)

Here we assume that fi(yi)’s are continuously differentiable, strictly convex in yi with

derivative gi(yi) = f ′
i(yi).

3 Under these assumptions, gi(·) is strictly increasing and

we denote gi(0) = li and gi(βi) = hi. We define ȳi = argmin0≤y≤βi
fi(y), that is, ȳi’s

are the optimal solution to (P3) without constraint (9). Under the above assumptions,

it is easy to see that ȳi exists and is unique.

We first write down the KKT conditions of (8)-(10). We associate a dual variable

λk to each constraint (9), a dual variable δi to each upper bound constraint, and a dual

variable ηi to each nonnegative constraint (10). The Lagrangian of (8)-(10) can then

be written as

n
∑

i=1

fi(yi) +
n
∑

k=1

λk

(

k
∑

i=1

yi −
k
∑

i=1

αi

)

−
n
∑

i=1

ηiyi −
n
∑

i=1

δi(βi − yi).

3Our algorithm works in a similar manner even if f is not differentiable but convex. The discussions will

involve subgradient of f in that case. We make this assumption simply for the convenience of discussion.

5

And the KKT conditions are

gi(yi) = −
n
∑

k=i

λk + ηi − δi, ∀i = 1, ..., n, (11)

yi · ηi = 0, yi ≥ 0, ηi ≥ 0, ∀i = 1, ..., n, (12)

(βi − yi) · δi = 0, yi ≤ βi, δi ≥ 0, ∀i = 1, ..., n, (13)
k
∑

i=1

yi ≤
k
∑

i=1

αi, ∀k = 1, ..., n, (14)

λk ·
(

k
∑

i=1

yi −
k
∑

i=1

αi

)

= 0, λk ≥ 0, ∀k = 1, ..., n. (15)

Define φi(x) = max{li,min{x, hi}}, i.e., φi(x) projects x to the interval [li, hi]. We

also define Hi(x) = g−1
i (φi(x)) where g−1

i (·) is the inverse function of gi(·). By the

assumptions on gi(·), li and hi, we have 0 ≤ Hi(x) ≤ βi. From (11)-(13), one can

observe that gi(yi) should equal to the projection of −∑n
k=i λk onto the interval [li, hi].

More precisely, conditions (11)-(13) can be equivalently written as

yi = Hi

(

−
n
∑

k=i

λk

)

with

ηi =

(

φi

(

−
n
∑

k=i

λk

)

+

n
∑

k=i

λk

)+

and δi =

(

−φi

(

−
n
∑

k=i

λk

)

−
n
∑

k=i

λk

)+

,∀i (16)

where x+ = max{x, 0}. Since (P3) is linearly constrained and is convex, the KKT

conditions are necessary and sufficient, and solving them yields the solution of (P3).

In the following, we propose an efficient dual method to solve the KKT conditions.

The idea of this dual method is to assign values to the dual variables λ’s such that the

optimality conditions (14)-(16) hold. We state our algorithm as follows:

Algorithm 1

Step 0: Initialization. Let dk =
∑k

i=1 ȳi −
∑k

i=1 αi, k = 1, 2, ..., n. Define

w0 = 0,

w1 = min{k : dk ≥ 0},
wj+1 = min{k > wj : dk ≥ dwj

}, ∀j.

Here we define min ∅ =∞. If w1 =∞, then setting yi = ȳi = argmin0≤y≤βi
fi(y) and

λi = 0 for all i will satisfy the KKT conditions and thus is optimal. Otherwise, let

L = max{j ≥ 1 : wj < ∞}. Define S = {w1, w2, ..., wL}. Let λi = 0, ηi = 0 for all i

and let j = L.

Step 1: Main Loop (Outer Loop).

WHILE j > 0

6

• Case 1: If

wj
∑

s=wj−1+1



Hs



−
L
∑

t=j+1

λwt



− αs



 ≥ 0 (17)

then choose ξ ≥ 0 such that

wj
∑

s=wj−1+1



Hs



−
L
∑

t=j+1

λwt − ξ



− αs



 = 0 (18)

and set λwj
= ξ, j ← j − 1.

