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Abstract The two best studied facility location problems are the p-median problem
and the uncapacitated facility location problem (Daskin, Network and discrete loca-
tion: models, algorithms, and applications. Wiley, New York, 1995; Mirchandani and
Francis, Discrete location theory. Wiley, New York, 1990). Both seek the location of
the facilities minimizing the total cost, assuming no uncertainty in costs exists, and
thus all parameters are known. In most real-world location problems the demand is
not certain, because it is a long-term planning decision, and thus, together with the
minimization of costs, optimizing some robustness measure is sound. In this paper
we address bi-objective versions of such location problems, in which the total cost, as
well as the robustness associated with the demand, are optimized. A dominating set
is constructed for these bi-objective nonlinear integer problems via the ε-constraint
method. Computational results on test instances are presented, showing the feasibility
of our approach to approximate the Pareto-optimal set.
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1 Introduction and problem statement

In discrete location one has a set J = {1, . . . , n} of clients, a set I = {1, . . . ,m} of
potential sites, and the location of the facilities is sought so that a certain performance
measure is optimized. In the p-median problem, first introduced in [25,26], the number
of facilities to locate is fixed (to p), and the goal is to minimize the overall total
transportation cost. This is done by solving the following combinatorial optimization
problem:

min
N⊆I

{∑
j∈J

ω j min
i∈N di j : |N | = p

}
, (1)

where di j is the cost of satisfying one unit of demand of client j ∈ J from the facility
located at site i ∈ I , and ω j is the demand of client j .

The p-median problem is a famous fundamental problem in discrete location theory
known to be NP-hard [30]. There are plenty of exact and heuristic methods proposed
for solving the problem [1–3,17,45,48]. Problem (1) is easily formulated as an integer
program, as we recall now. For each i ∈ I let yi be a binary variable which takes the
value 1 if the facility at site i is open, and 0 otherwise, and for each pair i ∈ I , j ∈ J
let xi j be the binary variable, which is equal to 1 if client j is served by facility at i ,
and 0 otherwise. With this notation, the p-median problem is written as follows [49]

min
(x,y)

∑
i∈I

∑
j∈J

ω j di j xi j (2)

∑
i∈I

xi j = 1 j ∈ J (3)

xi j ≤ yi i ∈ I, j ∈ J (4)∑
i∈I

yi = p (5)

yi ∈ {0, 1} i ∈ I (6)

xi j ∈ {0, 1} i ∈ I, j ∈ J (7)

Constraints (3) ensure that each client j is served by exactly one facility. Constraints (4)
impose that a client can only be served by open facilities. Constraint (5) enforces the
number of facilities to be p. We denote the feasible set of the p-median problem as
X pM = {(x, y): satisfying (3)–(7)}.

In theUncapacitated Facility Location Problem (UFLP) [37], the number of plants
to be opened is not fixed in advance. Instead, one minimizes the total cost, which is
assumed to be given by the total transportation cost plus a cost associated with the
plants to be opened. This leads to the following combinatorial problem:
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min
N⊆I

⎧⎨
⎩

∑
j∈J

ω j min
i∈N di j +

∑
i∈N

fi

⎫⎬
⎭ , (8)

where, as for the p-median, di j is the cost of satisfying one unit of demand of client
j ∈ J from the facility located at site i ∈ I , ω j is the demand of client j , and now
we have an operating cost fi associated with facility at i ∈ I. The UFLP is easily
formulated as a linear integer program, similar to (2)–(7), but the feasible region
XUFLP is defined now by constraints (3), (4), (6), (6), and in the objective (2) the term∑

i∈I fi yi is added. For extensive reviews of the Uncapacitated Facility Location
Problem and methods of solving it, see e.g. [8,12,33–36,54].

In the formulations above it is assumed that the parameters ω j are known, which
may be rather unrealistic in practice (for review, see [15,24,28,51] and references
therein). When the parameters are not known precisely, and some estimates ω̂ j are
given instead, as opposed to classic robust discrete optimization theory [6,7], one
may consider a robust version based on a threshold model. It was introduced in [11]
and is specifically useful when there is no fully reliable information about possible
demand changes (see also [10,13]). Such situation may arise when locating facilities
to serve clients during a long period of time, within which neither demand changes
nor their probability distribution are known. For other robust optimization approaches
the reader is also referred to [4,5,46].

