
01 May 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Searching for a cycle with maximum coverage in undirected graphs

Published version:

DOI:10.1007/s11590-015-0952-x

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1622326 since 2017-01-18T14:53:08Z

Searching for a cycle with maximum coverage
in undirected graphs

Andrea Grosso
Dip. di Informatica, Università di Torino

grosso@di.unito.it

Fabio Salassa
DAI, Politecnico di Torino
fabio.salassa@polito.it

Wim Vancroonenburg
KU Leuven, Department of Computer Science, CODeS & iMinds-ITEC

wim.vancroonenburg@cs.kuleuven.be

Abstract

The present contribution considers the problem of identifying a
simple cycle in an undirected graph such that the number of nodes in
the cycle or adjacent to it, is maximum. This problem is denoted as
the Maximum Covering Cycle Problem (MCCP) and it is shown to
be NP–complete. We present an iterative procedure that, although it
cannot be shown to be polynomial, yields (in practice) high-quality
solutions within reasonable time on graphs of moderate density.

Keywords. Maximum covering cycle, Constraint generation, Integer Pro-
gramming, Heuristics

1 Introduction

Consider an undirected graph G = (V,E); a covering cycle is a simple cycle
C in G that covers all the nodes of the graph — a node i ∈ V is said to be
covered if it either lies on C or is adjacent to a node on C. This paper deals
with the problem of finding a simple cycle C∗ that covers the largest number
of nodes f(C∗) in the graph (Maximum Covering Cycle Problem, MCCP).
The problem arises in the design of communication networks when a closed

1

backbone is needed and client nodes must connect directly to hubs. More
generally, applications of such a problem can be found in situations where a
closed line (for gas, water, power) is needed to serve different utilities that
cannot be linked to a tree-based backbone.

To the authors’ knowledge there is no work in the literature dealing with
the MCCP precisely as it is defined here. Nevertheless, the problem of de-
tecting a connected subset of nodes satisfying some dominance or covering
property is not at all new.

In [1] the problem of finding a minimum-size cycle covering all nodes is
tackled for the special case of permutation graphs; the authors denote such a
cycle a dominating cycle. In this work this term is deliberately avoided since
it can be confused with a different graph-theoretic problem. From a compu-
tational point of view, one of the earliest formulations of a problem involving
covering by cycles is due to Current and Schilling [2]. Their paper studies
a so-called Covering Salesman Problem (CSP), where a cycle is required to
pass within a certain distance from all nodes in the graph, and proposes a
heuristic solution procedure. The authors of [2] motivated the problem defi-
nition in the context of health-care delivery or transportation systems. The
same authors later investigated a (bicriteria) maximal covering tour prob-
lem, where a minimum-cost tour is drawn among at most p < |V | nodes
in order to cover as much of a demand specified at the nodes as possible.
Gendreau et al. [5] considered a similar Covering Tour Problem where a tour
must go through a given subset of nodes, and another set of nodes (not al-
lowed to be on the tour) must be covered. They developed a branch-and-cut
approach, possibly the first exact method for this kind of problems. More
recently, Golden et al. [6] introduced a Generalized CSP, where each node
can be required to be covered several times (for example for taking into ac-
count vehicle capacities) and a cost has to be payed for including a node in
the cycle. They proposed and tested local search heuristics.

It should be noted that this paper’s approach to the MCCP is essentially
computational; in contrast, a fair number of papers concerned with simi-
lar problems deliver mostly graph-theoretical studies. Related problems that
aim to identify dominating or covering node sets exhibiting connectivity prop-
erties have already been studied by Lesniak-Foster and Williamson [9], and
Veldman [11, 12], both giving sufficient conditions for the existence of span-
ning and dominating circuits. For the problem of determining a (minimum-
size) connected dominating set, a naive enumeration scheme can solve it in
time O(2n). Approximation algorithms – although with non constant ratio –
are studied by Guha and Khuller [7]. The first exact algorithm with running
time smaller than O(2n) is given by Fomin, Grandoni and Kratsch [4].