• Case 2: If

wj
∑

s=wj−1+1



Hs



−
L
∑

t=j+1

λwt



− αs



 < 0 (19)

then use binary search to find

r∗ = min
r







j + 1 ≤ r ≤ L :
wr
∑

s=wj−1+1

(

Hs

(

−
L
∑

t=r+1

λwt

)

− αs

)

≥ 0







. (20)

If such r∗ does not exist, then set all λwr = 0, for r = j, ..., L. Set j ← j − 1.

Otherwise, choose ξ ≥ 0 such that

wr∗
∑

s=wj−1+1

(

Hs

(

−
L
∑

t=r∗+1

λwt − ξ

)

− αs

)

= 0 (21)

and set λwr∗
= ξ and λwr = 0, for j ≤ r < r∗. Set j ← j − 1.

END WHILE

Step 2: Output Set for i = 1, 2, ..., n

yi = Hi

(

−
n
∑

k=i

λk

)

,

ηi =

(

φi

(

−
n
∑

k=i

λk

)

+
n
∑

k=i

λk

)+

and δi =

(

−φi

(

−
n
∑

k=i

λk

)

−
n
∑

k=i

λk

)+

.

First, we argue that those ξ’s defined in (18) and (21) exist. This can be verified by

observing that when ξ = 0, the left hand sides of (18) and (21) are both nonnegative

and as ξ → ∞, both of them will be less than or equal to zero (since α’s are all

nonnegative). Also, by our assumption, the left hand sides of (18) and (21) are both

continuous. Therefore, by the intermediate value theorem, such ξ’s must exist. We

now state the main result of this section.

7

Theorem 1 Algorithm 1 terminates within L ≤ n outer iterations and the output

solves (P3).

In the following, we prove Theorem 1. Let ({y∗i }ni=1, {λ∗
i }ni=1, {η∗i }ni=1, {δ∗i }ni=1) be

any solution to the KKT conditions (14)-(16) and thus an optimal solution to (P3).

First, it is easy to see that y∗i ≤ ȳi for all i, otherwise replacing y∗i with ȳi will strictly

improve the objective value while still satisfying the constraints, which contradicts with

the optimality of y∗i ’s. Next we claim that for any k ∈ {1, ..., n} \ S, we must have

λ∗
k = 0. This is because for such k with wl−1 < k < wl, we have

k
∑

i=1

(y∗i − αi) ≤
k
∑

i=wl−1+1

(y∗i − αi) ≤
k
∑

i=wl−1+1

(ȳi − αi) < 0,

where the last inequality is because of the definition of wl. By the complementarity

condition (15), λ∗
k = 0 for wl−1 < k < wl.

Note that in the KKT conditions, given λk’s, the y’s, η’s and δ’s are uniquely

determined and that changing λk only affects yi’s, ηi’s and δi’s for i ≤ k. In iteration

j of Algorithm 1, we assign λwj
and may modify all λwk

’s for k ≥ j +1. We now state

the following property of Algorithm 1 which immediately implies Theorem 1.

Proposition 1 When Algorithm 1 finishes loop j (j = L,L−1, ..., 1), the current λi’s

together with

yi = Hi

(

−
n
∑

k=i

λk

)

, (22)

ηi =

(

φi

(

−
n
∑

k=i

λk

)

+

n
∑

k=i

λk

)+

and δi =

(

−φi

(

−
n
∑

k=i

λk

)

−
n
∑

k=i

λk

)+

(23)

satisfy the following conditions:

yi · ηi = 0, ηi ≥ 0, yi ≥ 0, ∀i ≥ wj−1 + 1, (24)

(βi − yi) · δi = 0, yi ≤ βi, δi ≥ 0, ∀i ≥ wj−1 + 1, (25)

k
∑

s=wj−1+1

ys ≤
k
∑

s=wj−1+1

αs, ∀k ≥ wj−1 + 1, (26)

λk ·





k
∑

s=wj−1+1

ys −
k
∑

s=wj−1+1

αs



 = 0, ∀k ≥ wj−1 + 1. (27)

8

Before we prove Proposition 1, we introduce a lemma that will be used repeatedly

in the proof.