In the threshold model, a threshold value τ > 0 is introduced, to be interpreted as
the highest admissible total cost (or budget) of satisfying the demands of all clients,
and the robustness ρ(S) of a solution S ⊆ I is defined as the smallest error in the
estimates ω̂ j which makes the total cost exceed the threshold τ. For the p-median, the
robustness ρpM (S) of a solution S is then

ρpM (S) = min
ω∈Rn+

{
‖ω − ω̂‖ :

∑
j∈J

ω j min
i∈S di j > τ

}
, (9)

where ‖ · ‖ is a norm. If we write the solutions S ⊆ I in terms of the variables (x, y),
we obtain the robustness ρpM (x, y) of a solution (x, y) ∈ X pM as

ρpM (x, y) = min
ω∈Rn+

{
‖ω − ω̂‖ :

∑
i∈I

∑
j∈J

ω j di j xi j > τ
}
.

In [11] it was proven that the robustness of a solution can explicitly be computed when
the objective function is linear in ω̂. Applied to the p-median problem this yields

ρpM (x, y) = max

{
0,

τ − ∑
i∈I

∑
j∈J ω̂ j di j xi j

‖ (∑
i∈I di j xi j

)
j∈J ‖◦

}
, (10)

where ‖ · ‖◦ denotes the dual norm of ‖ · ‖.
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If, instead of considering the p-median problem, the UFLP is addressed, the robust-
ness function ρUFLP takes the form

ρUFLP (x, y) = max

{
0,

τ − ∑
i∈I fi yi − ∑

i∈I
∑

j∈J ω̂ j di j xi j

‖(∑i∈I di j xi j ) j∈J‖◦

}
, (11)

For the twomodels under consideration,maximizing the robustness andminimizing
the estimated total cost are different objectives. In this paperwe address the bi-objective
problem in which both are considered as separate criteria, yielding, for the case of the
p-median, the following bi-criteria nonlinear integer programming problem

min(x,y)
∑

i∈I
∑

j∈J ω̂ j di j xi j
max(x,y) ρpM (x, y)
s.t. (x, y) ∈ X pM ,

(BpM)

and, for the case of the UFLP,

min(x,y)
∑

i∈I
∑

j∈J ω̂ j di j xi j + ∑
i∈I fi yi

max(x,y) ρUFLP (x, y)
s.t. (x, y) ∈ XUFLP

(BUFLP)

The location problems with multiple criteria have intensively been studied in the
literature since 1970th. The first reviews of such problems are supposed to be [14,27].
Excellent reviews on this topic can also be find in very recent paper [22] and in [19].
The reader is also referred to [29,32] for the review and some solution methods for
multicriteria location problems on networks.

The remainder of the paper is organized as follows. Section 2 describes an effective
procedure for finding an approximation to the Pareto optimal set of the two bi-objective
problems above, namely, the so-called ε-constraint method. The effectiveness of such
approach is illustrated with computational experiments on a wide range of problem
instances taken from the literature, as presented in Sect. 3. The paper concludes in
Sect. 4 with some final remarks and possible lines of future research.

2 Algorithm for finding a dominating set

Different solution concepts can be applied to finding solutions to bi-criteria integer
programming problems such as (BpM) or (BUFLP), [18,20]. Since the analysis is
identical for both problems, let us focus on the bi-objective version (BpM) of the p-
median problem. The set of Pareto optimal solutions of (BpM) is the set of solutions
(x∗, y∗) ∈ X pM such that no (x, y) ∈ X pM exists satisfying

∑
i∈I

∑
j∈J ω̂ j di j xi j ≤ ∑

i∈I
∑

j∈J ω̂ j di j x∗
i j

ρpM (x, y) ≥ ρpM (x∗, y∗), (12)
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with at least one inequality strict. Similarly, the set of weakly Pareto optimal solutions
of (BpM) is the set of of solutions (x∗, y∗) ∈ X pM such that no (x, y) exists satisfying
(12) with both inequalities strict.

