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Abstract

In this article we present a new perspective on the smooth exact penal-
ty function proposed by Huyer and Neumaier that is becoming more and
more popular tool for solving constrained optimization problems. Our ap-
proach to Huyer and Neumaier’s exact penalty function allows one to
apply previously unused tools (namely, parametric optimization) to the
study of the exactness of this function. We give a new simple proof of the
local exactness of Huyer and Neumair’s penalty function that significantly
generalizes all similar results existing in the literature. We also obtain new
necessary and sufficient conditions for the global exactness of this penalty
function.

1 Introduction

The method of exact penalty functions [8, 4, 7] is a powerful tool for solving
various constrained optimization problems. However, as it is well-known, exact
penalty functions are usually nonsmooth, even in the case when the original
problem is smooth. This obstacle makes it impossible to apply (without some
transformation of the problem) well-developed and extensively studied meth-
ods of smooth unconstrained optimization to minimization of an exact penalty
function.

Huyer and Neumaier in [9] proposed a new approach to exact penalization
that allows one to overcome nonsmoothness of exact penalty functions. Namely,
let the original constrained optimization problem have the form

min f(x) subject to F (x) = 0, x ∈ [x, x], (1)

where f : Rn → R and F : Rn → R
m are smooth functions, x, x ∈ R

n are given
vectors, and

[x, x] =
{

x = (x1, . . . , xn) ∈ R
n | xi ≤ xi ≤ xi ∀i ∈ {1, . . . , n}

}

.

The new approach consists in the introduction of an additional variable ε ≥ 0
in the following way. Choose w ∈ R

m, and note that problem (1) is equivalent
to the problem

min
x,ε

f(x) subject to F (x) = εw, ε = 0, x ∈ [x, x]. (2)
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Then one defines the new “smooth” penalty function for the augmented problem
(2) as follows

Fλ(x, ε) =











f(x), if ε = ∆(x, ε) = 0,

f(x) + 1
2ε

∆(x,ε)
1−q∆(x,ε) + λβ(ε), if ε > 0, ∆(x, ε) < q−1,

+∞, otherwise.

(3)

where λ ≥ 0 is the penalty parameter, ∆(x, ε) = ‖F (x)− εw‖2 is the constraint
violation measure, β : [0, ε] → [0,+∞) with β(0) = 0 is the penalty term, q > 0
and ε > 0 are some prespecified thresholds. Finally, one replaces the augmented
problem (2) with the penalized problem

min
x,ε

Fλ(x, ε) subject to (x, ε) ∈ [x, x]× [0, ε]. (4)

Observe that the penalty function Fλ(x, ε) is smooth for any ε ∈ (0, ε) and
x such that 0 < ∆(x, ε) < q−1 provided the function β is smooth on (0, ε).
Furthermore, it was proven in [9] that under a standard assumption (namely,
constraint qualification) the penalty function Fλ(x, ε) is locally exact. In other
words, (x∗, ε∗) is a point of local minimum of problem (4) if and only if ε∗ = 0
and x∗ is a point of local minimum of problem (1). Consequently, one can apply
methods of smooth unconstrained minimization to penalized problem (4) in
order to find a solution of initial constrained optimization problem (1).

Later on, Huyer and Neumaier’s approach was generalized [18, 2] and suc-
cessfully applied to various constrained optimization problems [15, 13], including
some optimal control problems [12, 10, 14]. However, it should be noted that
the existing proofs of the exactness of the smooth penalty function (3) and its
various generalizations are quite complicated, and overburdened by technical
details that overshadow the understanding of the technique of smooth exact
penalty functions. Also, the question of when problem (1) is actually equivalent
to problem (4) in terms of globally optimal solutions (in this case the penalty
function Fλ(x, ε) is called exact) has not been discussed in the literature.