Lemma 1 For all i = 1, ..., n, if yi is defined in (22), then yi ≤ ȳi.

The lemma follows immediately from the assumption that gi(·)’s are strictly increasing

and that ȳi = Hi(0).

Proof of Proposition 1: First, note that condition (24) and (25) are always satisfied

because of the definitions in (22) and (23). Therefore, it suffices to show that conditions

(26) and (27) hold for j = L,L − 1, ..., 1. We use backward induction to prove this.

First we show that for j = L, (26) and (27) hold for all k ≥ wL−1 + 1.

First we show that (26) holds. When Algorithm 1 finishes the outer loop when

j = L, for any wL−1 + 1 ≤ s′ < wL, we have

s′
∑

s=wL−1+1

(ys − αs) ≤
s′
∑

s=wL−1+1

(ȳs − αs) ≤ 0, (28)

where the first inequality is due to Lemma 1 and the second inequality is due to the

definition of wL. On the other hand, for s′ ≥ wL, we have

s′
∑

s=wL−1+1

(ys − αs) ≤
wL
∑

s=wL−1+1

(ys − αs) +

s′
∑

s=wL+1

(ȳs − αs) ≤ 0,

where the first inequality is because of Lemma 1 and the second one is because of step

(18) and the definition of wL. Therefore (26) holds when j = L.

To show that (27) holds for j = L, note that among all the λk’s with k ≥ wL−1+1,

the only possible non-zero one is λwL
. If Case 1 of the algorithm happens in this loop,

then

wL
∑

s=wL−1+1

(ys − αs) = 0.

Otherwise, λwL
= 0. Therefore, (27) holds for j = L.

Now we assume that (26) - (27) hold after the algorithm completes the outer loop

for j = j̄ + 1. Now we consider the situation when it finishes the outer loop for j = j̄.

We consider two cases:

• Case 1: (17) holds in the current loop (j = j̄). In this case, we have

wj̄
∑

s=wj̄−1
+1

ys =

wj̄
∑

s=wj̄−1
+1

αs. (29)

And the ys’s for s > wj̄ does not change from the previous loop. Therefore, for

any k = wj (j ≥ j̄), we have

k
∑

s=wj̄−1
+1

ys ≤
k
∑

s=wj̄−1
+1

αs.

9

And for wj < k < wj+1 (j ≥ j̄ − 1),

k
∑

s=wj̄−1
+1

(ys − αs) ≤
wj
∑

s=wj̄−1
+1

(ys − αs) +
k
∑

s=wj+1

(ȳs − αs) ≤
wj
∑

s=wj̄−1
+1

(ys − αs) ≤ 0,

where the first inequality is because of Lemma 1 and the second inequality is

because of the definition of wj ’s. Therefore, (26) holds for all k ≥ wj̄−1 + 1. For

(27), we only need to study k = wj since all other λk’s are 0. And it holds because

of (29) and the induction assumption. Therefore, (26) - (27) hold for j̄ in this

case.

• Case 2: (19) holds in the current loop. Then there are two further cases:

– a): r∗ does not exist. In this case, by the definition of Algorithm 1, all

λk’s are zero at the end of this iteration and
∑k

s=wj̄−1
+1 ys <

∑k
s=wj̄−1

+1 αs

for all k = wj (j ≥ j̄). By the same argument as in case 1, we know that
∑k

s=wj̄−1
+1 ys <

∑k
s=wj̄−1

+1 αs for all k ≥ wj̄−1 + 1. Therefore, (26) - (27)

hold for j̄ in this case.

– b): r∗ exists. Denote the λ’s and y’s after the previous loop by λ̃ and ỹ. It is

easy to see that in this case, at the end of the current iteration, λi ≤ λ̃i and

yi ≥ ỹi for all i. We first have the following lemma whose proof is relegated

to Appendix A:

Lemma 2 λ̃wr∗
> 0.