In this paperwewill construct an approximation to the Pareto set of (BpM), namely,
a δ = (δ1, δ2)-dominating set for (BpM), [9,23,50]. We recall that a set X∗ ⊂ X pM

is a δ-dominating set for (BpM) if, for any (x, y) ∈ X pM there exists (x∗, y∗) ∈ X∗
such that

∑
i∈I

∑
j∈J ω̂ j di j x∗

i j ≤ ∑
i∈I

∑
j∈J ω̂ j di j xi j + δ1

ρpM (x∗, y∗) ≥ ρpM (x, y) − δ2.
(13)

A δ-dominating set for (BpM) is obtained by implementing the well-known ε-
constraint method, which has been successfully used, among others, for solving the
set partitioning problem [21], the traveling salesman problem [41], a bi-objective
stochastic covering tour problem [53], a semiobnoxious location problem [9,50],
the assignment problem and the spanning tree problem [40,42,43]. Note that
there was also proposed an augmented modification of ε-constraint method allow-
ing one to avoid some drawbacks of the original method, e.g. providing weak
Pareto optimal solutions or problems with method efficiency for the case of mul-
tiple criteria [38]. Such approach was proved to be effective for multi-objective
combinatorial optimization problems [39] including reliability and uncertainty
issues [47].

When applied to bi-criteria problems like (BpM), the main idea of the method is to
optimize an objective function, considering the other as constraint, bounded by some
parameter ε ≥ 0. Varying then the parameter in its full range and solving exactly
a series of corresponding subproblems allows one to obtain the whole weak Pareto
optimal set, or, under someassumptions of uniqueness, thePareto optimal set. If instead
of solving the problems exactly, a given tolerance is allowed, then a δ-dominating set
is obtained.

Here we address the problem of minimizing, with an accuracy δ1, the estimated
transportation cost, while the robustness is not smaller than ε > 0 :

min
(x,y)

∑
i∈I

∑
j∈J ω̂ j di j xi j

s.t. ρpM (x, y) ≥ ε

(x, y) ∈ X pM . (14)

The parameter ε ≥ 0 is varied in a fine grid to assure that a δ-dominating set
is obtained, [52]. For a given ε, such subproblem has a linear objective, the linear
constraints defining X pM , and one non-linear constraint, since ρpM is, in general,
non-linear. However for the most natural choice of the norm ‖ · ‖ defining the error
in estimates, namely, the �∞ norm, yielding the highest individual deviation in the
demands estimates, subproblem (14) can be reduced to a linear p-median type problem
of the form (2)–(7) with one extra linear constraint. Indeed, in such case ‖ · ‖◦ is the
�1 norm, and (14) takes the following linear form
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min
(x,y)

∑
i∈I

∑
j∈J

ω̂ j di j xi j (Pε)

s.t.
∑
i∈I

∑
j∈J

(
ω̂ j + ε

)
di j xi j ≤ τ

(x, y) ∈ X pM ,

Note that such a reduction is correct only under the additional obvious assumption
that the chosen threshold value is always strictly greater than the optimal value of the
p-median problem. Under this assumption, made in what follows, we have that, for
ε = 0, the constraint is redundant and thus (P0) is just the p-median problem.

For any problem (Pε), let X pM (ε) and SolpM (ε, δ1) be respectively the feasible set
and the set of its δ1-optimal solutions. The following algorithm provides a sequence
of points yielding a δ = (δ1, δ2)-dominating set for (BpM). We start by solving the
p-median problem, i.e., solving (P0), and taking as first value of ε the robustness
of an optimal solution (x0, y0) to the p-median problem. Then, at each iteration the
parameter ε is updated to the robustness of the optimal solution found, increased by a
small positive quantity δ2.

0. Initialization: Find (x0, y0) ∈ SolpM (0, δ1), set ε0 := τ − ∑
i∈I

∑
j∈J ω̂ j di j x0i j∑

i∈I
∑

j∈J di j x
0
i j

,

k := 0;
1. Set ε̄k := εk + δ2;
2. Solve the problem (Pε̄k ) with a precision δ1;
3. If X pM (ε̄k) = ∅, then stop, otherwise set

(xk+1, yk+1) ∈ SolpM (ε̄k, δ1);

4. Set εk+1 := τ − ∑
i∈I

∑
j∈J ω̂ j di j x

k+1
i j∑

i∈I
∑

j∈J di j x
k+1
i j

, k := k + 1 and go to step 1.