The complexity of the problem is easily established (we refer the reader

2

1

2

3

4

5

6

1

2

3

4

5

61′

2′

3′

4′

5′

6′

(a) (b)

Figure 1: Reduction from Hamiltonian Cycle to Maximum Covering Cycle
(sketch). In graph (b) all nodes can be covered iff graph (a) admits a Hamil-
tonian Cycle.

to Figure 1 for a rough idea of the proof).

Proposition 1. The decision version of MCCP is NP-complete.

In this paper, an ILP based solution procedure is developed that, although
exact in nature can be used to produce high-quality heuristic solutions to-
gether with upper bounds that assess the solution quality. Computational
experiments with this procedure are presented, showing that for graphs with
small-to-medium density (from 1% up to 50%) the problem can be solved
efficiently.

The paper is organized as follows. In Section 2, an ILP model of the
problem is described that naturally leads to a relaxed formulation. Although
still involving integer variables, the relaxed formulation turns out (experi-
mentally verified) to be easy to solve to optimality with the optimization
software package CPLEX. In Section 3, a so-called Constraint Generation
procedure is described in which constraints are iteratively added to the re-
laxed formulation until an optimal solution is found or a given time limit is
exceeded. In order to speed up the procedure, a number of intensification
and diversification techniques are added to this basic approach, which are
discussed in Section 4. Finally, to assess the overall performance of the pro-
posed approach, Section 5 reports on computational experiments performed
on graphs of different sizes and densities.

3

2 ILP formulation and relaxation

In the following, an ILP formulation of the problem with binary variables
is presented. Given an undirected graph G = (V,E), let ui be the binary
variables indicating if a node i is covered (ui = 1) or not (otherwise), and let
wi be the binary variables indicating whether the node i is on the cycle or
not. Let xij = 1 if both nodes i and j are on the cycle, xij = 0 otherwise. We
specify variables xij for each ordered pair (i, j) even if the problem is given
for undirected graphs. This dummy orientation of arcs will be useful later
on. The model is then as follows:

maximize
∑
i∈V

ui (1)

subject to xij + xji ≤ 1 ∀ {i, j} ∈ E
(2)∑

j : {i,j}∈E

xji =
∑

j : {i,j}∈E

xij = wi ∀ i ∈ V

(3)

wi +
∑

j : {i,j}∈E

wj ≥ ui ∀ i ∈ V

(4)∑
i∈S

∑
j∈V \S

xij +
∑
j∈S

∑
i∈V \S

xij ≥ 2(wk + wl − 1)

∀k, l, S : S ⊂ V, 2 ≤ |S| ≤ |V | − 2, k ∈ S, l ∈ V \ S (5)

xij, xji ∈ {0, 1} ∀ {i, j} ∈ E
(6)

wi, ui ∈ {0, 1} ∀ i ∈ V.
(7)

Constraints (2) provide an orientation for each edge belonging to the
cycle. Constraints (3) ensure that exactly two edges are incident to each
node of the cycle. Note that Constraints (2) and (3) together force the
solution to be a directed cycle. Constraints (4) enforce the covering property
of the nodes belonging the cycle. Constraints (5) are subtour elimination
constraints (SEC), as formulated in [6].

Given model (1)–(7), a straightforward relaxation of the problem is to
exclude all the subtour elimination constraints (5). Although the remaining
model still contains integer variables, the relaxed problem becomes much
easier to solve in practice. The solution of this relaxation will be a collection

4

of disjoint cycles maximally covering the graph, for which the coverage also
serves as an upper bound on the optimal value of the original model.

Preliminary tests performed on random instances of various sizes show
that CPLEX 12.5 is able to solve the relaxed model within 5 seconds, on
average, for 1000 nodes instances. Increasing the number of nodes makes
the relaxation harder to solve but still tractable. We were unable to solve
instances larger than 5000 nodes due to memory limits.