With Lemma 2, we show that (26) - (27) hold. We first consider (26). By

(21), we have

wr∗
∑

s=wj̄−1
+1

(ys − αs) = 0. (30)

Therefore for k > wr∗ , we know that

k
∑

s=wj̄−1
+1

(ys − αs) =

k
∑

s=wr∗+1

(ys − αs) =

k
∑

s=wr∗+1

(ỹs − αs) =

k
∑

s=wj̄+1

(ỹs − αs) ≤ 0,

where the second equality is because the value of ys does not change for

s ≥ wr∗ + 1. The last equality is because of the induction assumption that

λ̃wr∗
·∑wr∗

s=wj̄+1(ỹs−αs) = 0 and Lemma 2. Therefore, for all wj ≤ k < wj+1,

j̄ − 1 ≤ j < r∗, we have

k
∑

s=wj̄−1
+1

(ys − αs) ≤
wj
∑

s=wj̄−1
+1

(ys − αs) ≤ −
wr∗
∑

s=wj+1

(ỹs − αs) =

wj
∑

s=wj̄+1

(ỹs − αs) ≤ 0,

where the first inequality is because of the definition of wj , the second equal-

ity is because of (30) and yi ≥ ỹi and the last equality is because of the

induction assumption and Lemma 2. Therefore, (26) holds in this case.

10

Lastly, we show that (27) also holds. It suffices to show that for each r > r∗

such that λr > 0,

wr
∑

s=wj̄−1
+1

(ys − αs) = 0.

This is equivalent as showing that for each r > r∗ such that λr > 0,

wr
∑

s=w∗

r+1

(ys − αs) = 0.

Note that

wr
∑

s=wr∗+1

(ys − αs) =

wr
∑

s=wr∗+1

(ỹs − αs) =

wr
∑

s=wj̄+1

(ỹs − αs)−
wr∗
∑

s=wj̄+1

(ỹs − αs)

By induction assumption and Lemma 2,

wr
∑

s=wj̄+1

(ỹs − αs) =

wr∗
∑

s=wj̄+1

(ỹs − αs) = 0.

Therefore (27) holds in this case and Proposition 1 is proved. �

Now we make some comments on Algorithm 1.

By its definition, Algorithm 1 terminates within L ≤ n outer iterations. In practical

problems, L might be much less than n. In those cases, the algorithm can output the

solutions very fast. This is a similar property as in the P-S algorithm (recall we use

P-S algorithm to refer the algorithm proposed in [9]). Now we use I to denote the

complexity (number of arithmetic operations) of solving (18) or (21) once (it is easy to

see that I ≥ n). In each iteration of Algorithm 1, if Case 1 happens, the algorithm has

to perform a sum of no more than n terms. And it has to solve (18) once. Therefore,

there are O(I) arithmetic operations in this case. If Case 2 happens, then the algorithm

has similar tasks as in Case 1, and in addition it needs to find r∗ defined in (20)

which takes no more than O(n log n) iterations. Therefore, the complexity in Case

2 is O(max{n log n,I}). Combined with O(n) outer iterations , the total arithmetic

complexity of our algorithm is O(max{n2 log n, nI}).
Now we compare the complexity result to that of the P-S algorithm. The difference

between the two algorithms is the way the variables are assigned. In each iteration of

the P-S algorithm, it solves

∑

m∈s∩[i,l]

(g−1
m (θ) ∧ βm) =

l
∑

m=i

αm (31)

for all l ≤ j, where s is the set of unassigned variables. Then the largest solution

is chosen and the corresponding primal variable is set accordingly. Such a method

11

avoids the needs to check the validity of the KKT conditions that is met in previous

steps as we have to do in Step 2 in Algorithm 1, however at a cost of having to solve

O(n) equations at each step rather than only one as in Algorithm 1. Indeed, the

equations (31) are sometimes easier to solve since they don’t involve the lower bound

as Algorithm 1 do. If one denotes the arithmetic complexity of solving equations in

(31) by O(I ′), then the total arithmetic complexity of the P-S algorithm is O(n2I ′).4
Therefore, our algorithm works better than the P-S algorithm when solving equations

in (31) has similar complexity as solving equations in (18) and (21), but may work

relatively worse if (31) can be solved explicitly (see [9] for several examples). This

tradeoff is demonstrated in the numerical experiments in Section 4.