The aim of this article is to present a new perspective on the method of
smooth exact penalty functions proposed by Huyer and Neumaier. This per-
spective allows one to apply previously unused tools (namely, parametric opti-
mization) to the study and construction of smooth exact penalty functions. It
also helped us to essentially simplify the proof of exactness of these functions.
Another aim of this articles is to provide first necessary and sufficient conditions
for Huyer and Neumaier’s penalty function to be (globally) exact.

The paper is organised as follows. In Section 2 we describe a new approach
to smooth exact penalty functions. Some general results that draw a connection
between the exactness of the new penalty function and some properties of a
perturbed optimization problem are presented in Section 3. In Section 4 we
give a new simple proof of the local exactness of the new penalty function
that significantly generalizes all results on the local exactness of Huyer and
Neumaier’s penalty functions existing in the literature. We also provide new
simple sufficient conditions for this penalty function to be globally exact.
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2 How to Construct a Smooth Exact Penalty

Function?

Two main approaches are usually used for the study of exact penalty functions:
the direct approach that is based on the use of error bounds and metric regular-
ity, and the indirect one that relies on the analysis of a perturbed optimization
problem. In the indirect approach [5, 6, 3, 17], a perturbation of the initial prob-
lem is introduced as a tool for the study of a penalty function that has already
been defined. However, one can introduce perturbation in order to construct a
penalty function.

Namely, define the perturbed objective function for problem (1) as follows:

g(x, µ) =











f(x), if µ = ∆(x, µ) = 0,

f(x) + 1
µ

∆(x,µ)
1−q∆(x,µ) , if µ > 0, ∆(x, µ) < q−1,

+∞, otherwise,

where µ ≥ 0 is a perturbation parameter. Consider the perturbed optimization
problem

min
x

g(x, µ) subject to x ∈ [x, x]. (5)

It is clear that the problem above with µ = 0 is equivalent to problem (1). More-
over, the penalization of the constraint F (x) = 0 is achieved via the introduced
perturbation. As a second step, note that the perturbed problem is equivalent
to the problem

min
x,µ

g(x, µ) subject to x ∈ [x, x], µ = 0.

Finally, inroduce a penalty function for the problem above that penalizes only
the constraint on the perturbation parameter, i.e. µ = 0. This penalty function
has the form

Fλ(x, µ) = g(x, µ) + λβ(µ), (6)

and it is smooth for any µ ∈ (0, ε) and x ∈ R
n such that 0 < ∆(x, µ) < q−1.

Thus, the fact that the nonlinear constraints are taken into account via pertur-
bation (not penalization), and the fact that the penalty term is constructed only
for a simple one dimensional constraint on the perturbation parameter helped us
to avoid nonsmoothness that usually arises due to the restrictive requirements
on the penalty term of an exact penalty function.

In the following section, we develop the approach discussed above in the
general case, and demonstrate that the exactness of penalty function (6) is
directly connected with some properties of perturbed problem (5).

3 Exact Penalty Function for a Perturbed Op-

timization Problem

Let X be a topological space, f : X → R ∪ {+∞} be a given function, and M ,
A ⊂ X be nonempty sets such that M∩A 6= ∅. Hereafter, we study the following
optimization problem:

min f(x) subject to x ∈ M, x ∈ A. (P)

3



Denote by Ω = M ∩ A the set of feasible points of this problem. Denote also
R+ = [0,+∞) and dom f = {x ∈ X | f(x) < +∞}. We suppose that f is
bounded below on Ω.

Introduce a metric space of perturbation parameters (P, d), and a perturbed
objective function g : X × P → R ∪ {+∞} such that there exists µ0 ∈ P for
which the following conditions are satisfied:

1. g(x, µ0) = f(x) for any x ∈ Ω (consistency condition);

2. argminx∈A g(x, µ0) = argminx∈Ω f(x) (exact penalization condition).