3 Constraint generation approach

We present computational experience with an effective algorithm based on
constraint generation for solving the MCCP. The optimal solution of the
(integer) relaxed program (1), (2), (3), (4), (6) and (7) generally consists
of a finite set of disjoint cycles. The main idea is to iteratively introduce
into the model constraints that exclude all disjoint cycles generated by the
relaxation at the previous iteration, and solve again the relaxed model in
order to refine the search. Meanwhile, we keep track of the best found cycle
for future reference. Similar ideas can be found in [8] for example, or more
recently in [10], although on different problems. Such constraints are not
valid cuts in the sense of cutting planes theory, since they can exclude integer
feasible solutions from the feasible set. Nevertheless, the resulting algorithm
is provably optimal.

Algorithm 1 presents pseudocode for this approach. Without loss of gen-
erality, it is assumed that the instance is feasible; i.e. the graph contains at
least a cycle (the forests being easily recognizable a priori). Also, from now
on we denote by V (C) and E(C) the set of edges of cycle C.

It should be noted that the algorithm terminates in a finite (although
possibly very large) number of iterations since the statement on line 17 can
only be executed a finite number of times before the problem becomes infea-
sible, i.e. all cycles have been excluded. Three exit points are possible for
the procedure:

(i) line 5: the problem has become infeasible, all possible cycles have been
generated thus the optimal one is C∗.

(ii) line 7: the calculated bound is worse than the current best known
solution thus certifying optimality of C∗.

(iii) line 12: the current problem is optimally solved by C1 so the optimum
is either C1 or the best cycle known at the previous iteration.

The above discussion justifies the following proposition:

5

Algorithm 1 Constraint Generation
1: C∗ := null; . C∗ =Best-known cycle
2: while TRUE do
3: Solve the relaxation, get a set of cycles S = {C1, C2, . . . , Ck};
4: if S = ∅ then
5: STOP; . C∗ is optimal
6: end if
7: if f(S) ≤ f(C∗) then
8: STOP; . C∗ is optimal
9: end if
10: if |S| = 1 then
11: Set C∗ := argmax{f(C∗), f(C1)};
12: STOP; . C∗ is optimal
13: end if
14: if f(C∗) < max{f(C) : C ∈ S} then
15: C∗ = argmax{f(C) : C ∈ S}
16: end if
17: Add to the relaxation the constraints:∑

ij∈E(Ck)

xij ≤ |Ck| − 1 for all Ck ∈ S.

18: end while

Proposition 2. Algorithm 1 returns the optimal solution in a finite number
of iterations.

The performance of this basic constraint generation algorithm can be
further improved. Two directions of improvement can be followed. On the
one hand, it is worthwhile to increase the size of the set of generated cycles
that will be forbidden in the following iterations; on the other hand it is
important to increase the total coverage of each generated cycle. The lat-
ter will speed up recognition of high–quality solutions to be compared with
generated bounds. In order to deal with those two directions, the heuristic
methods described in the following section can be introduced within the basic
framework of Algorithm 1.

4 Improving the pool of cycles

The pool of cycles S used by Algorithm 1 should be as rich and diverse as
possible. Several heuristics can be devised in order to generate additional
cycles apart from those provided by the solution of the relaxed problem. In

6

this section we present four methods for improving the pool of cycles. Note
that these methods can be combined in various ways; we will discuss in Sec-
tion 5 the effectiveness of the possible combinations.

(a) Local improvement. By this we mean, given a cycle C ∈ S, generat-
ing a new cycle with better coverage (or a shorter cycle with an equivalent
coverage) by applying small perturbations, similarly to what would be done
in a neighborhood search. We consider three such operators.

• Greedy Insert Increase (GII). This operator loops over all edges
{i, j} ∈ E(C) such that ∃ k ∈ V \ V (C) with {i, k}, {j, k} ∈ E, and
inserts node k between i and j. Considers the insertion giving the
highest increase in coverage and returns the coresponding cycle C ′.

