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Abstract

A new class of smooth exact penalty functions was recently introduced

by Huyer and Neumaier. In this paper, we prove that the new smooth

penalty function for a constrained optimization problem is exact if and

only if the standard nonsmooth penalty function for this problem is exact.

We also provide some estimates of the exact penalty parameter of the

smooth penalty function, and, in particular, show that it asymptotically

behaves as the square of the exact penalty parameter of the standard

ℓ1 penalty function. We briefly discuss a simple way to reduce the exact

penalty parameter of the smooth penalty function, and study the effect

of nonlinear terms on the exactness of this function.

1 Introduction

The method of exact penalty functions [8, 6, 3, 18] is a very appealing tech-
nique for solving various constrained optimization problems, since it allows one
to replace a constrained problem by a single unconstrained optimization prob-
lem having the same optimal solutions. However, the equivalent unconstrained
problem is usually nonsmooth (even if the original problem is smooth), which
makes the method of exact penalty functions less attractive, especially for practi-
tioners who are often not familiar with efficient methods for solving complicated
nonsmooth optimization problems.

Huyer and Neumaier [9] proposed a new approach to exact penalization that
allows one to overcome nonsmoothness of exact penalty functions. Later on, this
approach was modified [1, 17], and successfully applied to various constrained
optimization and optimal control problems [15, 13, 11, 10, 14]. A new general
approach to the construction and analysis of smooth exact penalty functions
was proposed in [7].

Let us recall the definition of the exact penalty function from [17]. Consider
the following constrained optimization problem

min f(x) subject to F (x) = 0, x ∈ [x, x], (1)

where f : Rn → R and F : Rn → R
m are smooth functions, x, x ∈ R

n are given
vectors, and

[x, x] =
{
x = (x1, . . . , xn) ∈ R

n | xi ≤ xi ≤ xi ∀i ∈ {1, . . . , n}
}
.
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Given a ∈ (0,+∞], let φ : [0, a) → [0,+∞) be a convex continuously differen-
tiable function such that φ(0) = 0 and φ′(t) > 0 for all t ∈ [0, a). Let also
w ∈ R

m be arbitrary, and β : [0, ε] → [0,+∞) with ε > 0 be a continuously
differentiable nondecreasing function such that β(t) = 0 iff t = 0. Then one
defines the new “smooth” penalty function for the problem (1) as follows

Fλ(x, ε) =





f(x), if ε = ∆(x, ε) = 0,

f(x) + 1
2εφ(∆(x, ε)) + λβ(ε), if ε > 0, ∆(x, ε) < a,

+∞, otherwise.

(2)

where λ ≥ 0 is the penalty parameter, ∆(x, ε) = ‖F (x)− εw‖2 is the constraint
violation measure. Finally, one replaces the problem (1) with the penalized
problem

min
x,ε

Fλ(x, ε) subject to (x, ε) ∈ [x, x]× [0, ε]. (3)

Observe that the penalty function Fλ(x, ε) depends on the additional parameter
ε ≥ 0, and Fλ(x, ε) is smooth for any ε ∈ (0, ε) and x such that 0 < ∆(x, ε) < a.
Therefore one can apply standard algorithms of smooth optimization to the
penalty function (2) in order to find a globally/locally optimal solution of pe-
nalized problem (3), which under natural assumptions (namely, constraint qual-
ification) has the form (x∗, 0), where x∗ is a globally/locally optimal solution of
problem (1). However, it should be noted that the standard proofs of the ex-
actness of the smooth penalty function (2) (i.e. proofs of the fact that all local
and global minimizers of (3) have the form (x∗, 0)) are rather complicated, and
overburdened by technical details. A new simple proof of the exactness of the
penalty function (2) was given in [7].

The aim of this article is to continue the work started in [7], and present
new simple methods for studying the exactness of the penalty function of the
form (2). Namely, we prove that this penalty function is exact if an only if the
standard nonsmooth ℓ1 penalty function for problem (1) is exact, and provide
some estimates of the exact penalty parameter of the penalty function (2) via
the exact penalty parameter of the nonsmooth penalty function. In particular,
we demonstrate that the exact penalty parameter of the penalty function (2)
with ϕ(t) ≡ β(t) ≡ t asymptotically behaves like the square of the exact penalty
parameter of the ℓ1 penalty function. We also discuss how to make the exact
penalty parameter of the penalty function (2) significantly smaller, and study
how the nonlinear functions φ and β affect the exactness of this penalty function.

The paper is organised as follows. In Section 2, we study the case φ(t) ≡
β(t) ≡ t in detail. We prove that in this case the smooth penalty function is
(locally or globally) exact if and only if the corresponding nonsmooth penalty
function is (locally or globally) exact, and provide several estimates of the exact
penalty parameter. In Section 3, we study the effect of the nonlinear functions
φ and β on the exactness of the penalty function (2).

2 A reduction to standard exact penalty func-

tions

Let X be a topological space, (Y, d) be a metric space f : X → R ∪ {+∞}
be a given function, Φ: X ⇒ Y be a set-valued mapping with closed values,
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and A ⊂ X be a nonempty set. Hereafter, we study the following optimization
problem:

min f(x) subject to y0 ∈ Φ(x), x ∈ A, (P)

where y0 ∈ Y is a fixed element. Denote by Ω = Φ−1(y0) ∩A the set of feasible
points of the problem (P). Denote also dom f = {x ∈ X | f(x) < +∞}. We
suppose that Ω ∩ dom f 6= ∅, and the function f is bounded below on Ω.

Introduce the “smooth” penalty function for the problem (P):

Fλ(x, ε) = f(x) + ε−1d(y0,Φ(x))
2 + λε ∀ε > 0,

where d(y0,Φ(x)) = infz∈Φ(x) d(y0, z). From this point onwards, for any penalty
function Fλ we suppose that Fλ(x, 0) = f(x), if x is feasible, and Fλ(x, 0) = +∞
otherwise.

Alongside the problem (P) we study the following extended penalized prob-
lem

min
x,ε

Fλ(x, ε) subject to x ∈ A, ε ≥ 0. (4)

Note that only the constraint y0 ∈ Φ(x) is included into the penalty function
Fλ, while the constraint x ∈ A is taken into account explicitly.