With the use of the exact penalization condition one gets that the problem (P) is
equivalent (in terms of globally optimal solutions) to the following optimization
problem:

min
x,µ

g(x, µ) subject to x ∈ A, µ = µ0. (7)

Furthermore, the consistency condition guarantees that if (x0, µ0) with x0 ∈ Ω
is a point of local minimum of the above problem, then x0 is a point of local
minimum of the problem (P).

We apply the exact exact penalization technique to treat the problem (7).
Namely, choose a function β : R+ → R+ ∪ {+∞} such that β(t) = 0 iff t = 0.
For any λ ≥ 0 define the penalty function

Fλ(x, µ) = g(x, µ) + λβ(d(µ, µ0))

and consider the following penalized problem

min
x,µ

Fλ(x, µ) subject to x ∈ A. (8)

Observe that the function λ → Fλ(x, µ) is non-decreasing.
Our aim is to study a relation between local/global minimizers of the initial

problem (P) and local/global minimizers of the problem (8) in the context of
the theory of exact penalty functions. To this end, recall the definition of exact
penalty function.

Definition 1. Let x∗ ∈ dom f be a point of local minimum of the problem (P).
The penalty function Fλ is called (locally) exact at the point x∗ (or, to be more
precise, at the point (x∗, µ0)) if there exists λ ≥ 0 such that (x∗, µ0) is a point
of local minimum of the problem (8). The greatest lower bound of all such λ is
denoted by λ(x∗).

Definition 2. The penalty function Fλ is said to be (globally) exact, if there
exists λ ≥ 0 such that Fλ attains a global minimum on the set A × P , and if
(x∗, µ∗) ∈ A×P is a globally optimal solution of the problem (8), then µ∗ = µ0.
The greatest lower bound of all such λ ≥ 0 is denoted by λ∗(g, β).

Remark 1. (i) Note that if (x∗, µ∗) ∈ A×P is a globally optimal solution of the
problem (8) with µ∗ = µ0, then x∗ is a globally optimal solution of the problem
(P) by virtue of the exact penalization condition on the function g(x, µ), and the
fact that Fλ(x, µ0) = g(x, µ0). Thus, the penalty function Fλ is globally exact
iff there exists λ ≥ 0 such that the problem (8) is equivalent to the problem (P)
in terms of globally optimal solutions.
(ii) It is easy to verify that if Fλ is globally exact, then for any λ > λ∗(g, β) the
function Fλ attains a global minimum on the set A×P , and if (x∗, µ∗) ∈ A×P
is a globally optimal solution of the problem (8), then µ∗ = µ0.
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Our aim is to show that the exactness of the penalty function Fλ is closely
related to some properties of the perturbed optimization problem

min
x

g(x, µ) subject to x ∈ A (Pµ).

Denote by h(µ) = infx∈A g(x, µ) the optimal value function of this problem.
Recall that the problem (Pµ), µ ∈ P , is said to be β-calm at a point x∗ ∈ A

if there exist λ ≥ 0, r > 0, and a neighbourhood U of x∗ such that

g(x, µ)− g(x∗, µ) ≥ −λβ(d(µ, µ)) ∀x ∈ U ∩ A ∀µ ∈ B(µ, r),

where B(µ, r) = {µ ∈ P | d(µ, µ) ≤ r}.

Remark 2. If β(t) ≡ t, then the concept of β-calmness coincides with the well-
known concept of calmness of a perturbed optimization problem [5, 6, 3, 17].

The following propositions describes a connection between the exactness of
the penalty function Fλ and the calmness of the perturbed problem (Pµ) (cf.
an analogous result for classical exact penalty functions in [3]).

Proposition 1. Let x∗ ∈ dom f be a point of local minimum of the problem
(P). Then the penalty function Fλ is exact at x∗ if and only if the problem (Pµ0

)
is β-calm at x∗.