• Greedy Swap Increase (GSI). This operator loops over all consec-
utive edge pairs {i, k}, {k, j} ∈ E(C) such that {i, v}, {j, v} ∈ E for
some v ∈ V \V (C), and replaces node k with v in cycle C — i.e. swaps
k and v. Determines the swap giving the highest increase in coverage
and returns the corresponding cycle, or C itself if no swap increases
the coverage.

• Decrease Cycle Length (DCL). This operator sequentially loops
over all consecutive edge pairs {i, j}, {j, k} ∈ E(C) such that {i, k} ∈
E. If {i, j}, {j, k} can be replaced by {i, k} (“bypassing” node j in the
cycle) without decreasing the coverage, the substitution is performed.

These three operators are applied sequentially to the best cycle C∗ ∈ S i.e.
we compute C ′ = GII(C∗), then C ′′ = GSI(C ′), C ′′′ = DCL(C ′′).

(b) Diversification 1: merging cycles. Given a collection of cycles S,
consider two disjoint cycles C ′, C ′′ ∈ S such that C ′ = (A′, i, B′, j), C ′′ =
(A′′, k, B′′, l) with {i, k}, {j, l} ∈ E.

i

j

k

l

A′ B′ A′′B′′

We consider the four cycles obtained from combining C ′ and C ′′ as follows.

C1 = (A′, i, k, A′′, l, j) C3 = (B′, i, k, B′′, l, j)

C2 = (A′, i, k, B′′, l, j) C4 = (B′, i, k, A′′, l, j)

7

We compute C1, C2, C3, C4 for all pairs C ′, C ′′ ∈ S; the cycle Ĉ with high-
est coverage f(Ĉ) will replace in S the two cycles it was generated from.
Given the ordered lists of nodes that make up the two cycles, the resulting
C1, C2, C3, C4 can be computed quickly in O(|V (C ′)|+ |V (C ′′)|).

Using the sketched procedure, we have the chance to improve a set of
cycles S by replacing cycles by cycles with better coverage. We call this
procedure MergePool. MergePool is repeated as long as cycles with higher
coverage are found.

(c) Diversification by ILP: generating more cycles. In addition to
merging cycles, we can use the ILP model to generate more cycles, slightly
modifying the relaxed formulation. Consider C∗ = arg max{f(C) : C ∈ S}.
We consider two kinds of modified relaxations.

(I) Solve the relaxed model where C∗ is forced to be part of the solution,
i.e. solve the relaxed model with the additional constraint∑

(i,j)∈C

xij = |C∗|. (8)

The solution of the relaxed model will in general contain other cycles,
different from C∗, that will be added to S.

(II) Force the relaxed model to find a new set of cycles not containing C∗,
by adding the constraint: ∑

(i,j)∈C∗
(1− xij) = K (9)

where K is a constant indicating how many edges of C should not be
present in the new set of cycles.

4.1 Final algorithm

We embed the operators described above in Algorithm 1. They are used to
refine the pool of cycles S delivered by the solution of the relaxed model.
The refinement takes place in two stages.

1. We first repeatedly apply the merge operator to the cycles in S; the
new cycles are added to S and the merge procedure is iterated un-
til no cycles with higher coverage can be generated. Then we apply
the local improvement operator to the best cycle of the pool C∗ =
arg max{f(C) : C ∈ S}. Finally, we generate more cycles applying the

8

diversification by ILP, method (I).
This whole stage is repeated until no more cycles with higher coverage
emerge.

2. In the second stage, we use diversification by ILP, method (II). We start
by the required distance K = 1 and add the new cycles into S. We
repeat the procedure increasing K by 1 as long as cycles with higher
coverage emerge.

The above methods for improving the set of cycles are organized in the
procedure ImprovePool reported in Algorithm 2. In the final algorithm, a
call to ImprovePool(S) is inserted between lines 16 and 17 of Algorithm 1.

