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Abstract

In this note we study a truncated additive normalization of the Banzhaf value.
We are able to show that it corresponds to the Least Square nucleolus (LS-nucleolus),
which was originally introduced as the solution of a constrained optimization prob-
lem (Ruiz et al., 1996). Thus, the main result provides an explicit expression that
eases the computation and contributes to the understanding of the LS-nucleolus.
Lastly, the result is extended to the broader family of Individually Rational Least
Square values (Ruiz et al., 1998b).
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A cooperative game with transferable utility (just TU game from now on) is a pair
(N,v) where N is a finite set of players and v, the characteristic function, is a real valued
function on 2% with v(()) = 0. Consider a TU game (N, v). A vector z € R¥ is called an
allocation. For each allocation z € RN and each nonempty coalition S C N, the ezcess
of coalition S at allocation x is given by e(S,z) = v(S5) — z(S) with z(S) = 3 ;cq xi.
The average excess at x is given by e(v) = 5 >pzscn €(S; ). An allocation, z, is
efficient whenever z(N) = v(N). The set of imputations of (N, v) is defined as the set of
all efficient allocations that are individually rational, i.e., I(N,v) = {z € RN : 2(N) =
v(N), z; > v({i}), for every i € N}. We denote by G the set of all TU games with
a nonempty imputation set. Let H C G, a value on H is a map, f, that associates an
allocation to every TU game in H, i.e., for every (N,v) € H, f(N,v) € RY. One of these
values is the Banzhaf value (Owen, 1975) that we denote by B. For every (N,v) € G
and ¢ € N, the Banzhaf value is defined by

Bi(N,v):2n{1 S (S Ui) — u(S)) !

SCN\i

"'We will write S U4 instead S U {i} and S\ 4 instead S\ {i} to simplify the notation.
Given a finite set S, we denote by lowercase s its number of elements.



It is well known that the Banzhaf value is not, in general, an efficient allocation.
Hammer and Holzman (1992) proposed two efficient values based on the Banzhaf value
that we call the multiplicative normalization of the Banzhaf value and the additive
normalization of the Banzhaf value. Let H C G be the set of TU games satisfying
> jen Bj(IV,v) # 0. The multiplicative normalization of the Banzhaf value, B™, assigns
to every (N,v) € H an allocation which is proportional to B(V,v). Formally, B™ is the
value on ‘H defined for every (N,v) € H and i € N by

v(N)

Z Bj (N, v)
JEN

BM"(N,v) = Bi(V,v).

Given a TU game, the additive normalization of the Banzhaf value, B2, is obtained by
adding the same amount to every agent’s Banzhaf value. Formally, B? is the value on
G defined for every (N,v) € G and i € N by

B2(N,v) = B;(N,v) +% (U(N) -3 Bj(N,v)) .

JEN

Ruiz et al. (1996) proved the equivalence between the additive normalization of the
Banzhaf value and the Least Square prenucleolus, LS-prenucleolus. The LS-prenucleolus
is defined for every (N,v) € G as the optimal solution of the optimization problem

min Y (e(S,z) —€(v))?

0£SCN
s.t. z(N) = v(N).
It is clear that, in general, the optimal solution of this problem is not an imputation.

In order to solve this drawback, Ruiz et al. (1996) defined the Least Square nucleolus,
LS-nucleolus, for every (N,v) € G as the optimal solution of the optimization problem

min Z (e(S,z) — é(v))?

s.t. (N) =v(N)
x; > v({i}),for every i € N.

Since both the Banzhaf value and the LS-nucleolus satisfy strategic equivalence,? from
now on we assume that for every ¢ € N, v({i}) = 0. If the LS-prenucleolus is an
imputation, it coincides with the LS-nucleolus, but in general, both concepts provide
different allocations. Ruiz et al. (1996) proposed the following algorithm to obtain the
LS-nucleolus.

Algorithm 1.

2A value on G, f, satisfies strategic equivalence if for every (N,v) € G, a > 0, and 8 € RY, f(N, av +
B) = af(N,v) + 3, where (N, av + f8) is defined for every S C N by (av + 5)(S) = av(S) + B(S5).



Step 1. Take k=1, 2! =B3*(N,v) and M' ={i € N : x}(N,v) <0}.

Step 2. Take k =k + 1. For every j € N,

k {x““k_lwk—l) if j & M*1

J n—mk—1
0 otherwise 0

and M* = M*1ufie N+ 2f(N,v) <0},

Step 3. If M* = M*1, 2* is the LS-nucleolus. Otherwise, go to Step 2.