Proof. The validity of the proposition follows from the fact that the inequality

g(x, µ)− g(x∗, µ0) ≥ −λβ(d(µ, µ0)) ∀x ∈ U ∩ A ∀µ ∈ B(µ, r),

holds true for some λ ≥ 0, r ≥ 0, and a neighbourhood U of x∗ iff for any
x ∈ U ∩ A and µ ∈ B(µ0, r) one has

Fλ(x, µ) = g(x, µ) + β(d(µ, µ0)) ≥ g(x, µ0) = Fλ(x, µ0),

i.e. iff (x∗, µ0) is a point of local minimum of Fλ on the set A.

Let us turn to the study of global exactness. We need an auxiliary definition.
The optimal value function h is called β-calm from below at a point µ ∈ P , if

lim inf
µ→µ0

h(µ)− h(µ)

β(d(µ, µ))
> −∞

(cf. the definition of calmness from below in [16]).

Theorem 1. Let β be strictly increasing. For the penalty function Fλ to be
globally exact it is necessary and sufficient that the following assumptions hold
true:

1. there exists a globally optimal solution of the problem (P);

2. the optimal value function h(µ) is β-calm from below at µ0;

3. there exists λ0 ≥ 0 such that Fλ0
is bounded below on the set A× P .
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Proof. Necessity. Since the penalty function Fλ is globally exact, then it attains
a global minimum on the set A×P for some λ ≥ 0. Therefore, in particular, Fλ

is bounded below on A× P .
Fix a sufficiently large λ ≥ 0, and a global minimizer (x∗, µ∗) of Fλ on the

set A × P . Due to the exactness of Fλ one has µ∗ = µ0. Therefore, as it was
mentioned above, x∗ is a globally optimal solution of the problem (P). Thus,
the first assumption is valid as well.

Observe that

g(x∗, µ0) ≥ h(µ0) := inf
x∈A

g(x, µ0) ≥ inf
(x,µ)∈A×P

Fλ(x, µ) = g(x∗, µ0).

Hence h(µ0) = g(x∗, µ0). The exactness of Fλ implies that for all x ∈ A and
µ ∈ P the one has

g(x, µ) + λβ(d(µ, µ0)) = Fλ(x, µ) ≥ Fλ(x
∗, µ0) = g(x∗, µ0) = h(µ0)

or, equivalently,

g(x, µ)− h(µ0) ≥ −λβ(d(µ, µ0)) ∀x ∈ A ∀µ ∈ P.

Since the inequality above holds true for all x ∈ A, one obtains that

h(µ)− h(µ0) ≥ −λβ(d(µ, µ0)) ∀µ ∈ P,

which implies the β-calmness from below of h at µ0.
Sufficiency. Let x∗ be a globally optimal solution of the problem (P). Then

taking into account the exact penalization condition on the function g(x, µ) one
gets that h(µ0) = g(x∗, µ0), i.e. x

∗ is a point of global minimum of the function
x → g(x, µ0).

From the fact that the optimal value function h is β-calm from below at µ0

it follows that there exist λ1 ≥ 0 and δ > 0 such that

h(µ)− h(µ0) ≥ −λ1β(d(µ, µ0)) ∀µ ∈ B(µ0, δ).

Hence for any x ∈ A one has

g(x, µ)− g(x∗, µ0) ≥ h(µ)− h(µ0) ≥ −λ1β(d(µ, µ0)) ∀µ ∈ B(µ0, δ)

or, equivalently, for all (x, µ) ∈ A×B(µ0, δ) one has

Fλ1
(x, µ) = g(x, µ) + λ1β(d(µ, µ0)) ≥ g(x∗, µ0) = Fλ1

(x∗, µ0).