Algorithm 2 ImprovePool
Require: a set of cycles S = {C1, C2, . . . , Ck};

while improved cycles are added to S do
repeat

Apply MergePool to S;
until No more improving cycles are found
C∗ := argmaxC∈S{f(C)} . Save the best-known
C ′ = GII(C∗)
C ′′ = GSI(C ′)
C ′′′ = DCL(C ′′)
if f(C ′′′) > f(C∗) then

C∗ := C ′′′;
end if
Add to S more cycles by method (I);

end while
K := 1;
while K ≤ |C∗| − 1 do

Compute S′ the set of cycles generated by method (II);
if maxC∈S′{f(C)} > f(C∗) then

Set S := S ∪ S′, C∗ := argmaxC∈S′{f(C)};
break;

else
Set K := K + 1;

end if
end while
return S

9

5 Computational results and discussion

Firstly, preliminary testing was performed in order to assess the validity of
the constraint generation approach.

5.1 Multistart Algorithm

In order to benchmark the presented approach against a baseline, a multistart
heuristic method was also developed, in which the Local Improvement and
MergePool operators can be naturally embedded. The multistart approach
works as follows.

We randomly generate cycles from the graph G while building
a partial spanning forest F . Starting from a randomly shuffled
list L of the edges of G, set F to an empty forest and iterate as
follows.

1. Extract an edge e from L;

2. Insert e in F ;

3. If F contains a cycle C, delete all edges incident to C from
L and F ;

Four different configurations leading to multistart (MS) algorithms, com-
bining the proposed operators in various ways, are considered.

(MS0) Pure random search. Among the cycles generated by the above steps,
the maximum covering cycle is selected. The search is performed over
100 trials.

(MS1) Multistart plus MergePool. The complete set of cycles generated in a
trial of the above steps is given as input to MergePool. The procedure
is run to update the set of cycles until no further improving merge
operations are possible. The cycle in the pool exhibiting the maximum
coverage is returned as the final heuristic solution. Again, 100 trials of
such a search are performed.

(MS2) Multistart Local Improvement. After each trial of random search, the
operators (GII, GSI, DCL) are applied, up to a local optimum.

(MS3) Multistart MergePool + Local Improvement. A combination of (MS1)
and (MS2): the best cycle in the pool is used as a starting solution for
the Local Improvement operators.

10

5.2 Constraint Generation Algorithm

The ILP based constraint generation approach was tested in 6 different con-
figurations:

(ILP0) The basic constraint generation of Algorithm 1.

(ILP1) Algorithm 1 equipped with MergePool for improving the set of gener-
ated cycles.

(ILP2) Algorithm 1 equipped with the Local Improvement operators for im-
proving the set of generated cycles.

(ILP3) Algorithm 1 equipped with MergePool and diversification operators.

(ILP4) Algorithm 1 equipped with the Local Improvement and diversification
methods.

(ILP5) Algorithm 1 equipped with the full set of operators.

5.3 Numerical Results

For this test phase, we used both randomly generated graphs and graphs
available from the literature on the Hamiltonian Cycle problem — such in-
stances are interesting because they are guaranteed to have at least one opti-
mal solution of value |V | due to the existence of a hamiltonian cycle. For the
randomly generated graphs, we generated graphs with a number of nodes |V |
equal to 50, 100, 200, 300 and 500, and density d (= 2|E|

|V |×(|V |−1)) equal to 1%,

2%, 5%, 10%. For larger densities, we observed that such instances quickly
become ‘easy’, because even small cycles can cover most of the nodes. These
instances were produced by generating complete graphs of |V | nodes, and
subsequently removing randomly (uniformly) selected edges from the graphs
to meet the required density. For the instances from the literature we used
the ‘DLV’ instances for the Hamiltonian Cycle problem from NP-Datalog
[13]. Ultimately, this first dataset is made up of 120 instances.