As stopping criterion of the algorithm we use the condition of the feasible set of the
problem (Pε̄k ) for some ε̄k being empty. The validity of this condition follows from
the following

Proposition 1 If ε ≥ ε∗, then X pM (ε∗) ⊆ X pM (ε). In particular, if X pM (ε) = ∅,
then �(x ′, y′) ∈ X pM : ρpM (x ′, y′) > ε.

The finiteness of the procedure follows from the finiteness of the feasible set
X pM and the monotonicity of the sequence εk . This way a finite set of points
{(x0, y0), (x1, y1), . . . , (xk, yk)} is returned by the algorithm. Such points satisfy
the following

Proposition 2 The set {(x0, y0), (x1, y1), . . . , (xk, yk)} returned by the algorithm is
a δ-dominating set for (BpM). For δ1 = 0, i.e., if the subproblems are solved to
optimality, then each (x j , y j ) is weakly efficient solution to (BpM), and, moreover,
if SolpM (ε̄ j , δ1) is a singleton, then (x j+1, y j+1) is also efficient to (BpM).
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Threshold robustness in discrete facility location problems 1303

Identical results can be derived for the biobjective version of the UFLP in the same
way.

3 Computational results

The described scheme of the ε-constraint method has been implemented in C++.
Experiments have been carried out on a PC with Pentium 4 CPU 3.2GHz and 1.5GB
of RAM. The commercial IP solver used to solve subproblems (Pε) was CPLEX
Optimizer 12.1.0.1 Our test bed consists of instances taken from two different sources:
all metric instances from the TSP library with a number of potential sites for locating
facilities and clients from 50 to 500 (overall 37 problems), and also the test instances
from the benchmark library “Discrete Location problems”2 [31] (DLP) of classes
Euclidean, Uni f orm, PCodes, Chess and FPP for which |I | = |J | = 100. Each
of these classes contains 30 instances. For (BpM), the computational results for the
TSP instances are obtained for different numbers p of facilities to be opened which
vary from 5 to 50 depending on the problem size. For both the p-median problem
and the UFLP, three different values are taken for the budget τ , namely, τ = 1.05Z ,
τ = 1.1Z , τ = 1.3Z , where Z is the optimal cost of the corresponding p-median or
uncapacitated facility location problem. Clients’ demand estimates ω̂ j are randomly
chosen with uniform distribution in the interval [1000, 10,000]. The stepsize δ2 is
assumed to be 0.01, and δ1 = 0.

For each instance, a δ-dominating set is built. If we represent such a set in the
objective space, we obtain plots like Fig. 1, which corresponds to (BpM) for the
problem instance KroA200.tsp and the choices p = 50 and τ = 1.3Z , or Fig. 2, in
which an approximation to the Pareto set of (BUFLP) is obtained for the problem
instance 411Eucl from the class Euclidean of DLPwith the same value of budget τ . An
interesting feature of those two plots, repeatedly found in our experiments, is that the
robustness does not vary much with respect to the variation in total cost, suggesting
that, in order to increase significantly the robustness, solutions of higher estimated
cost may be needed.

Let us analyze inwhat follows how the cardinality of the δ-dominating set is affected
by the parameters of the problems, discussing first the results obtained for (BpM).
Computational results for the 37 instances of the TSP library are reported in Tables 1
and 2, where column p represents the number of open facilities, ranging from p = 5
to p = 50, columns 1, 2, . . . under the common banner |S| contain the number of
instances for which 1, 2, etc. different points have been found with a certain budget
τ . For example, for τ = 1.05Z and p = 5, 32 out of the 37 instances yielded just
one point in the δ-dominating set. Results for only 31 problems are presented when
the number of medians is greater than or equal to 30: in these cases the problems in
which the number of potential sites for locating facilities and clients is less than 100
are excluded from consideration.