On the other hand, if x ∈ A and µ /∈ B(µ0, δ), then for any λ ≥ λ2, where

λ2 = λ0 +
g(x∗, µ0)− c

β(δ)
, c = inf

(x,µ)∈A×P
Fλ0

(x, µ) > −∞,

one has

Fλ(x, µ) = Fλ0
(x, µ) + (λ− λ0)β(d(µ, µ0)) ≥

≥ c+ (λ − λ0)β(δ) ≥ g(x∗, µ0) = Fλ(x
∗, µ0).
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Thus, for any λ ≥ λ := max{λ1, λ2} one has

Fλ(x, µ) ≥ Fλ(x
∗, µ0) ∀(x, µ) ∈ A× P

or, in other words, the penalty function Fλ attains a global minimum on A×P
at the point (x∗, µ0). Let (x, µ) ∈ A × P be a different global minimizer of Fλ

on A × P . Let us show that µ = µ0, provided λ > λ, then one concludes that
the penalty function Fλ is globally exact.

Indeed, for any λ > λ, x ∈ A and µ 6= µ0 one has

Fλ(x
∗, µ0) = Fλ(x

∗, µ0) ≤ Fλ(x, µ) < Fλ(x, µ),

since β(d(µ, µ0)) > 0. Hence µ = µ0 by virtue of the fact that (x, µ) is a global
minimizer of Fλ on A× P .

Let us also point out a connection between the calmness of the optimal value
function h and the calmness of the perturbed problem (Pµ0

) at globally optimal
solutions of the problem (P) in the case when the set A is compact.

Theorem 2. Let the set A be compact, and the function g(x, µ) be lower semi-
continuous (l.s.c.) on A×B(µ0, r) for some r > 0. Then for the optimal value
function h to be β-calm from below at µ0 it is necessary and sufficient that the
problem (Pµ0

) is β-calm at every globally optimal solution of the problem (P).

Proof. Necessity. Fix a globally optimal solution x∗ of the problem (P). From
the definition of β-calmness it follows that there exist λ ≥ 0 and r > 0 such
that

h(µ)− h(µ0) ≥ −λβ(d(µ, µ0)) ∀µ ∈ B(µ0, r).

From the fact that x∗ is a globally optimal solution of the problem (P) it
follows that h(µ0) = g(x∗, µ0) due to the exact penalization condition on g(x, µ).
Therefore

g(x, µ)− g(x∗, µ0) ≥ h(µ)− h(µ0) ≥ −λβ(d(µ, µ0)) ∀(x, µ) ∈ A×B(µ0, r).

Thus, the problem (Pµ0
) is β-calm at x∗.

Sufficiency. Taking into account the facts that A is compact, and g(x, µ) is
l.s.c. one gets that the function g(·, µ0) attains a global minimum on the set
A, and the set A∗ of all points of global minimum of g(·, µ0) on A is compact.
Furthermore, from the exact penalization condition it follows that A∗ is also the
set of all globally optimal solutions of the problem (P). Hence the problem (Pµ0

)
is β-calm at every x∗ ∈ A∗. Therefore for any x∗ ∈ A∗ there exist λ(x∗) ≥ 0,
r(x∗) ≥ 0 and a neighbourhood U(x∗) of x∗ such that

g(x, µ)− g(x∗, µ0) ≥ −λ(x∗)β(d(µ, µ0)) ∀(x, µ) ∈ U(x∗)×B(µ0, r(x
∗)).

Applying the compactness of A∗ one obtains that there exist x∗

1, x
∗

2, . . . , x
∗

n ∈ A∗

such that A∗ ⊂
⋃n

k=1 U(x∗

k). Denote

U =

n
⋃

k=1

U(x∗

k), λ = max
k∈1:n

λ(x∗

k), r = min
k∈1:n

r(x∗

k).