Table 1 reports aggregated results of all different configurations of both
methods. In column 2 the number of optimal solutions found is reported.
Column 3 reports the average optimality gap ((UB − LB)/UB), which is
either calculated as the relative gap from the optimal solution value (if found)
or the best found upper bound (over all configurations). Column 4 reports the
average CPU time; the time limit was set to 600 seconds for all instances.
For all configurations, the different features enabled are also reported (as
ON/OFF entries in columns 5–7).

11

Config #Opt Gap% CPU Merge (GII+GSI+DCL) Diversif.
MS0 81/120 2.1374 0.77 OFF OFF —
MS1 83/120 1.5398 104.85 ON OFF —
MS2 82/120 2.0211 1.82 OFF ON —
MS3 83/120 1.5145 100.26 ON ON —
ILP0 111/120 0.3349 55.11 OFF OFF OFF
ILP1 120/120 0.0000 19.41 ON OFF OFF
ILP2 111/120 0.0738 57.53 OFF ON OFF
ILP3 115/120 0.0117 38.99 ON OFF ON
ILP4 101/120 0.6814 102.79 OFF ON ON
ILP5 117/120 0.0067 31.56 ON ON ON

Table 1: Global Results, first dataset

In general, the overall percentage gap generated by every configuration
of the algorithms is small; the worst case being configuration MS0 with a
gap of 2.13%. A more significant variability is observed on the average CPU
time that never exceeds (roughly) 100 seconds for all configurations.

Concerning the multistart configurations, in terms of number of detected
optima and average optimality gap, MS0 has the worst performance. Adding
the Local Improvement operators (see configuration MS2) results in a slight
improvement in the average optimality gap and number of optima, at the
expense of a modest increase in the average CPU time. The MergePool

operator enabled in MS1 turns out to be computationally intensive, but
delivers a significant improvement in solution quality.

Configuration MS3 has the best performance among MS configurations
in terms of solutions quality, at a computational cost comparable to that of
MS1.

The constraint generation approach, in every configuration, outperforms
the MS algorithms. The simple constraint generation approach based on the
sole relaxation and cut generation is already quite effective (ILP0) compared
to the MS configurations. On average, the optimality gap is 0.33% and the
configuration is able to find 111 optimal solutions over 120 instances. Adding
the MergePool operator (ILP1) improves the obtained results, lowering the
gap to 0.0%. Again, the MergePool operator boosts solution quality, mix-
ing well with the constraint generation approach, but allowing in this case
also to save more than 50% of CPU time. This confirms the effectiveness
of the MergePool operator that allows to build large high quality cycles
by combining the smaller ones extracted from the relaxed solutions. With
configuration ILP2, the proposed Local Improvement operators achieve an
improvement with respect to ILP0 in solution quality (in terms of optimality
gap) but at the expense of a slight worsening of the CPU time.

12

Configurations ILP3, ILP4 and ILP5 also apply the diversification op-
erators, but only ILP5 really delivers competitive performances, being only
slightly worse than ILP1 in terms of solution quality. Thus we selected ILP1
and ILP5 (second best) as the most promising configurations and performed
additional tests on a larger instance set.

For constructing the second, larger, dataset we added to the first set:

• 912 randomly generated instances with similar sizes and density up to
50%;

• 336 randomly generated scale-free graphs (where the node degree dis-
tribution follows a power law), with up to 1000 nodes in size;

• 57 graphs from the graph coloring section in the ORLIB [14];

• a large instance (900 nodes) from [13], in the “structured 3-col” collec-
tion.

ILP1 ILP5
Dataset # CPU #Opt Gap% CPU #Opt Gap%
benchmark-HC-DLV 32 0.067 32 0.0000 0.066 32 0.0000
random-HC-DLV 11 0.061 11 0.0000 0.063 11 0.0000
structured-3col-DLV 3 271.882 2 21.0000 326.011 2 0.7407
graph-coloring-orlib 57 80.779 53 1.0537 58.148 53 0.9541
randomly generated 987 40.545 978 0.0034 18.106 981 0.0014
scale-free 336 155.079 294 0.2199 183.395 273 0.2607
Overall 1426 68.406 1370 0.1405 58.756 1352 0.1021

Table 2: Global results, second dataset.