In this note we prove that the LS-nucleolus of a TU game with a non-empty impu-
tation set is also a normalization of the Banzhaf value. The truncated normalization of
the Banzhaf value, B', is the value on G defined for every (N,v) € G as follows:

1. If for every [ € N, (ZJEN B;(NV,v) — ’U(N)) /n < By(N,v), then for every i € N,

BY(N,v) = By(N,v) +% (U(N) -3 Bj(N,v)) : (1)

JeEN

2. If there is some [ € N with (ZJEN B;(V,v) —’U(N)) /n > Bj(N,v). Then, for
every i € N,
BH(NV,v) = B;(N,v) — min{B;(N,v), c} (2)

where ¢ > 0 such that 3>,y min{B;(N,v),c} = >~y Bj(N,v) — v(N).

The truncated normalization of the Banzhaf value above emerged while looking for an
additive normalization of the Banzhaf value that satisfies individual rationality. The
two cases considered distinguish games where B? satisfies individual rationality and
games where it fails to do so. In the first case B* selects the allocation given by B?. In
the second case, there is some player with a negative payoff according to B?. In this
case, the payoffs according to the Banzhaf value are reduced in a fixed amount subject
to no one receiving a negative payoff. The solution in this second case is inspired by
the CEL bankruptcy rule (Aumann and Maschler, 1985).

Next we show that the truncated normalization of the Banzhaf value is, in fact, the
LS-nucleolus.

Proposition 1. For every (N,v) € G, the allocation given by the truncated normaliza-
tion of the Banzhaf value is the LS-nucleolus of (N,v).

Proof. Take A = {i € N : (Sen Bj(N,v) —v(N)) /n < Bi(N,v)}. If A = N then
BY(V,v) = B?(V,v) and it is an imputation. Then, by Ruiz et al. (1996) it is the LS-
nucleolus. Now, assume that there is some [ € N with (ZjEN B;i(N,v) — v(N)) /n >

B;(N,v). We show that Algorithm 1 ends up at allocation B*(N,v). Take k = 1,
zt = B*(N,v), and M! = {i € N : x}(N,v) <0}. Then, M! # (). Besides, M! # N



because the imputation set I(N,v) # () and v(N) > 0 . Take k = 2 and we obtain 2
following Step 2 in Algorithm 1. Then, :1;? =0, for every j € M" and

1 1
2 _ .1 z(M*)
Tj =i+

= B3(N,v) +

for every j ¢ M'. Taking into account that

1 1 m!
B?(N,v) = > Bi(N,v) + ( - > B; NU)
_ 1 Z ? ’ _ 1 ¢ ’ _ 1
n—m ie M1 n—m ieM?! (n m ) iEN
m - Y B 5
= 1 v(N) — B’L N,?} — 1 B N U
n(n —ml) i n(n —ml) 22,
we obtain

m? = Bj(N,v) +

S

ml
<U(N) - Z Bi(N,U)> + n(n —mh) (U(N) - > Bi(N>U)>

i€EN iEN\M?T

n_ml Z B;(N,v) + n_1m1 (v(N)— > BZ-(N,U)).

eM!? iEN\M!

Next, M? = {j eN : 333 < 0} If M? = M', we finish. Otherwise, we repeat Step 2
in Algorithm 1. In the end we obtain xj =0, for every j € M*~1 and

2% = Bj(N,v) + I_(U(N)— )3 Bi(N,v))

k-1
n—m
tEN\MFk-1

j
precisely BY(N,v). O

for every j € N\ M*! where M*1 = {j eN : 2" lc O}. This allocation is

Let us examine the LS-nucleolus in some examples. The first two are instances of
weighted majority games. A weighted majority game is determined by a weight w; > 0
for every player ¢ € N and a quota g > 0 that determines the minimum joint weight that
a coalition must reach in order to be a winning coalition. The worth of a coalition is 1 if
it is winning and 0 otherwise. We denote a weighted majority game by [q; w1, ..., wy].

Example 1. Let (N,v) be the weighted majority game with N = {1,2,3,4,5} and
[5;3,2,2,2,1]. Its Banzhaf value is B(N,v) = (0.5675,0.3125,0.3125,0.3125,0.1875).
Then, Sien Bi(N,v) = 1.6875 > v(N) = 1. Thus, BY(N,v) = (0.425,0.175,0.175,0.175,
0.05) = B®(N,v). In this case each player’s Banzhaf value is reduced in 0.1375.