Then for any x ∈ U one has

g(x, µ)− h(µ0) ≥ −λβ(d(µ, µ0)) ∀µ ∈ B(µ0, r), (9)

7



due to the fact that g(x∗, µ0) = h(µ0) = infx∈A g(x, µ0) for any x∗ ∈ A∗.
Set K = A \ U . Since A∗ ⊂ U , for any x ∈ K one has g(x, µ0) > h(µ0)

(recall that A∗ is the set of all global minimizers of g(·, µ0) on A). Consequently,
applying the lower semicontinuity of the function g(x, µ) one gets that for any
x ∈ K there exist δ(x) > 0 and a neighbourhood V (x) of x such that g(y, µ) >
h(µ0) for all (y, µ) ∈ V (x)×B(µ0, δ(x)). Observe that from the facts that U is
open and A is compact it follows that K = A\U is also compact. Applying this
fact and the inequality above it is easy to verify that there exists δ > 0 such
that g(x, µ) > h(µ0) for all (x, µ) ∈ K×B(µ0, δ). Therefore taking into account
(9) one gets that

g(x, µ)− h(µ0) ≥ −λβ(d(µ, µ0)) ∀(x, µ) ∈ A×B(µ0,min{δ, r}),

which yields

h(µ)− h(µ0) ≥ −λβ(d(µ, µ0)) ∀µ ∈ B(µ0,min{δ, r}).

Thus, the optimal value function h is β-calm from below at µ0.

Combining Theorems 1 and 2, and Proposition 1 one obtains that the fol-
lowing result holds true.

Corollary 1. Let A be compact, g(x, µ) be l.s.c. on A×B(µ0, r) for some r > 0,
and the function β be strictly increasing. Then the penalty function Fλ is globally
exact if and only if it is exact at every globally optimal solution of the problem
(P), and there exists λ0 ≥ 0 such that Fλ0

(x, µ) is bounded below on A× P .

4 Smooth Exact Penalty Functions

Let us apply the theory developed in the previous section to the study of Huyer
and Neumaier’s exact penalty functions. Let X and Y be metric spaces, A ⊂ X
be a nonempty set, and Φ: X ⇒ Y be a given set-valued mapping with closed
images. For any subset C ⊂ X and x0 ∈ X denote by d(x0, C) = infx∈C d(x0, x)
the distance between C and x0. For any y ∈ Y denote, as usual, Φ−1(y) = {x ∈
X | y ∈ Φ(x)}.

Fix an element y0 ∈ Y , and consider the following optimization problem:

min f(x) subject to y0 ∈ Φ(x), x ∈ A. (10)

Note that the set of feasible points of this problem has the form Ω = Φ−1(y0)∩A.
Following the general technique proposed above and the method of smooth

exact penalty functions [18], define P = R+, fix a non-decreasing function
φ : R+ ∪ {+∞} → R+ ∪ {+∞} such that φ(t) = 0 iff t = 0, and introduce
the perturbed objective function

g(x, µ) =











f(x), if x ∈ Ω, µ = 0,

+∞, if x /∈ Ω, µ = 0,

f(x) + 1
µ
φ(d(y0,Φ(x))

2), if µ > 0.

Clearly, the function g(x, µ) satisfies the consistency condition and the exact
penalization condition with µ0 = 0.

8



Introduce the penalty function

Fλ(x, µ) = g(x, µ) + λβ(µ),

where β : R+ → R+ ∪ {+∞} is a non-decreasing function such that β(µ) = 0
iff µ = 0. Let us obtain sufficient conditions for Fλ(x, µ) to be exact. In order
to formulate these conditions, recall that a set valued mapping Φ is said to be
metrically subregular with respect to the set A with constant a > 0 at a point
(x, y) ∈ X × Y with y ∈ Φ(x) and x ∈ A, if there exists a neighbourhood U of
x such that

d(Φ(x), y) ≥ ad(x,Φ−1(y) ∩A) ∀x ∈ U ∩ A.

Thus, Φ is metrically subregular with respect to the set A iff the restriction of
Φ to A is metrically subregular in the usual sense. See [1, 11] and the references
therein for the extensive study of metric subregularity.