There are two main drawbacks for Algorithm 1. First, it can only handle separable

objective functions and inequality constraint in (3). Second, it involves many evalua-

tions of g−1 and also has to solve the equations (18) and (21). These evaluations might

be very expensive in computation if g−1 does not have a simple form. This is the same

problem as in the P-S algorithm. In particular, [9] shows that the performance of the

P-S algorithm may not be very good if closed form solutions to equations (31) do not

exist. To overcome this problem, we propose a gradient projection method in the next

section. The gradient projection method uses Algorithm 1 as a subroutine, however,

in each iteration, g(·) is simply a linear function. Moreover, the gradient projection

method can handle non-separable objective functions as well as equality constraints

in (3). The tradeoff however, is that the gradient projection method does not give

an exact solution in a finite number of iterations. However as we demonstrate in our

numerical experiments, it performs quite well in test problems.

3 Gradient Projection Method

In this section, we propose a gradient projection method to solve (P1). First we

claim that we can assume that constraint (3) is of the inequality form. To transform

a problem with equality constraint in (3) to an inequality one, we first note that we

can without loss of generality assume βn = ∞. This is because one can always add

a penalty term M(yn − βn)
+ with sufficiently large M so that the optimal solution

must satisfy yn ≤ βn (if the problem is feasible). Then, we can simply substitute

yn =
∑n

i=1 αi −
∑n−1

i=1 yi into (8). Therefore, it is sufficient to consider the following

equivalent problem:

(P4) minimize~y F (~y) = f(y1, ..., yn)

subject to
∑k

i=1 yi ≤
∑k

i=1 αi, ∀k = 1, ..., n

0 ≤ yi ≤ βi, ∀i = 1, ..., n. (32)

In the following, we propose a gradient projection method to solve (P4). Gradient

projection methods are used to solve a variety of convex optimization problems [3]. It

minimizes a function F (x) subject to convex constraints by generating the sequence

4Again, it is easy to see that I ′ is at least O(n) since one has to sum O(n) values in order to solve (31).

12

{

x(k)
}

via

x(k+1) = Πk
(

x(k) − µk∇(k)
)

,

where ∇(k) is the gradient of F (x) at x(k), Π(x) = argminy {||x− y|| : y ∈ F} is the

Euclidean projection of x onto the feasible set F and µk is the chosen stepsize. In the

following, our discussion will mainly focus on the projection step. The convergence of

the gradient projection method is referred to [3].

In our problem, given z = x(k) − µk∇(k), x(k+1) can be computed by solving

minimize~y
∑n

i=1(yi − zi)
2

subject to
∑k

i=1 yi ≤
∑k

i=1 αi, ∀k = 1, ..., n

0 ≤ yi ≤ βi, ∀i = 1, ..., n. (33)

Note that (33) is of form (P3) thus can be solved by Algorithm 1. One main advantage

of (33) is that the objective function is quadratic. Therefore, in Algorithm 1, gi(yi) =

2(yi− zi), li = −2zi, hi = 2(βi− zi) and g−1
i (ui) =

ui+2zi
2 . Therefore the equation (18)

and similarly (21) can be written as

ρ(ξ) =

wj
∑

s=wj−1+1

(

max(0,min(2βi, 2zs −
∑L

t=j+1 λwt − ξ))

2
− αs

)

= 0. (34)

Note that (34) is a decreasing piecewise linear function with no more than 2n break-

points. And those breakpoints can be computed explicitly. Therefore, to solve (34), one

can first use binary search to find out which piece of the function the solution belongs

to and then simply solve a linear equation. Therefore, the total complexity of solv-

ing (34) is O(n log n) and the total complexity of each projection step is O(n2 log2 n),

regardless of the form of the objective function.