Let us recall the concept of exactness of a penalty function that connects
the initial problem (P) with the penalized problem (4). Denote R+ = [0,+∞).

Definition 1. Let x∗ ∈ dom f be a point of local minimum of the problem (P).
The penalty function Fλ is said to be (locally) exact at the point x∗ (or, to be
more precise, at the point (x∗, 0)), if there exists λ ≥ 0 such that (x∗, 0) is a
point of local minimum of Fλ on the set A × R+. The greatest lower bound of
all such λ is denoted by λ∗(x∗) and is referred to as the exact penalty parameter
(ex.p.p.) of the penalty function Fλ at x∗.

Definition 2. The penalty function Fλ is called (globally) exact, if there exists
λ ≥ 0 such that the penalty function Fλ attains a global minimum on the set
A × R+, and if (x∗, ε∗) is a point of global minimum of Fλ on A × R+, then
ε∗ = 0. The greatest lower bound of all such λ ≥ 0 is denoted by λ∗ and is
referred to as the exact penalty parameter of the penalty fucntion Fλ.

Thus, if the penalty function Fλ is globally exact, then the problem (P)
and the penalized problem (4) have the same globally optimal solutions for any
sufficiently large λ ≥ 0. To be more precise, if Fλ is globally exact and λ > λ∗,
then (x∗, ε∗) is a globally optimal solution of the problem (4) iff ε = 0 and x∗

is a globally optimal solution of the problem (P). In other words, the global
exactness of a penalty function means that the penalization does not distort
any information about globally optimal solutions of the original problem.

Remark 1. One can show that the penalty function Fλ is exact iff there exists
λ ≥ 0 such that

inf
x∈A,ε≥0

Fλ(x, ε) = inf
x∈Ω

f(x), (5)

and f attains a global minimum on Ω. Furthermore, the greatest lower bound
of all λ ≥ 0 satisfying (5) is equal to the ex.p.p. λ∗.

The two following theorems demonstrate that the penalty function Fλ(x, ε)
is exact if and only if the standard penalty function Gσ(x) = f(x)+σd(y0,Φ(x))
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is exact. Thus, these theorems allow one to apply a wide variety of methods of
the theory of nonsmooth exact penalty functions [8, 6, 3, 18, 2, 5, 4] to the study
of the penalty function Fλ(x, ε).

Theorem 1. Let x∗ ∈ dom f be a point of local minimum of the problem (P),
and the mapping d(y0,Φ(·)) be continuous at x∗. Then the penalty function
Fλ(x, ε) is exact at x∗ if and only if the penalty function Gσ(x) = f(x) +
σd(y0,Φ(x)) is exact at this point, and

λ∗(x∗) =
σ∗(x∗)2

4
,

where σ∗(x∗) is the ex.p.p. of Gσ at x∗.

Proof. Suppose that the penalty function Fλ(x, ε) is exact at x∗, and fix an
arbitrary λ > λ∗(x∗). Then there exist a neighbourhood U of x and ε0 > 0 such
that

Fλ(x, ε) ≥ Fλ(x
∗, 0) ∀x ∈ U ∩A ∀ε ∈ (0, ε0]. (6)

Since x∗ is a point of local minimum of the problem (P), x∗ is feasible, i.e.
d(y0,Φ(x

∗)) = 0. Therefore applying the continuity of the function d(y0,Φ(·))
at x∗ one gets that there exists a neighbourhood V of x∗ such that V ⊂ U and

d(y0,Φ(x)) <
√
λε0 ∀x ∈ V. (7)

From (6) it follows that

inf
ε∈(0,ε0)

Fλ(x, ε) ≥ Fλ(x
∗, 0) = f(x∗) ∀x ∈ V ∩ A. (8)

Let us compute the infimum on the left-hand side. If x ∈ V ∩ A is such that
y0 ∈ Φ(x), then Fλ(x, ε) = f(x) +λε for any ε ≥ 0, and the infimum is equal to
f(x). On the other hand, if y0 /∈ Φ(x), then

Fλ(x, ε) = f(x) +
1

ε
d(y0,Φ(x))

2 + λε ∀ε > 0.

Differentiating with respect to ε one gets

d

dε
Fλ(x, ε) = − 1

ε2
d(y0,Φ(x))

2 + λ

Hence Fλ(x, ε) decreases on (0, ε) and increases on (ε,+∞), where

ε =
d(y0,Φ(x))√

λ
.

Thus, ε is a point of global minimum of Fλ(x, ·) on (0,+∞). Observe that due
to the choice of the neighbourhood V (see (7)) one has ε < ε0. Therefore

min
ε∈(0,ε0)

Fλ(x, ε) = Fλ(x, ε) = f(x) + 2
√
λd(y0,Φ(x)).

Consequently, taking into account (8) one obtains that

G2
√
λ(x) = min

ε∈(0,ε0)
Fλ(x, ε) ≥ f(x∗) = G2

√
λ(x

∗) ∀x ∈ V ∩ A.
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Thus, the penalty function Gλ is exact at x∗, and 2
√
λ ≥ σ∗(x∗), which due to

the arbitrary choice of λ > λ∗(x∗) implies 2
√
λ∗(x∗) ≥ σ∗(x∗).

Suppose, now, that the penalty function Gσ(x) is exact at x
∗, and choose an

arbitrary λ > σ∗(x∗)2/4. Then there exists a neighbourhood U of x∗ such that

G2
√
λ(x) ≥ G2

√
λ(x

∗) = f(x∗) ∀x ∈ U ∩ A.

From the first part of the proof it follows that

min
ε>0

Fλ(x, ε) = G2
√
λ(x).

Therefore for any x ∈ U ∩ A and ε ≥ 0 one has

Fλ(x, ε) ≥ G2
√
λ(x) ≥ f(x∗) = Fλ(x

∗, 0).

Thus, Fλ(x, ε) is exact at x
∗ and λ∗(x∗) ≤ σ∗(x∗)2/4 by virtue of the fact that

λ > σ∗(x∗)2/4 was chosen arbitrarily.

Arguing in a similar way one can easily prove a global version of the theorem
above.