Theorem 3. Let x∗ ∈ dom f be a point of local minimum of the problem (10),
the function f be Lipschitz continuous near x∗, and the set-valued mapping Φ
be metrically subregular with respect to the set A with constant a > 0 at (x∗, y0).
Suppose also that the following assumptions are satisfied:

1. there exist φ0 > 0 and t0 > 0 such that φ(t) ≥ φ0t for any t ∈ [0, t0];

2. there exist β0 > 0 and µ > 0 such that β(µ) ≥ β0µ for any µ ∈ [0, µ].

Then the penalty function Fλ(x, µ) is exact at x∗. Moreover, one has

λ(x∗) ≤
L2

4φ0β0a2
, (11)

where L ≥ 0 is a Lipschitz constant of f near x∗.

Proof. Since x∗ is a point of local minimum of the problem (10), there exists
ρ > 0 such that f(x) ≥ f(x∗) for any x ∈ B(x∗, ρ)∩Ω. Suppose, for a moment,
that there exists δ ∈ (0, ρ) such that

f(x)− f(x∗) ≥ −Ld(x,Ω) ∀x ∈ B(x∗, δ) \ Ω, (12)

where L ≥ 0 is a Lipschitz constant of f near x∗. Then applying the metric
subregularity of Φ with respect to A, and the fact that the function φ is non-
decreasing, one gets that for any µ > 0 and x ∈ B(x∗, r) ∩ A, where r =
min{δ, t0}, the following inequalities hold true:

g(x, µ)− g(x∗, 0) = f(x)− f(x∗) +
1

µ
φ(d(y0,Φ(x))

2) ≥

≥ −Ld(x,Ω) +
φ0a

2

µ
d(x,Φ−1(y0) ∩ A)2 = −Ld(x,Ω) +

φ0a
2

µ
d(x,Ω)2.

Note that the function h(t) = −Lt+ φ0a
2t2/µ attains a global minimum at the

point µL/2φ0a
2, and

h

(

µL

2φ0a2

)

= −
L2

4φ0a2
µ.

9



Hence for any µ > 0 and x ∈ B(x∗, r) ∩ A one has

g(x, µ)− g(x∗, 0) ≥ −
L2

4φ0a2
µ. (13)

On the other hand, if x ∈ B(x∗, r) ∩ A and µ = 0, then either x /∈ Ω and
g(x, µ) = +∞ ≥ g(x∗, 0) or x ∈ Ω and g(x, µ) = f(x) ≥ f(x∗) = g(x∗, 0) (recall
that r ≤ δ < ρ). Therefore the inequality (13) is satisfied for any x ∈ B(x∗, r)∩A
and µ ≥ 0, which yields that

Fλ(x, µ) = g(x, µ) + λβ(µ) ≥ g(x, µ) + λβ0µ ≥ g(x∗, 0) = Fλ(x
∗, 0)

for all (x, µ) ∈ B(x∗, r)× [0, µ], and for any λ ≥ L2/4φ0β0a
2. Thus, the penalty

function Fλ(x, µ) is exact at x
∗, and (11) holds true.

It remains to show that inequality (12) is valid for some δ > 0. Indeed, fix
x ∈ B(x∗, ρ/2) \ Ω. By the definition of the distance between a point and a
set there exists a sequence {xn} ⊂ Ω such that d(x, xn) → d(x,Ω) as n → ∞.
Moreover, without loss of generality one can suppose that d(x, xn) ≤ ρ/2 for
any n ∈ N, since d(x, x∗) ≤ ρ/2 and x∗ ∈ Ω. Consequently, one has

d(xn, x
∗) ≤ d(xn, x) + d(x, x∗) ≤

ρ

2
+

ρ

2
= ρ,

which implies that f(xn) ≥ f(x∗). Therefore applying the Lipschitz continuity
of f near x∗ one obtains that for any n ∈ N the following inequalities holds true

f(x)− f(x∗) = f(x)− f(xn) + f(xn)− f(x∗) ≥ f(x)− f(xn) ≥ −Ld(x, xn).