Example 2. Let (N,v) be the weighted majority game with N = {1,2,3,4} and
[3;1,1,1,0]. It easy to check that B(N,v) = (0.25,0.25,0.25,0). Then, > ;cn Bi(N,v) =
0.75 < v(N) = 1. Thus, BY(N,v) = (0.3125,0.3125,0.3125,0.1875) = B3(N,v). In this
case the Banzhaf value of every player can be increased in 0.0625, keeping individual
rationality. Although player 4 is a null player, he receives the minimum amount.



Lastly, we revisit the example given in Ruiz et al. (1996).

Example 3. Let (N,v) be the TU game given by N = {1,2,3,4,5} and the character-
istic function defined as v(3,4) =1, v(3,5) =1, v(4,5) = 1, v(1,3,4) = 1, v(1,3,5) =
1, v(1,4,5) = 1, v(2,3,4) = 1.4, v(2,3,5) = 1, v(2,4,5) = 1, v(3,4,5) = 1.75,
v(1,2,3,4) = 1.75, v(1,2,3,5) = 1, v(1,2,4,5) = 1, v(1,3,4,5) = 2, v(2,3,4,5) = 2,
v(N) = 2. The characteristic function v assigns 0 to all the remaining coalitions. Then,

B(N,v) = (0.0375,0.0875,0.80625, 0.80625, 0.6625),
B(NV,v) = (—0.0425,0.0075,0.72625, 0.7265, 0.5825), and
BY(V,v) = (0,0,0.714583,0.714583, 0.570833).

According to the Banzhaf value, we observe that there are two weak (but not symmetric)
players, 1 and 2, and three strong players, 3, 4, and 5. In this case, the additive
normalization of the Banzhaf value proposes a payoff below the first agent’s standalone
worth. Consequently, Bt differs from B2. Note that the truncation takes place not only
on the payoff of player 1 but also on the payoff of player 2, who get both 0.

Next, we briefly describe how the above procedure can be generalized to the class of
individually rational least square values (Ruiz et al., 1998a). A map w from {1,...,n—1}
on R, is called a symmetric weight function. This map is used to weight the excess
vector at efficient allocations. Coalition N is excluded because e(N,z) = 0 for every
efficient allocation x. Besides, all coalitions of the same size have the same weight. Take
a symmetric weight function w. The IRLS" value is defined for every (N,v) € G as
the optimal solution of the optimization problem

min Z (e(S,z) — é(v))?w(s)
0£SCN

s.t. (N) =v(N)
x; > v({i}),for every i € N.

If we take w(s) = 1, for every s = 1,...,n — 1, the ITRLS™ value of the TU game
(N, v) coincides with its LS-nucleolus. In case the feasible region of this optimization
problem is only the set of efficient allocations, the optimal solution is called a least
square value, LS™. Ruiz et al. (1998a) proposed a procedure to obtain the IRLS"™
value quite similar to Algorithm 1. In fact, both procedures differ only in the starting
point, being LS™(N,v) the initial allocation used to obtain the ITRLS™ value.

Ruiz et al. (1998a) show that for every (N, v) € G the allocation LS (N, v) is given
by

Lspv =" L (nai<v> -y aj(v)) ©

where a;(v) = > v(S)w(s), for every i € N and

S2i
n—1 o
a= Zw(s)(?_ f)

s=1



It is easy to check, after some reorganization of the terms in Expression (3), that

LSE(N,0) = = Y (0(8) — (S \ ) wls)+ (v(N) — Y ((S) — oS\ ) w<s>) .

S>i JEN & 535

Following the same reasoning as the one done in Proposition 1, we provide an explicit
expression for the TRLS" value. Take (N,v) € G and A = {j €N : LSP(N,v) > O}.
If A= N, then for every i € N

IRLSY(N,v) = LS”(N,v).

If A# N, then for every i € N

IRLS}"(N,v) = 1 Z (v(S) —v(S\ 1)) w(s) — min {; Z (v(S) —v(S\1)) w(s),c} ,

531 S3i

where ¢ > 0 is such that

> min {; 5" ((S) — (S 7)) w<s>,c} = 30 Y (0(S) — o8\ i) wls) — v(N).

jEN 53 JEN Si

Finally, Ruiz et al. (1998b) pointed out that the additive normalization of a semivalue
corresponds to a certain least square value. Hence, we can say that the truncated
normalization of a semivalue corresponds to a certain individually rational least square
value.
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