Theorem 2. The penalty function Fλ(x, ε) is globally exact if and only if the
penalty function Gσ(x) = f(x) + σd(y0,Φ(x)) is globally exact, and

λ∗ =
(σ∗)2

4
,

where σ∗ is the ex.p.p. of Gσ.

Let us consider a simple particular case of the set-valued mapping Φ. Namely,
let Y = R

m+l, y0 = 0, and the set-valued mapping Φ have the form

Φ(x) = (h1(x), . . . , hm(x)) ×
l∏

k=1

[gk(x),+∞), (9)

where hi, gk : X → R are given function, and
∏

stands for the Cartesian prod-
uct. Thus, the inclusion y0 ∈ Φ(x) is equivalent to the following system of
equations and inequalities

hi(x) = 0 i ∈ {1, . . . ,m}, gk(x) ≤ 0 k ∈ {1, . . . , l}.

Suppose that Y is equipped with the Euclidean norm. Then, as it is easy to see,
one has

d(y0,Φ(x)) =

√√√√
m∑

i=1

(hi(x))2 +

l∑

k=1

max{0, gk(x)}2.

Observe that in this case the penalty function Gσ(x) = f(x) + σd(y0,Φ(x)) is
exact if and only if the standard ℓ1 penalty function

Hν(x) = f(x) + ν
( m∑

i=1

|hi(x)|+
l∑

k=1

max{0, gk(x)}
)
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is exact. Furthermore, with the use of the well-known inequalities between
the Euclidean norm and the ℓ1 norm one can easily show that the ex.p.p. σ∗

and ν∗ of these functions satisfy the following inequalities

1√
m+ l

σ∗ ≤ ν∗ ≤ σ∗,

and the same inequalities hold true for the local exact penalty parameters of
these penalty functions.

As a result, one obtains that in the case of equality and inequality con-
straints, Theorems 1 and 2 describe a direct relation between the exactness of
the standard ℓ1 penalty function for a mathematical programming problem, and
the exactness of the penalty function Fλ(x, ε) for the same problem. Moreover,
these theorems allow one to obtain estimates of the (local or global) ex.p.p. of
the penalty function Fλ(x, ε) via the (local or global) ex.p.p. of the ℓ1 penalty
function.

Note that the results above correspond to the case w = 0 in (2). Let us
show that the same results can be obtained in the general case. We extend only
Theorem 2 to a more general case. Theorem 1 can be extended in a similar way.

Theorem 3. Let Y be a normed space, y0 = 0, and let for some w ∈ Y one has

Fλ(x, ε) = f(x) + ε−1d(0,Φ(x)− εw)2 + λε ∀ε > 0,

where d(0,Φ(x)− εw) = +∞ if Φ(x) = ∅. Then the penalty function Fλ(x, ε) is
globally exact if and only if the penalty function Gσ(x) = f(x) + σd(0,Φ(x)) is
globally exact, and

(σ∗)2

4
− ‖w‖σ∗ ≤ λ∗ ≤

(
σ∗

2
+ ‖w‖

)2

,

where σ∗ is the ex.p.p. of Gσ.

Proof. Suppose that Fλ(x, ε) is exact. Then taking into account Remark 1 one
gets that

inf
ε≥0

Fλ(x, ε) ≥ inf
x∈Ω

f(x) =: f∗ ∀x ∈ A ∀λ ≥ λ∗. (10)

Let us find an upper estimate of inf{Fλ(x, ε) | ε > 0}. If x ∈ Ω, then Fλ(x, ε) ≤
f(x)+ (λ+ ‖w‖2)ε, which yields that the infimum is equal to f(x). If x ∈ A\Ω,
then for any ε > 0 one has

Fλ(x, ε) = f(x) +
1

ε
d(0,Φ(x)− εw)2 + λε.

It is easy to see that d(0,Φ(x)− εw) ≤ d(0,Φ(x)) + ε‖w‖. Hence one has

d(0,Φ(x)− εw)2 ≤ d(0,Φ(x))2 + 2ε‖w‖d(0,Φ(x)) + ε2‖w‖2,

which implies that for any x ∈ A and ε > 0 one has

Fλ(x, ε) ≤ f(x) +
1

ε
d(0,Φ(x))2 + 2‖w‖d(0,Φ(x)) + (λ+ ‖w‖2)ε.
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Minimizing the right-hand side of the latter inequality with respect to ε one
obtains that

inf
ε≥0

Fλ(x, ε) ≤ f(x) + 2(
√
λ+ ‖w‖2 + ‖w‖)d(0,Φ(x)) ∀x ∈ A.

Consequently, with the use of (10) one gets that

Gσ(x) = f(x) + σd(0,Φ(x)) ≥ f∗ ∀x ∈ A ∀σ ≥ 2(
√
λ∗ + ‖w‖2 + ‖w‖).

Hence the penalty function Gσ is globally exact, and

σ∗ ≤ 2(
√
λ∗ + ‖w‖2 + ‖w‖) ⇐⇒ λ∗ ≥ (σ∗)2

4
− ‖w‖σ∗

by virtue of Remark 1 (note that the expression on the right-hand side is nega-
tive, when σ∗ < 4‖w‖).

Suppose, now, that the penalty function Gσ is globally exact. Then

Gσ(x) = f(x) + σd(0,Φ(x)) ≥ f∗ ∀x ∈ A ∀σ ≥ σ∗. (11)

Let us find a lower estimate of inf{Fλ(x, ε) | ε ∈ R+} for any x ∈ A \ Ω (if
x ∈ Ω, then the infimum is equal to f(x)).

Applying the well-known inequality |‖w‖− ‖v‖| ≤ ‖w− v‖ one obtains that

d(0,Φ(x)− εw) ≥ d(0,Φ(x)) − ε‖w‖.

Hence one has that if d(0,Φ(x)) − ε‖w‖ ≥ 0, then

d(0,Φ(x)− εw)2 ≥ d(0,Φ(x))2 − 2ε‖w‖d(0,Φ(x)) + ε2‖w‖2,

while if d(0,Φ(x)) − ε‖w‖ < 0, then

d(0,Φ(x)− εw)2 ≥ 0 ≥ d(0,Φ(x))
(
d(0,Φ(x))− 2ε‖w‖

)
.