1 http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/.
2 http://math.nsc.ru/AP/benchmarks/english.html.
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Fig. 1 δ-dominating set for (BpM) in KroA200.tsp
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Fig. 2 δ-dominating set for (PUFLP) in 411Eucl
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Table 1 Cardinality of the
approximate solution set to
(BpM)

TSP instances

p |S|
τ = 1.05Z τ = 1.1Z

1 2 3 4 5 6 1 2 3 4 5 6 7 10

5 32 5 0 0 0 0 31 6 0 0 0 0 0 0

10 29 8 0 0 0 0 21 15 0 1 0 0 0 0

15 26 10 1 0 0 0 18 11 3 3 2 0 0 0

20 28 8 1 0 0 0 15 16 3 2 0 0 1 0

30 18 10 1 1 0 1 12 7 6 2 1 0 2 1

40 19 8 3 1 0 0 10 8 7 2 3 0 1 0

50 19 10 0 0 1 1 9 12 1 3 4 1 1 0

Table 2 Cardinality of the approximate solution set to (BpM)

p |S|
τ = 1.3Z

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 18 19

5 23 13 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

10 13 13 3 3 3 2 0 0 0 0 0 0 0 0 0 0 0

15 6 11 6 6 4 1 0 0 1 1 0 1 0 0 0 0 0

20 4 10 5 8 2 3 1 1 1 1 0 1 0 0 0 0 0

30 4 5 4 2 2 5 2 4 0 1 0 1 1 0 0 0 0

40 0 1 7 3 4 3 3 3 2 1 0 2 1 0 1 0 0

50 2 2 3 6 6 2 0 1 3 0 2 0 0 1 1 1 1

TSP instances

The distribution of the cardinality of the δ-dominating set for the three budgets and
7 values of p considered is represented in the boxplot of Fig. 3.

Results for the instances from the library DLP are presented in Table 3, where the
first column represents the class of instances, and other notations are the same as for
the case of TSP. The distribution of the cardinality of the δ-dominating set for the
three budgets and the 5 classes of instances considered is represented in the boxplot
of Fig. 4.

Analyzing the obtained results one can note that, for overwhelming majority of the
problem instances from the test library DLP, the δ-dominating set contains only one
single solution. This is particularly remarkable for small budgets (1.05Z and 1.1Z ),
i.e. greater than theminimal one for 5 and 10% respectively. Themaximum cardinality
found never exceeds 3, and is obtained for only one instance of the Euclidean class
with τ = 1.1Z . Increasing the budget results in the growth in the number of instances
in which the δ-dominating set contains 2 and 3 points. So the maximum cardinality
found for the largest budget τ = 1.3 is equal to 6 and obtained in only one problem
instance. The correlation between cardinality of the solution set and the budget τ can
especially be observed for the TSP problem instances.
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Fig. 3 Cardinality of the approximate solution set to (BpM). TSP instances

Table 3 Results on DLP
instances

|S|
τ = 1.05Z τ = 1.1Z τ = 1.3Z

1 2 3 1 2 3 1 2 3 4 5 6

Euclidean 24 4 2 19 10 1 9 16 1 1 2 1

Uniform 26 4 0 24 6 0 18 10 2 0 0 0

Chess 30 0 0 29 1 0 22 7 1 0 0 0

PCodes 29 1 0 28 2 0 26 3 1 0 0 0

FPP 29 1 0 28 2 0 25 5 0 0 0 0

The computational results for the UFLP are very similar and not fully reproduced
here. As for the p-median, in most cases for both classes of instances the δ-dominating
set contains only 1 or 2 solutions when the budget is relatively small, e.g. 1.05Z . When
the budget is increased, however, there is a little growth in the number of problem
instances for which more than one point is obtained.

Let us provide an example of how the optimal value of the location objective and
the robustness criterion changes from the first δ-efficient solution, being the optimal
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Fig. 4 Cardinality of the approximate solution set to (BpM). DLP instances

value of the corresponding problem, to the last found solution. In Tables 4, 5, 6, and 7,
8, 9 we present the results for the UFLP and the p-median problem obtained for all
of 30 Euclidean class instances. In the first two columns we give the problem name
and the number of facilities opened. Columns Obj. and Obj. rob. present the optimal
value and its robustness (first δ-efficient solution) respectively. The next two columns,
Max . obj.(%) and Max . rob.(%), indicate the increase (in percent points) of the
value of the location criterion and the robustness of the last δ-efficient solution with
respect to the first one. In columns Nδ and T ime (s) one can find the cardinality of
the approximate solution set and the computational time in seconds. Note that due to
the big number of the problems in which only one δ-efficient solution has been found,
we omit them from Tables 7, 8, and 9.