4 Numerical Experiments

In this section, we perform numerical tests to examine the performance of both our

dual method and the gradient projection method and compare them to 1) the P-S

algorithm in [9] and 2) CVX [5]. The P-S algorithm also uses a dual method and the

comparison between it and Algorithm 1 is discussed in Section 2. CVX is a popular

convex optimization solver which uses a core solver SDPT3 or SeDuMi to solve a large

class of convex optimization problems. It is based on the interior point methods. In

the following, we consider three sets of problems. For each one, we test 30 random

instances with input specified in the following (for problem with size n = 2000, we only

test 3 instances). Note that the default precision of CVX is ǫ = 1.5×10−8. In our dual

method, we solve each equation with precision ǫ. In the gradient projection method,

we choose our starting points to be 0 and step size to be 1/
√
i in ith iteration, and our

stopping criterion is that the objective is within ǫ to the CVX optimal value. All the

computations are run on a PC with 1.80GHz CPU and Windows 7 Operating system.

13

Problem n DM GP CVX P-S

1 (TP-1) 50 0.050 0.214 0.378 0.154

2 (TP-1) 150 0.370 0.681 1.792 3.751

3 (TP-1) 500 5.614 2.559 15.76 219.8

4 (TP-1) 2000 242.3 34.58 4953.1 N/A

5 (TP-2) 50 0.018 0.093 0.264 < 0.001

6 (TP-2) 150 0.136 0.176 0.547 < 0.001

7 (TP-2) 500 1.911 0.806 14.04 0.0013

8 (TP-2) 2000 58.15 3.160 4798.9 0.0026

9 (TP-3) 50 0.011 0.088 1.001 0.227

10 (TP-3) 150 0.015 0.124 4.950 0.966

11 (TP-3) 500 0.210 0.374 49.44 6.210

12 (TP-3) 2000 0.499 1.526 2350.2 91.66

Table 1: Performance Comparisons. DM is the dual method developed in Section 2, GP is

the gradient projection method developed in Section 3 and P-S is the algorithm in [9]. N/A

means this method can not return the optimal solution in the corresponding case

We use CVX Version 1.22 and MATLAB version R2010b. The test results are shown

in Table 1.

The first problem is

(TP− 1) minimize
∑n

i=1

(

1
4y

4
i + viyi

)

subject to
∑k

i=1 yi ≥
∑k

i=1 αi, ∀k = 1, ..., n − 1
∑n

i=1 yi =
∑n

i=1 αi

yi ≥ 0, ∀i = 1, ..., n. (35)

This problem is considered in the numerical tests in [9]. We use the same setup, that

is, we assume all the parameters αi and vi are drawn from i.i.d. uniform distributions

on [0, 1], with vi’s sorted in ascending order. In order to apply our dual method

and gradient projection method, we first perform a transformation as described in

Section 1.1. Note that the equality constraint in (35) can be replaced by an inequality

constraint since the objective of (35) is increasing in y. Then we add an artificial upper

bound β =
∑n

i=1 αi to all yi’s and define zi = β − yi. After these transformations, the

problem becomes

minimize~z
∑n

i=1 fi(zi) =
∑n

i=1(
1
4(β − zi)

4 + vi(β − zi))

subject to
∑k

i=1 zi ≤
∑k

i=1(β − αi), ∀ k = 1, .., n

zi ≥ 0, ∀ i = 1, .., n,

which can be solved by both our dual method and the gradient projection method.

From Table 1, we can see that both our algorithms outperform the P-S algorithm

and CVX for this problem. The reason that the dual algorithms performs better

14

than the P-S algorithm is explained in Section 2. Particularly, in this case, g−1
i (x) =

(x− vi)
1/3 and the equation (31) does not have a closed form solution. In such cases,

the complexity of solving (31) is essentially similar to the complexity of solving (18) or

(21). And the computational complexity of our dual algorithm is less than that of the

P-S algorithm by an order of n.

Note that in this problem

z̄i = arg min
0≤z≤β

fi(z) = β.

Therefore L = n, that means this is already the worst case scenario for the dual method.

Yet it still performs quite well. Because of the same reason, the gradient projection

method works better than the dual method in this case. And both of them perform

better than CVX significantly.