Consequently, one gets that

d(0,Φ(x) − εw)2 ≥ d(0,Φ(x))2 − 2ε‖w‖d(0,Φ(x)) ∀ε ∈ R+.

Therefore for any x ∈ A and ε ≥ 0 one has

Fλ(x, ε) ≥ f(x) +
1

ε
d(0,Φ(x))2 − 2‖w‖d(0,Φ(x)) + λε.

Minimizing the right-hand side of the last inequality with respect to ε one gets
that

inf
ε≥0

Fλ(x, ε) ≥ f(x) + 2
(√

λ− ‖w‖
)
d(0,Φ(x)).

Hence applying (11) one obtains that

inf
ε≥0

Fλ(x, ε) ≥ f∗ ∀x ∈ A

for any λ ≥ 0 such that 2(
√
λ−‖w‖) ≥ σ∗. Thus, taking into account Remark 1

one gets that the penalty function Fλ(x, ε) is exact and

λ∗ ≤
(
σ∗

2
+ ‖w‖

)2

,

that completes the proof.
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Remark 2. From the theorems above it follows that the ex.p.p. of the penalty
function Fλ(x, ε) asymptotically behaves like the square of the ex.p.p. of the
standard nonsmooth exact penalty function Gσ(x) = f(x)+σd(y0,Φ(x)). Thus,
in the general case, the ex.p.p. of the penalty function Fλ(x, ε) is significantly
larger, then the ex.p.p. of the standard exact penalty function. However, one
can easily modify this penalty function to reduce its ex.p.p. Namely, for some
α > 0 define the smooth penalty function as follows

Fλ(x, ε) = f(x) +
λα

ε
d(0,Φ(x) − εw)2 + λε ∀ε > 0

(cf. the penalty function in [12]). It is easy to see that the ex.p.p. of this penalty
function is decreasing in α. In particular, arguing in the same way as in the
proof of Theorem 1 one can show that in the case α = 1 and w = 0 one has
λ∗ = σ∗/2. Under the assumption that the mapping Φ is single valued, one can
show that in the case α = 1 and w 6= 0 the following estimates hold true

σ∗

2(
√
1 + ‖w‖2 + ‖w‖)

≤ λ∗ ≤ σ∗

2(
√
1 + ‖w‖2 − ‖w‖)

(the assumption that Φ is single-valued allows one to use the more accurate
lower estimate

d(0,Φ(x)− εw)2 = ‖Φ(x)− εw‖2 ≥ (‖Φ(x)‖ − ε‖w‖)2

in the proof of Theorem 3).

Theorem 3 provides estimates of the ex.p.p. of the penalty function Fλ with
arbitrary w ∈ Y . Let us show that a choice of w can both increase and decrease
the ex.p.p., and that the lower estimate in Theorem 3 is sharp.

Example 1. Let X = A = R
n, Y = R, y0 = 0 and

f(x) = x1 + . . .+ xn, Φ(x) =
[
‖x‖2 − 1,+∞

)
,

where ‖ · ‖ is the Euclidean norm. Thus, the problem (P) takes the form

minx1 + . . .+ xn subject to x21 + . . .+ x2n ≤ 1. (12)

It is easy to verify that that a unique point of global minimum of this problem
has the form

x∗ =

(
− 1√

n
, . . . ,− 1√

n

)
.

Observe that the standard penalty function Gσ(x) = f(x)+ σmax{0, ‖x‖2− 1}
for problem (12) is convex. Therefore x∗ is a point global minimum of Gσ iff
0 ∈ ∂Gσ(x

∗), where ∂Gσ(x
∗) is the subdifferential of Gσ at x∗ in the sense of

convex analysis. From the fact that

∂Gσ(x
∗) = (1, . . . , 1) + co{0, 2σx∗},

it follows that 0 ∈ ∂Gσ(x
∗) iff σ ≥ √

n/2. Hence the penalty function Gσ
is globally exact, and σ∗ =

√
n/2. Consequently, by Theorem 3 the penalty

function Fλ with arbitrary w ∈ R is also exact. Moreover, in the case w = 0
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one has λ∗ = n/16 by virtue of Theorem 2. Let us compute the ex.p.p. of the
penalty function Fλ in the case of arbitrary w ∈ R.

Choose arbitrary w < 0. Then for any ε > 0 and x /∈ Ω (i.e. ‖x‖ > 1) one
has

Fλ(x, ε) =

n∑

i=1

xi +
1

ε
max{0, ‖x‖2 − 1− εw}2 + λε.

Note that ‖x‖2−1−εw > 0 for any x /∈ Ω and ε > 0 due to the fact that w < 0.
Hence for any such x and ε one has

Fλ(x, ε) =

n∑

i=1

xi +
1

ε
(‖x‖2 − 1− εw)2 + λε.

Minimizing the right-hand side with respect to ε > 0 one obtains

min
ε>0

Fλ(x, ε) =

n∑

i=1

xi + 2(
√
λ+ w2 − w)(‖x‖2 − 1) = Gσ(x),

where σ = 2(
√
λ+ w2 − w). Consequently, one has that

min
ε>0

Fλ(x, ε) = Gσ(x) ≥ f∗ = f(x∗) ∀x /∈ Ω

if and only if σ ≥ σ∗ =
√
n/2. Therefore taking into account Remark 1 one

obtains that λ∗ is equal to the greatest lower bound of all λ ≥ 0 for which
2(
√
λ+ w2 − w) ≥ √

n/2. Hence

λ∗ =

{
0, if |w| ≥ √

n/8,

n/16− |w|√n/2, otherwise,

or, equivalently, λ∗ = max{0, (σ∗)2/4 − |w|σ∗}. Thus, the lower estimate in
Theorem 3 is sharp. Note also that in the case w < 0 the ex.p.p. of Fλ is smaller
than in the case w = 0.

Let, now, w > 0 be arbitrary. Fix x ∈ R
n such that ‖x‖ > 1, and denote

E = {ε > 0 | ‖x‖2 − 1− εw > 0}. Clearly, E = (0, (‖x‖2 − 1)/w). For any ε ∈ E
one has

Fλ(x, ε) =

n∑

i=1

xi +
1

ε
(‖x‖2 − 1− εw)2 + λε.