From the computational results for the UFLP one can see that when the budget
is relatively small, i.e. τ = 1.05Z or τ = 1.10Z the difference between the values
of location objective for the first and last δ-efficient solutions lies within 1% for all
cases, while the robustness changes bymore than 10% (problem 2611 in Table 5). The
same can be seen in the case when τ = 1.3 (Table 6). Here the maximum growth of
robustness is more than 25% for problem 2611, while the value of the UFLP objective
for this problem only changes up to 3%. The same observations can also be made
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Table 4 Results on Euclidean class instances for the UFLP ant τ = 1.05Z instances

Prob. p Obj. Obj. rob. Max. obj. (%) Max. rob. (%) Nδ Time (s)

1011 12 504369705 392.57 0.26 9.03 3 2.68

1111 13 494317552 396.74 0.34 0.38 2 1.83

111 12 504985897 406.18 0.18 0.26 4 2.70

1211 16 531543135 504.07 0.03 3.34 2 1.51

1311 16 555805265 503.00 0.10 5.77 3 2.09

1411 16 536716881 527.25 0.15 2.51 3 2.05

1011 12 504369705 392.57 0.26 9.03 3 2.49

1111 13 494317552 396.74 0.34 0.38 2 1.73

111 12 504985897 406.18 0.18 0.26 4 2.62

1211 16 531543135 504.07 0.03 3.34 2 1.50

1311 16 555805265 503.00 0.10 5.77 3 2.28

1411 16 536716881 527.25 0.15 2.51 3 2.15

1511 14 547352584 456.21 0.14 1.94 3 2.49

1611 16 527511332 506.95 – – 1 1.13

1711 13 508186287 415.75 – – 1 1.07

1811 15 541531310 462.72 0.06 2.74 2 1.58

1911 14 515686282 428.95 – – 1 1.01

2011 16 522756729 505.68 – – 1 1.04

2111 12 510483434 424.50 0.15 0.98 2 1.95

211 14 483758444 424.25 0.14 5.39 5 3.85

2211 16 531927970 505.39 – – 1 0.96

2311 13 508395882 420.43 0.27 4.94 3 2.22

2411 13 521012649 439.29 0.16 0.78 3 2.25

2511 14 530371536 429.76 0.20 2.46 3 2.30

2611 12 542521681 425.40 0.11 8.20 4 2.86

2711 14 499536471 471.97 – – 1 0.93

2811 16 553757141 512.10 0.14 3.08 4 2.64

2911 14 534040677 454.19 0.04 3.36 2 1.49

3011 13 496903018 407.89 0.20 0.21 2 1.62

311 15 507895781 483.74 – – 1 0.98

411 15 539319652 448.75 0.22 5.63 3 2.16

511 14 503902198 433.60 0.03 0.12 2 1.44

611 14 521253101 440.64 – – 1 1.01

711 16 553653000 514.84 – – 1 0.91

811 15 519653291 455.18 0.03 0.49 2 1.50

911 13 519455489 409.74 – – 1 0.91

on the results for the p-median problem, though the difference in the values of both
criteria is not as big as for the UFLP.

Based on these results one can conclude that when the robustness is of primary
importance for the decision-maker, it may make sense to choose more robust solutions

123



Threshold robustness in discrete facility location problems 1309

Table 5 Results on Euclidean class instances for the UFLP ant τ = 1.1Z instances

Prob. p Obj. Obj. rob. Max. obj. (%) Max. rob. (%) Nδ Time (s)