For this second experiment, a time limit of 600 seconds has also been
set for solving each instance. According to Table 2, ILP5 offers an average
optimality gap and a CPU time that are slightly better than those of ILP1.
On the other hand the number of optima slightly favors ILP1. ILP5 out-
performs ILP1 on the random instances while ILP1 performs best on the
scale-free instances. The overall results confirm the observations reported in
the preliminary testing on the first dataset. The hardest instances appear
to be the scale free graphs, while the large figures for the “structured-3col”
instances are entirely dependent upon the 900 nodes instance. On such an
instance, ILP1 gets an objective value of 333 within the time limit, whereas
ILP5 reaches a value of 880. Would this particular instance not be taken into
account, the overall average gaps of ILP1 and ILP5 would be practically the
same.

13

In view of the presented results we note that the design choice of embed-
ding a ILP solver into the proposed constraint generation based approach
wins over more naive combinations of the heuristic operators considered in
the paper, offering the best trade-off between CPU time and solution qual-
ity. The two best performing configurations are the simpler ILP1 and the
somehow more complex ILP5 where the full set of enhancing operators are
enabled. Furthermore, from the presented result, ILP1 and ILP5 show a
different behaviour on different classes of instances. While both configura-
tions work extremely well on the HC–DLV instances, interestingly on the
remaining classes the performances appear to be complementary.

Acknowledgements
This research was partially funded by a Ph. D. grant of the agency for Inno-
vation by Science and Technology (IWT).

References

[1] Colbourn C.J., Keil J.M., Stewart L.K., Finding minimum dominating
cycles in permutation graphs, Oper. Res. Lett., 4, 13–17 (1985).

[2] Current J. R., Schilling D. A., The Covering Salesman Problem, Trans-
portation Science, 23, 208–213 (1989).

[3] Fischetti M., Lodi A., Local Branching, 98, 23–47, (2003).

[4] Fomin F.V., Grandoni F., Kratsch D., Solving connected dominating set
faster than 2n, Algorithmica, 52, 153–166 (2008).

[5] Gendreau M., Laporte G., Semet F., The covering tour problem, Oper-
ations Research, 45, 568–576 (1997).

[6] Golden B., Zahra N.-A., Raghavan S., Salari M., Toth P., The gener-
alized Covering Salesman Problem, INFORMS Journal on Computing,
(online first), 1–20 (2011).

[7] Guha S., Khuller S., Approximation algorithms for connected dominat-
ing sets, Algorithmica, 20, 374-387, (1998).

[8] Hanafi S., Wilbaut C., Improved convergent heuristics for the 0–1 mul-
tidimensional knapsack problem, Annals of OR, 1–18 (2009).

[9] Lesniak-Foster L., Williamson J. E., On spanning and dominating cir-
cuits in graphs, Canadian Bullettin of Mathematics, 20, 215–220 (1977).

14

[10] Pferschy, U., Stanĕk R., Generating subtour constraints for
the TSP from pure integer solutions, Optimization Online,
http://www.optimization-online.org/DB HTML/2014/02/4258.html

[11] Veldman H. J., Existence of dominating cycles and paths, Discrete Math-
ematics, 43, 281–296 (1983).

[12] Veldman H. J., On dominating and spanning circuits in graphs, Discrete
Mathematics, 124, 229–239 (1994).

[13] Hamiltonian Cycle problem. NP Datalog.
http://wwwinfo.deis.unical.it/npdatalog/experiments/hamiltoniancycle.htm

(accessed on April 8th, 2013).

[14] OR Library, http://people.brunel.ac.uk/̃mastjjb/jeb/info.html

15