Introduce the function

h(ε) =
1

ε
(‖x‖2 − 1− εw)2 + λε.

Let us find a global minimum of the function h on the set E. Solving the equation
h′(ε∗) = 0 one gets ε∗ = (‖x‖2 − 1)/

√
λ+ w2. It is easy to check that ε∗ ∈ E,

h′(ε) < 0 for any ε ∈ (0, ε∗) and h′(ε) > 0 for any ε > ε∗. Therefore ε∗ is a
point of global minimum of the function h on the set E. Hence

min
ε∈E

Fλ(x, ε) =

n∑

i=1

xi + h(ε∗) =

n∑

i=1

xi + 2(
√
λ+ w2 − w)(‖x‖2 − 1) = Gσ(x),
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where σ = 2(
√
λ+ w2−w). On the other hand, if ε /∈ E, i.e. if ε ≥ (‖x‖2−1)/w,

then

Fλ(x, ε) =
n∑

i=1

xi + λε ≥
n∑

i=1

xi +
λ

w
(‖x‖2 − 1) = Gλ/w(x).

Therefore
min
ε>0

Fλ(x, ε) = Gγ(x) ∀x /∈ Ω,

where γ = min{λ/w, 2(
√
λ+ w2 −w)}. Then arguing in the same way as in the

case w < 0 one obtains that λ∗ coincides with the greatest lower bound of all
λ ≥ 0 for which γ ≥ σ∗, which yields

λ∗ =
(σ∗)2

4
+ wσ∗ =

n

16
+ w

√
n

2
.

Note that in the case w > 0 the ex.p.p. of Fλ is greater than in the case w = 0.

Remark 3. If in Theorem 3 the mapping Φ is single-valued or it has the form
Φ(x) = [g(x),+∞) for some function g : X → R, then one can obtain the more
accurate upper estimate λ∗ ≤ (σ∗)2/4+ ‖w‖σ∗ (cf. Remark 2). Furthermore, as
the example above shows, this upper estimate is sharp.

3 Nonlinear Trasformations of Smooth Penalty

Functions

In this section, we study how the introduction of nonlinear functions φ and β
into the definition of the smooth penalty function (see (2)) affects its exactness.

3.1 The Case w = 0

Let φ : [0,+∞] → [0,+∞] be a nondecreasing function such that φ(t) = 0 iff
t = 0 (the element +∞ is included into the domain of φ in order to allow Φ(x)
to be empty for some x). Introduce the following penalty function

Fλ[φ](x, ε) = f(x) + ε−1φ(d(y0,Φ(x))
2) + λε ∀ε > 0.

If φ(t) ≡ t, then we simply write Fλ(x, ε). In order to underline the effect of
the function φ, denote the ex.p.p. of this penalty function at a point x∗ ∈ Ω by
λ∗(x∗, φ). We will also use the similar notation for the global ex.p.p.

At first, note that Theorems 1 and 2 can be easily generalized to the case of
the penalty function above. In particular, the following result holds true.

Theorem 4. The penalty function Fλ[φ](x, ε) is globally exact if and only if
the penalty function Gσ[φ](x) = f(x)+σ

√
φ(d(y0,Φ(x))2) is globally exact, and

λ∗(φ) = σ∗(φ)2/4, where σ∗(φ) is the ex.p.p. of Gσ[φ].

Remark 4. Let the function φ be twice continuously differentiable on [0, t0] for
some t0 > 0. From the theorem above it follows that for the penalty function
Fλ[φ] to be exact in the general case it is necessary that φ′(0) > 0. Indeed,
let X be a normed space, A = X , and let the functions f and d(y0,Φ(·))2 be
Gâteaux differentiable at a globally optimal solution x∗ of the problem (P).
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Arguing by reductio ad absrudum, suppose that φ′(0) = 0 (note that since φ is
nondecreasing, then φ′(0) ≥ 0), but the penalty function Fλ[φ] is globally exact.
Then by Theorem 4 the point x∗ is a point of global minimum of the penalty
function Gσ.

Let us show that the function Gσ is Gâteaux differentiable at x∗. For any h ∈
X and α ∈ R denote ω(α) = d(y0,Φ(x

∗+αh))2. From the fact that the function
d(y0,Φ(·))2 is Gâteaux differentiable at x∗, and x∗ is a point global minimum
of this function (recall that d(y0,Φ(·))2 is nonnegative, and d(y0,Φ(x

∗))2 = 0)
it follows that ω is differentiable at 0, and ω′(0) = 0. Applying the Taylor
expansion for the function φ at 0 one obtains that for any sufficiently small
α > 0 there exists τ ∈ [0, ω(α)] such that

1

α

√
φ(d(y0,Φ(x∗ + αh))2) =

1

α

√
φ
(
ω(α)

)
=

√
1

α2

φ′′(τ)

2
ω(α)2.

Passing to the limit as α → +0 one gets that

d

dα

√
φ(d(y0,Φ(x∗ + αh))2) =

√
φ′′(0)

2
ω′(0)2 = 0.

Hence the function
√
φ(d(y0,Φ(·))2) is Gâteaux differentiable at x∗, and its

Gâteaux derivative is equal to 0. Therefore the function Gσ is also Gâteaux
differentiable at x∗, and G′

σ(x
∗) = f ′(x∗), which implies f ′(x∗) = 0 due to the

fact that x∗ is a point of global minimum of Gσ. However, in the general case
the equality f ′(x∗) = 0 does not hold true, since x∗ is a point of global minimum
of the constrained optimization problem (P). Thus, in the general case, for the
penalty function Fλ[φ] to be exact it is necessary that φ′(0) > 0. In particular,
for any θ > 0 the penalty function

Fλ(x, ε) = f(x) +
1

ε
d(y0,Φ(x))

2+θ + λε

is not exact, provided there exists a point of global minimum x∗ of the problem
(P) such that f ′(x∗) 6= 0.

Let us study how the exactness of the penalty function Fλ[φ] changes with
respect to a change of the function φ. We start we the case of local exactness.