1011 12 504369705 785.13 0.73 12.03 5 3.99

1111 13 494317552 793.47 0.83 6.23 6 5.25

111 12 504985897 812.36 0.55 4.14 9 6.82

1211 16 531543135 1008.14 0.05 3.68 4 2.69

1311 16 555805265 1006.00 0.10 6.73 3 2.31

1411 16 536716881 1054.50 0.52 5.56 7 4.99

1511 14 547352584 912.42 0.67 6.36 10 10.10

1611 16 527511332 1013.90 – – 1 0.92

1711 13 508186287 831.50 – – 1 0.88

1811 15 541531310 925.44 0.33 4.95 3 2.32

1911 14 515686282 857.89 – – 1 0.93

2011 16 522756729 1011.37 0.50 1.92 6 4.53

2111 12 510483434 848.99 0.41 3.46 3 4.09

211 14 483758444 848.51 0.14 6.72 5 3.66

2211 16 531927970 1010.79 0.47 0.59 4 2.87

2311 13 508395882 840.85 0.27 7.60 3 2.45

2411 13 521012649 878.59 0.90 4.90 6 5.36

2511 14 530371536 859.53 0.63 7.38 6 5.34

2611 12 542521681 850.80 1.08 10.90 8 7.13

2711 14 499536471 943.95 – – 1 0.93

2811 16 553757141 1024.21 0.14 4.50 4 2.70

2911 14 534040677 908.39 0.13 3.78 3 2.13

3011 13 496903018 815.79 0.57 3.90 4 3.36

311 15 507895781 967.48 – – 1 0.97

411 15 539319652 897.50 0.80 8.86 15 13.46

511 14 503902198 867.20 0.03 0.45 2 1.65

611 14 521253101 881.28 0.36 2.82 3 2.48

711 16 553653000 1029.69 0.30 1.58 2 1.66

811 15 519653291 910.36 0.03 0.75 2 1.48

911 13 519455489 819.49 – – 1 0.95

enjoying less effective location positions. In this case the loss of the optimal value of
transportation costs for serving the demand of all customers will be only of a small
percentage, while the growth of the robustness value might be significant. One can
also note that the cardinality of the approximate solution set, especially in the case of
the p-median, is rather small even when the budget is relatively big. Therefore there
are not so many options for the decision-maker to vary the efficiency of serving the
demand of customers during some long period of time, and the optimal p-median
solution, having its own significant robustness value, may be preferred.
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Table 6 Results on Euclidean class instances for the UFLP ant τ = 1.3Z instances

Prob. p Obj. Obj. rob. Max. obj. (%) Max. rob. (%) Nδ Time (s)

1011 12 504369705 2355.40 3.73 22.56 21 27.28

1111 13 494317552 2380.42 3.37 12.25 30 39.21

111 12 504985897 2437.07 3.12 11.08 32 40.54

1211 16 531543135 3024.43 0.88 5.90 14 16.98

1311 16 555805265 3018.00 0.96 9.25 8 8.76

1411 16 536716881 3163.49 2.34 12.54 20 23.34

1511 14 547352584 2737.26 3.69 19.24 34 67.10

1611 16 527511332 3041.70 3.15 5.69 14 18.36

1711 13 508186287 2494.49 1.35 6.86 10 18.50

1811 15 541531310 2776.32 5.10 13.22 22 33.05

1911 14 515686282 2573.67 3.11 6.69 14 20.17

2011 16 522756729 3034.11 2.72 7.95 17 18.00

2111 12 510483434 2546.98 4.44 15.54 35 120.72

211 14 483758444 2545.52 1.84 9.75 20 24.85

2211 16 531927970 3032.37 1.77 5.69 43 62.82

2311 13 508395882 2522.56 2.32 13.76 14 19.14

2411 13 521012649 2635.77 2.88 13.34 21 33.67

2511 14 530371536 2578.58 1.85 15.35 23 38.78

2611 12 542521681 2552.40 2.84 24.87 30 63.39

2711 14 499536471 2831.84 3.21 7.76 19 33.40

2811 16 553757141 3072.62 2.17 11.10 14 17.51

2911 14 534040677 2725.16 2.44 10.67 12 20.66

3011 13 496903018 2447.36 2.21 10.29 10 16.66

311 15 507895781 2902.43 3.55 10.33 19 39.79

411 15 539319652 2692.51 3.04 18.45 45 88.15

511 14 503902198 2601.59 3.07 8.02 15 22.79

611 14 521253101 2643.85 3.85 10.85 36 65.15

711 16 553653000 3089.06 3.39 9.33 18 33.57

811 15 519653291 2731.09 2.55 9.36 13 24.79

911 13 519455489 2458.46 3.88 7.53 32 61.92

Table 7 Results on Euclidean class instances for the p-median ant τ = 1.05Z instances

Prob. p Obj. Obj. rob. Max. obj. (%) Max. rob. (%) Nδ Time (s)