Passing to the limit as n → ∞ one obtains the desired result.

Applying Corollary 1, and the theorem above one can easily obtain sufficient
conditions for the penalty function Fλ to be globally exact.

Theorem 4. Let the set A be compact. Suppose that the following assumptions
are satisfied:

1. f is l.s.c. on A, and locally Lipschitz continuous near globally optimal
solutions of the problem (P);

2. Φ is metrically subregular with respect to the set A at (x∗, y0) for any
globally optimal solution x∗ of the problem (P);

3. the mapping x → d(y0,Φ(x)) is continuous on A;

4. φ is l.s.c., and there exist φ0 > 0 and t0 > 0 such that φ(t) ≥ φ0t for any
t ∈ [0, t0];

5. β is strictly increasing and there exist β0 > 0 and µ > 0 such that β(µ) ≥
β0µ for any µ ∈ [0, µ].

Then the penalty function Fλ is globally exact.

Proof. Applying Theorem 3, and taking into account the assumptions of the
theorem one obtains that the penalty function Fλ is exact at every globally
optimal solution of the problem (P). Since f is l.s.c. on A, and the set A is
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compact, then f is bounded below on this set. Hence the function g(x, µ) is
bounded below on A × R+, which implies that the penalty function Fλ is also
bounded below on A× R+ for any λ ≥ 0.

Let us show that the function g(x, µ) is l.s.c. on A×R+. Then with the use
of Corollary 1 one obtains the desired result.

For any ε > 0 introduce the function

gε(x, µ) = f(x) +
1

µ+ ε
φ(d(y0,Φ(x))

2) (x, µ) ∈ A× R+.

Taking into account the fact that the function x → d(y0,Φ(x)) is continuous on
A, and φ is l.s.c., one gets that the function x → φ(d(y0,Φ(x))

2) is l.s.c. on A as
well. Hence and from the lower semicontinuity of f it follows that the function
gε(x, µ) is l.s.c. on A× R+. Note that

g(x, µ) = sup
ε>0

gε(x, µ) ∀(x, µ) ∈ A× R+.

Therefore the function g(x, µ) is l.s.c. on A × R+ as the supremum of a family
of l.s.c. functions.

Theorem 3 can be modified to the case of more general functions g(x, µ) and
Fλ(x, µ). In particular, let

g(x, µ) =











f(x), if x ∈ Ω, µ = 0,

+∞, if x /∈ Ω, µ = 0,

f(x) + 1
µαφ(d(y0,Φ(x))

2), if µ > 0.

and
Fλ(x, µ) = g(x, µ) + λβ(µ),

where α > 0 (cf. [13, 12, 14]). The following result holds true.

Theorem 5. Let x∗ ∈ dom f be a point local minimum of the problem (10),
the function f be Lipschitz continuous near x∗, and the set-valued mapping Φ
be metrically subregular with respect to the set A at (x∗, y0). Suppose that the
following assumptions are satisfied:

1. φ(t) ≥ φ0t
γ for any t ∈ [0, t0], and for some φ0 > 0, γ > 0 and t0 > 0;

2. β(µ) ≥ β0µ
σ for any µ ∈ [0, µ], and for some β0 > 0, σ > 0 and µ > 0.

Suppose also that

γ >
1

2
, σ ≤

α

2γ − 1
.

Then the penalty function Fλ(x, µ) is exact at x∗.

Proof. Arguing in the same way as in the proof of Theorem 3 one can easily
verify that there exists Θ > 0 such that

g(x, µ)− g(x∗, 0) ≥ −Θµ
α

2γ−1 ∀x ∈ B(x∗, r) ∩ A ∀µ ≥ 0,

where r > 0 is sufficiently small. Then applying the assumption on the function
β one can check that Fλ is exact at x∗, provided σ ≤ α/(2γ − 1).
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