Theorem 5. Let ψ : [0,+∞] → [0,+∞] be a nondecreasing function such that
ψ(t) = 0 iff t = 0. Let also x∗ ∈ dom f be a locally optimal solution of the
problem (P). Suppose that the following assumptions hold true:

1. the penalty function Fλ[φ] is exact at x∗;

2. there exist ψ0 > 0 and t0 > 0 such that ψ(t) ≥ ψ0φ(t) for all t ∈ [0, t0];

3. the function d(y0,Φ(·)) is continuous at x∗.

Then the penalty function Fλ[ψ] is also exact at x∗, and

λ∗(x∗, ψ) ≤ λ∗(x∗, φ)

ψ0

11



Proof. The mapping d(y0,Φ(·)) is continuous at x∗ and d(y0,Φ(x
∗)) = 0 by the

fact that x∗ is feasible. Therefore there exists a neighbourhood U of x∗ such
that

d(y0,Φ(x))
2 ≤ t0 ∀x ∈ U. (13)

Taking into account the fact that Fλ[φ] is exact at x
∗ one obtains that for any

λ > λ∗(x∗, φ) there exist a neighbourhood V ⊂ U of x∗ and ε0 > 0 for which

Fλ[φ](x, ε) ≥ Fλ[φ](x
∗, 0) = f(x∗) ∀(x, ε) ∈ V × [0, ε0].

Consider now the penalty function Fλ[ψ]. If ε = 0, then

Fλ[ψ](x, 0) = Fλ[φ](x, 0) ≥ f(x∗) = Fλ[ψ](x
∗, 0) ∀x ∈ V.

On the other hand, if ε ∈ (0, ε0], then applying the inequality ψ(t) ≥ ψ0φ(t),
and taking into account (13) one gets that

f(x∗) ≤ Fλ[φ](x, ε) = f(x) +
1

ε
φ(d(y0,Φ(x))

2) + λε ≤

≤ f(x) +
1

εψ0
ψ(d(y0,Φ(x))

2) + λε = Fλ/ψ0
[ψ](x, εψ0).

for any x ∈ V . Therefore for any λ > λ∗(x∗, φ) one has

Fλ/ψ0
[ψ](x, ε) ≥ f(x∗) ∀(x, ε) ∈ V × [0, ε0/ψ0],

which implies that the penalty function Fλ[ψ] is exact at x∗ and λ∗(x∗, ψ) ≤
λ∗(x∗, φ)/ψ0.

Corollary 1. Let x∗ ∈ dom f be a locally optimal solution of the problem (P),
and the mapping d(y0,Φ(·)) be continuous at x∗. Suppose that there exists the
right-hand side derivative φ′+(0) of φ at 0 such that φ′+(0) > 0. Then the penalty
function Fλ[φ] is exact at x∗ if and only if the penalty function Fλ is exact at
this point and

λ∗(x∗, φ) =
λ∗(x∗)

φ′+(0)
.

The previous corollary can be partly generalized to the case of global exact-
ness.

Theorem 6. Let the penalty function Fλ be exact. Suppose also that φ is convex,
and there exists the right-hand side derivative φ′+(0) of φ at 0 such that φ′+(0) >
0. Then the penalty function Fλ[φ] is exact and

λ∗(φ) ≤ λ∗

φ′+(0)
.

Proof. Since the function φ is convex, then φ(t) ≥ φ′+(0)t for all t ≥ 0 ([16],
Theorem 23.1). Therefore one has

Fλ[φ](x, ε) ≥ Fλφ′

+
(0)

(
x, ε/φ′+(0)

)
∀(x, ε) ∈ X × R+,

which implies the desired result.
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The theorem above provides only an upper estimate of the ex.p.p. of the
penalty function Fλ[φ]. Furthermore, this estimate relies primarily on the infor-
mation about the behaviour of a function φ in a neighbourhood of zero (namely,
it depends only on φ′+(0)), while a possible effect of the nonlinearity of the func-
tion φ for large values of the constraint violation measure d(y0,Φ(x))

2 is not
taken into account explicitly. Let us show that on one hand, the estimate of the
ex.p.p. in Theorem 6 is sharp, but on the other hand this estimate is very crude,
since even in the case φ′+(0) = 1 the ex.p.p. λ∗(φ) can be significantly smaller
than the ex.p.p. λ∗.

Example 2. Let X = A = Y = R, y0 = 0 and Φ(x) = [x,+∞). For any c ≥ 0
define

f(x) =





−x, if x ≤ 1,

−0.5x2 − 0.5, if x ∈ (1, c+ 1),

−(c+ 1)x+ 0.5c2 + c, if x ≥ c+ 1.

It is easy to verify that the function f is continuously differentiable.
Since the inclusion 0 ∈ Φ(x) is equivalent to the inequality x ≤ 0, then the

problem (P) is equivalent to the problem of minimizing the function f over the
set (−∞, 0]. Clearly, a unique globally optimal solution of this problem is the
point x∗ = 0 and f∗ = 0.

The standard penalty function for the problem (P) has the form Gσ(x) =
f(x) + σmax{0, x}. Note that

Gσ(x) = −(c+ 1)x+ 0.5c2 + c+ σx ≥ f∗ = 0 ∀x ≥ c+ 1

if and only if σ ≥ c+ 1. Moreover, since G′
σ(x) = −x+ σ for any x ∈ (1, c+ 1),

then Gσ(x) ≥ f∗ for any x ∈ (1, c+1) and σ ≥ c+1. Therefore Gσ(x) ≥ f∗ for
all x ∈ R if and only if σ ≥ c+1. Hence the penalty function Gσ is globally exact
and σ∗ = c+ 1. Consequently, the smooth penalty function Fλ (with w = 0) is
also exact, and λ∗ = (c+ 1)2/4 by virtue of Theorem 2.

Define

φ(t) =





t

1− t
, if t ∈ [0, 1),

+∞, if t ≥ 1,

and introduce the penalty function Gσ[φ](x) = f(x)+
√
φ(d(0,Φ(x))2). Observe

that φ(t) ≥ t for all t ∈ [0, 1) and d(0,Φ(x))2 = max{0, x}2. Therefore

Gσ[φ](x) = −x+
√
φ
(
max{0, x}2

)
≥ −x+ σmax{0, x} ∀x ∈ [0, 1),

and Gσ[φ](x) = +∞ for any x ≥ 1. Hence for any σ ≥ 1 one has Gσ[φ](x) ≥
0 = f∗ for all x ∈ R, which implies that the penalty function Gσ[φ] is exact and
σ∗(φ) ≤ 1.