1511 13 335430412 262.70 0.01 1.16 2 0.70

1611 14 301530848 245.89 0.05 4.23 3 1.03

1811 14 310803856 247.80 0.01 2.85 2 0.66

2511 16 269600407 249.19 0.05 0.07 2 0.67

2811 14 325194266 269.61 0.01 0.06 2 0.68

811 16 258747810 240.37 0.05 0.03 2 0.70
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Table 8 Results on Euclidean class instances for the p-median ant τ = 1.1Z instances

Prob. p Obj. Obj. rob. Max. obj. (%) Max. rob. (%) Nδ Time (s)

111 12 306985897 493.84 0.02 0.12 2 0.68

1511 13 335430412 525.41 0.01 1.24 2 0.68

1611 14 301530848 491.77 0.05 4.73 3 1.01

1711 15 266924062 486.46 0.01 0.05 2 0.65

1811 14 310803856 495.60 0.01 2.94 2 0.64

2411 14 290629595 504.64 0.07 0.36 2 0.77

2511 16 269600407 498.37 0.05 0.56 2 0.65

2611 12 344521681 540.29 0.03 0.19 2 0.66

2811 14 325194266 539.21 0.01 0.18 2 0.76

511 14 272902198 469.65 0.06 0.17 2 0.64

811 16 258747810 480.74 0.05 0.55 2 0.67

Table 9 Results on Euclidean class instances for the p-median ant τ = 1.3Z instances

Prob. p Obj. Obj. rob. Max. obj. (%) Max. rob. (%) Nδ Time (s)

1011 13 290083242 1442.63 0.38 0.82 4 1.42

1111 14 265014044 1375.48 0.15 0.40 2 0.70

111 12 306985897 1481.52 0.02 0.24 2 0.70

1311 14 329017402 1644.73 0.17 0.27 2 0.86

1411 13 328785222 1655.88 0.87 0.48 3 1.06

1511 13 335430412 1576.22 0.01 1.29 2 0.63

1611 14 301530848 1475.32 0.36 5.95 5 1.69

1711 15 266924062 1459.37 0.01 0.09 2 0.62

1811 14 310803856 1486.79 0.01 3.00 2 0.59

1911 13 301190886 1450.24 0.47 0.18 2 0.78

2111 12 312483434 1559.09 0.25 0.52 2 0.83

2211 15 284549916 1529.26 0.29 0.53 6 2.08

2411 14 290629595 1513.93 0.07 0.85 2 0.63

2511 16 269600407 1495.12 0.05 0.89 2 0.55

2611 12 344521681 1620.87 0.03 0.36 2 0.57

2811 14 325194266 1617.64 0.01 0.26 2 0.66

2911 14 303040677 1546.39 0.17 0.44 2 0.64

411 15 291819652 1456.89 0.52 0.78 5 1.74

511 14 272902198 1408.96 0.06 0.57 2 0.66

611 14 290253101 1472.20 0.01 0.01 2 0.81

811 16 258747810 1442.22 0.05 0.89 2 0.59
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4 Concluding remarks

In facility location problems, using cost minimization as unique criterion may not be
a good idea when demands are uncertain; however, for small changes in the budget, in
our computational experience it is not rare to find that the efficient set is approximated
by a very small set of solutions, and the robustness presents very small variations
as compared with the solution costs. In this paper, a robustness criterion, namely,
the threshold robustness, is suggested to be used in combination with the cost min-
imization objective. Finding an approximation to the set of Pareto optimal solutions
is reduced to solving a finite set of linear integer programs. Our numerical experi-
ence with relatively small data sets for the p-median and the UFLP shows that the
so-obtained approximation has a very low cardinality, which is very appealing from a
practical perspective.

There are two challenges that may be future lines of research. The first one is to
face problems ofmuch larger size, because commercial solvers are not always efficient
for big problem instances and may take a long time to solve one particular problem.
This would probably call for the use of multiple-objective combinatorial optimization
heuristics. The second one is to be able to find a full description of the Pareto-optimal
set. While, in theory, this can be done, again, by the ε-constraint method (under the
mild assumption of integrality in the distances and estimated demands), its cardinality
may be too large to be of practical interest. These issues deserve further study.
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