The second problem is

(TP− 2) minimize~y
∑n

i=1
vi

1−yi

subject to
∑k

i=1 yi ≥
∑k

i=1 αi, ∀k = 1, ..., n − 1
∑n

i=1 yi =
∑n

i=1 αi

0 ≤ yi ≤ 1, ∀i = 1, ..., n. (36)

This problem is also considered in [9]. We again use the same setup, where αi and

vi are drawn from i.i.d. uniform distributions on [0, 1], with vi’s sorted in ascending

order. Similar to what we have done for (TP-1), we replace the equality constraint

with an inequality constraint and define zi = 1− yi. An equivalent form of (36) is then

obtained as follows:

minimize~z
∑n

i=1 fi(zi) =
∑n

i=1
vi
zi

subject to
∑k

i=1 zi ≤ k −∑k
i=1 αi, ∀k = 1, ..., n

0 ≤ zi ≤ 1, ∀i = 1, ..., n.

In this case, g−1
i (x) =

√

−vi/x. As shown in [9], there is a closed form solution to

(31) in this case. Thus the P-S algorithm can solve this problem very fast. This is

indeed observed in Table 1. Note that the performance of both the dual and gradient

projection methods also improve. This is partly because it is easier to evaluate the

function g−1 in this case than in the first problem. Still, the gradient projection

method is faster than the dual method in this case, because we have z̄i = 1 thus L = n

in the dual method. Again, both algorithms work much faster than CVX.

The last problem is the inventory control problem described in Section 1.2. The

optimization problem is:

(TP− 3) minimize~y
∑n

i=1 (uiE(Di − yi)
+ + oiE(yi −Di)

+)

subject to
∑k

i=1 yi ≤
∑k

i=1 αi, ∀k = 1, ..., n

yi ≥ 0, ∀i = 1, ..., n.

15

In the numerical experiments, we assume that oi ∼ U [5, 10], ui ∼ U [20, 25] and

αi ∼ U [0, 20]. We also assume that each Di follows an exponential distribution with

parameter ηi ∼ U [0.1, 0.2]. By applying the property of exponential distribution, the

objective can be equivalently written as:

n
∑

i=1

fi(yi) =
n
∑

i=1

(

ui + oi
ηi

e−ηiyi + oiyi

)

with ȳi = 1
ηi
log
(

ui+oi
oi

)

∈ [5.49, 17.92], gi(yi) = f ′(yi) = −(ui + oi)e
−ηiyi + oi and

g−1
i (s) = − 1

ηi
log
(

oi−s
ui+oi

)

. Clearly (31) doesn’t have a closed form solution with such

g−1, therefore our algorithms outperform the P-S algorithm. In fact, for this problem,

the dual method works very well. This is because the L’s in this case are usually

much smaller than n. In fact, L is less than n/4 in most test problems. This will

greatly reduce the computations in the dual method and make it very efficient. The

gradient method could not take advantage of this structure and thus only has similar

performance as in other problems.

To summarize the numerical results, we observe that our algorithms exhibit signif-

icant performance improvement over the P-S algorithm when equation (31) does not

have a closed form solution. And they also greatly improve over the performance of

CVX. Between the dual method and the gradient projection method, the former one

is more efficient when L is relatively small, otherwise, the latter one is usually more

efficient.

5 Conclusions

In this paper, we propose two algorithms for solving a class of convex optimization prob-

lems with linear ascending constraints. When the objective is separable, we propose a

dual method which improves the worst case complexity of the algorithm proposed in

[9]. Furthermore, we propose a gradient projection algorithm in which each projection

step uses the dual method as a subroutine. The gradient projection algorithm can be

used to solve more general non-separable problems and does not need to evaluate the

inverse of the gradient function which the dual methods usually require. Numerical

results show that both of our proposed algorithms work well in test problems.

6 Acknowledgement

The author thanks Diwakar Gupta and Shiqian Ma for useful discussions and Arun

Padakandla and Rajesh Sundaresan for sharing the code of the P-S algorithm.

A Proof of Lemma 2

Proof of Lemma 2. We prove by contradiction. If λ̃wr∗
= 0, then

16

1. If there exists r′ = max{0 < r < r∗ : λ̃wr > 0}, then we know that

wr∗
∑

s=wr′+1

(ỹs − αs) ≤ 0.

Also, since r′ < r∗, we know that

wr′
∑

s=wj̄−1
+1

(

Hs

(

−
L
∑

t=r′+1

λ̃wt

)

− αs

)

< 0.