Let us show that σ∗(φ) = 1. Indeed, let σ ∈ (0, 1). Then there exists ε > 0
such that σ + ε < 1. Hence for x =

√
1− (σ + ε)2 one has

Gσ[φ](x) = −x+ σ
√
φ(x2) = −x+ σ

x

σ + ε
< 0 = f∗.

Therefore x∗ = 0 is not a point of global minimum of the penalty function Gσ[φ]
for any σ ∈ (0, 1), which yields σ∗(φ) = 1. Applying Theorem 4 one gets that
the penalty function Fλ[φ] is globally exact and λ∗(φ) = 1/4.
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Since φ′+(0) = 1, then with the use of Theorem 6 one obtains the estimate
λ∗(φ) ≤ λ∗ = (c + 1)2/4, that turns into an equality in the case c = 0. Thus,
this estimate is sharp. However, note also that λ∗ → +∞ as c → ∞, while
λ∗(φ) = 1/4 for all c.

The proof of Theorem 6 essentially relies on the convexity of the function
φ. Let us show that a more sophisticated argument allows one to avoid this
assumption. However, it should be underlined that this result does not contain
any estimates of the exact penalty parameter.

We need the following auxiliary result.

Lemma 1. The penalty function Gσ(x) = f(x) + σφ(d(y0,Φ(x))
2) is globally

exact if and only if the function Gσ1
is bounded below on A for some σ1 > 0,

and there exists δ > 0 such that

Gσ2
(x) ≥ f∗ ∀x ∈ Ωδ =

{
z ∈ A | φ(d(y0,Φ(z))2) < δ

}
, (14)

for some σ2 > 0, where f∗ = infx∈Ω f(x).

Proof. If the penalty function Gσ is globally exact, then, obviously, for any
σ > σ∗ the function Gσ is bounded below on A, and the condition (14) is valid
for any δ > 0. Let us prove the converse statement. For any x ∈ A \Ωδ one has

Gσ(x) = f(x) + σφ(d(y0,Φ(x))
2) = Gσ1

(x) + (σ − σ1)φ(d(y0,Φ(x))
2) ≥

≥ c+ (σ − σ1)δ ≥ f∗ ∀σ ≥ σ̂

where

c = inf
x∈A

Gσ1
(x) > −∞, σ̂ = σ1 +

f∗ − c

δ
.

Therefore Gσ(x) ≥ f∗ for all x ∈ A and σ ≥ max{σ2, σ̂}. It remains to apply
Remark 1.

Theorem 7. Let ψ : [0,+∞] → [0,+∞] be a nondecreasing function such that
ψ(t) = 0 iff t = 0. Suppose that following assumptions hold true:

1. the penalty function Fλ[φ] is globally exact;

2. there exist ψ0 > 0 and t0 > 0 such that ψ(t) ≥ ψ0φ(t) for all t ∈ [0, t0];

3. the function Hσ(x) = f(x) + σ
√
ψ(d(y0,Φ(x))2) is bounded below on A

for some σ ≥ 0.

Then the penalty function Fλ[ψ] is globally exact.

Proof. From the fact the penalty function Fλ[φ] is globally exact, and Theorem 4
it follows that the penalty function Gσ(x) = f(x) + σ

√
ψ(d(y0,Φ(x))2) is also

globally exact. Therefore there exists σ > 0 such that

Gσ(x) ≥ f∗ := inf
x∈Ω

f(x) ∀x ∈ A.

Denote δ =
√
ψ(t0). Applying the inequality ψ(t) ≥ ψ0φ(t), and taking into

account the fact that the function ψ is nondecreasing one gets that

f∗ ≤ Gσ(x) ≤ Hσ/
√
ψ0
(x) ∀x ∈

{
z ∈ A |

√
ψ(d(y0,Φ(z))2) < δ

}

Hence and from Lemma 1 it follows that the penalty function Hσ is exact. Then
applying Theorem 4 one obtains the required result.
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3.2 The General Case

Let, now, Y be a normed space, y0 = 0, and let φ : [0,+∞] → [0,+∞] be a
nondecreasing function such that φ(t) = 0 iff t = 0. For any w ∈ Y define

Fλ[φ,w](x, ε) = f(x) + ε−1φ(d(0,Φ(x) − εw)2) + λε ∀ε > 0. (15)

If φ(t) ≡ t, then we write Fλ[w](x, ε). Denote the ex.p. p. of this function at a
point x∗ ∈ Ω by λ∗(x∗, φ, w), and denote its global ex.p.p. by λ∗(φ,w).

Let us show that the results of the previous subsection cannot be directly
generalized to the case of arbitrary w ∈ Y .

Example 3. Let X = Y = A = R, Φ(x) = x, f(x) = − sign(x)
√

|x|, and
φ(t) =

√
t. Observe that Ω = {0} and

Gσ(x) = f(x) + σ
√
φ(d(0,Φ(x))2) = − sign(x)

√
|x|+ σ

√
|x|.

Therefore the penalty function Gσ(x) is exact, and σ
∗(φ) = 1. Hence by Theo-

rem 4 the penalty function Fλ[φ] = Fλ[φ, 0] is also exact, and λ∗(φ) = 1/4.
Let now w > 0 be arbitrary. Then for any ε > 0 and λ > 0 one has

Fλ[φ,w](εw, ε) = − sign(εw)
√

|εw|+ 1

ε
|εw − εw|+ λε = −√

εw + λε,

which yields Fλ[φ,w](εw, ε) < 0 = f(0) for any sufficiently small ε > 0, and any
λ > 0. Thus, the penalty function Fλ[φ,w] is not exact for any w > 0.

However, Theorems 5 and 6 can be partly extended to the general case.