Therefore, we have

wr∗
∑

s=wj̄−1
+1

(

Hs

(

−
L
∑

t=r∗+1

λ̃wt

)

− αs

)

=

wr′
∑

s=wj̄−1
+1

(

Hs

(

−
L
∑

t=r′+1

λ̃wt

)

− αs

)

+

wr∗
∑

s=wr′+1

(

Hs

(

−
L
∑

t=r∗+1

λ̃wt

)

− αs

)

=

wr′
∑

s=wj̄−1
+1

(

Hs

(

−
L
∑

t=r′+1

λ̃wt

)

− αs

)

+

wr∗
∑

s=wr′+1

(ỹs − αs) < 0. (37)

Here the first equality is because of the assumption that λ̃wr = 0 for all r′ < r ≤
r∗, and the second equality is because of the induction assumption. However,

(37) contradicts with the definition of r∗.

2. If all λ̃wr = 0 for r < r∗. Then we have

wr∗
∑

s=wj̄−1
+1

(ỹs − αs) =

wj̄
∑

s=wj̄−1
+1

(ỹs − αs) +

wr∗
∑

s=wj̄+1

(ỹs − αs) < 0,

where in the last inequality, the first term is less than 0 since the algorithm enters

Case 2 in this loop, and the second term is less than or equal to 0 due to the

induction assumption. This contradicts with the definition of r∗. Therefore we

have proved Lemma 2. �

References

[1] Y. Bassok, R. Anupindi, and R. Akella. Single-period multiproduct inventory

models with substitution. Operations Research, 47(4):632–642, 1999.

[2] R. Bellman and S. Dreyfus. Applied Dynamic Programming. Princeton University

Press, 1962.

[3] D. Bertsekas. Nonlinear Programming. Athena Scientific, 2003.

[4] G. Dantzig. A control problem of Bellman. Management Science, 17(9):542–546,

1971.

17

[5] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming

(web page and software), 2008. URL: http://stanford.edu/~boyd/cvx.

[6] A. Hsu and Y. Bassok. Random yield and random demand in a production system

with downward substitution. Operations Research, 47(2):277–290, 1999.

[7] G. Morton, R. von Randow, and K. Ringwald. A greedy algorithm for solving

a class of convex programming problems and its connection with polymatroid

theory. Mathematical Programming, 32(2):238–241, 1985.

[8] A. Padakandla and R. Sundaresan. Power minimization for CDMA under colored

noise. IEEE Transactions on Communications, 57(10):3103–3112, 2009.

[9] A. Padakandla and R. Sundaresan. Separable convex optimization problems with

linear ascending constraints. SIAM Journal on Optimization, 20(3):1185–1204,

2009.

[10] M. Patriksson. A survey on the continuous nonlinear resource allocation problem.

European Journal of Operations Research, 185(1):1–46, 2008.

[11] U. Rao, J. Swaminathan, and J. Zhang. Multi-product inventory planning with

downward substitution, stochastic demand and setup costs. IIE Transactions,

36:59–71, 2004.

[12] A. Shapiro, D. Dentcheva, and A. Ruszczyski. Lectures on Stochastic Program-

ming: Modeling and Theory. SIAM, Philledaphia, PA, 2009.

[13] A. Veinott. Least d-majorized network flows with inventory and statistical appli-

cations. Management Science, 17(9):547–567, 1971.

[14] P. Viswanath and V. Anantharam. Optimal sequences for CDMA with colored

noise: A Schur-Saddle function property. IEEE Transactions on Information

Theory, 48(6):1295–1318, 2002.

[15] H. Wagner and T. Whitin. Dynamic version of the economic lot size model.

Management Science, 5(1):89–96, 1958.

18

http://stanford.edu/~boyd/cvx

	1 Introduction
	1.1 An Alternative Form
	1.2 Applications
	1.3 Literature Review
	1.4 Structure of the paper

	2 A Dual Method
	3 Gradient Projection Method
	4 Numerical Experiments
	5 Conclusions
	6 Acknowledgement
	A Proof of Lemma ??