Theorem 8. Let ψ : [0,+∞] → [0,+∞] be a nondecreasing function such that
ψ(t) = 0 iff t = 0. Let also x∗ ∈ dom f be a locally optimal solution of the
problem (P). Suppose that following assumptions hold true:

1. there exist ψ0 > 0 and t0 > 0 such that ψ(t) ≥ ψ0φ(t) for all t ∈ [0, t0];

2. the penalty function Fλ[φ, ψ0w] is exact at x∗;

3. the function (x, ε) → d(0,Φ(x)− εw) is continuous at (x∗, 0).

Then the penalty function Fλ[ψ,w] is also exact at x∗ and

λ∗(x∗, ψ, w) ≤ λ∗(x∗, φ, ψ0w)

ψ0

Proof. From the inequality ψ(t) ≥ ψ0φ(t) it follows that for any x ∈ A and
ε > 0 such that d(0,Φ(x)− εw)2 ≤ t0 one has

Fλ[ψ,w](x, ε) ≥ f(x) +
ψ0

ε
φ(d(0,Φ(x) − εw)2) + λψ0

ε

ψ0
=

= Fλψ0
[φ, ψ0w]

(
x,

ε

ψ0

)
.

Then applying the continuity of the mapping (x, ε) → d(0,Φ(x) − εw), and
arguing in the same way as in the proof of Theorem 5 one obtains the desired
result.
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Corollary 2. Let x∗ ∈ dom f be a locally optimal solution of the problem (P),
and the mapping (x, ε) → d(0,Φ(x)− εw) be continuous at (x∗, 0). Suppose that
there exists the right-hand side derivative φ′+(0) of φ at 0 such that φ′+(0) > 0.
Then the penalty function Fλ[φ,w] is exact at x∗ if and only if the penalty
function Fλ[φ

′
+(0)w] is exact at this point, and for any 0 < φ1 < φ′+(0) < φ2

one has λ∗(x∗, φ2w)/φ2 ≤ λ∗(x∗, φ, w) ≤ λ∗(x∗, φ1w)/φ1.

As in the case w = 0, the corollary above can be extended to the case of
global exactness under the assumption that the function φ is convex.

Theorem 9. Let φ : [0,+∞] → [0,+∞] be a nondecreasing convex function
such that φ(t) = 0 iff t = 0, and let there exist the right-hand side deriva-
tive φ′+(0) of φ at 0 such that φ′+(0) > 0. Suppose also that the penalty func-
tion Fλ[φ

′
+(0)w] is exact. Then the penalty function Fλ[φ,w] is also exact and

λ∗(φ,w) ≤ λ∗(φ′+(0)w)/φ
′
+(0).

3.3 Nonlinear Dependence on ε

Let, as above, Y be a normed space, y0 = 0, and let φ : [0,+∞] → [0,+∞] and
β : [0,+∞) → [0,+∞] be nondecreasing functions such that φ(t) = 0 iff t = 0,
and β(t) = 0 iff t = 0. For any w ∈ Y define the penalty function

Fλ[φ,w, β](x, ε) = f(x) + ε−1φ(d(0,Φ(x) − εw)2) + λβ(ε) ∀ε > 0.

Denote the ex.p. p. of this function at a point x∗ ∈ Ω by λ∗(x∗, φ, w, β), and
denote its global ex.p.p. by λ∗(φ,w, β).

Let us show that under some natural assumptions the case of nonlinear
function β can be easily reduced to the case β(t) ≡ t.

Theorem 10. Let x∗ ∈ dom f be a locally optimal solution of the problem
(P), and let there exist the right-hand side derivative β′

+(0) of β at 0 such
that β′

+(0) > 0. Then the penalty function Fλ[φ,w, β] is exact at x∗ if and
only if the penalty function Fλ[φ,w] is exact at this point, and λ∗(φ,w, β) =
λ∗(φ,w)/β′

+(0).

Proof. Since β′
+(0) > 0, for any η ∈ (0, β′

+(0)) there exists ε0 > 0 such that

0 ≤ (β′
+(0)− η)ε ≤ β(ε) ≤ (β′

+(0) + η)ε ∀ε ∈ [0, ε0),

which yields that for any (x, ε) ∈ A× [0, ε0) one has

F(β′

+
(0)−η)λ[φ,w](x, ε) ≤ Fλ[φ,w, β](x, ε) ≤ F(β′

+
(0)+η)λ[φ,w](x, ε).

Therefore Fλ[φ,w, β] is exact at x∗ iff Fλ[φ,w] is exact at this point, and
λ∗(x∗, φ, w, β) = λ∗(x∗, φ, w)/β′

+(0) due to the fact that η ∈ (0, β′
+(0)) was

chosen arbitrarily.

The previous theorem can be extended to the case of global exactness under
the assumption that the function β is convex. In this case, one easily obtains the
estimate λ∗(φ,w, β) ≤ λ∗(φ,w)/β′

+(0). However, as in the case of Theorem 6,
the convexity assumption can be discarded.

Arguing in a similar way to the proof of Lemma 1 one can verify that the
following result holds true.
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Lemma 2. The penalty function Fλ[φ,w, β] is globally exact if and only if there
exists λ1 ≥ 0 such that the function Fλ1

[φ,w, β] is bounded below on A × R+,
and there exists ε0 > 0 such that

Fλ2
[φ,w, β] ≥ f∗ ∀(x, ε) ∈ A× [0, ε0)

for some λ2 ≥ 0, where f∗ = infx∈Ω f(x).

Theorem 11. Let γ : [0,+∞) → [0,+∞] be a nondecreasing function such that
γ(ε) = 0 iff ε = 0, and let there exist γ0 > 0 and ε0 ≥ 0 such that γ(ε) ≥ γ0β(ε)
for all ε ∈ (0, ε0). Suppose also that the penalty function Fλ[φ,w, β] is globally
exact, and there exists λ0 such that the penalty function Fλ0

[φ,w, γ] is bounded
below on A× R+. Then the penalty function Fλ[φ,w, γ] is globally exact.

Proof. Applying the inequality γ(ε) ≥ γ0β(ε), and the fact that the penalty
function Fλ[φ,w, β] is globally exact one gets that for any λ > λ∗(φ,w, β)/γ0
the following inequalities hold true

Fλ[φ,w, γ](x, ε) ≥ Fγ0λ[φ,w, β](x, ε) ≥ f∗ ∀(x, ε) ∈ A× [0, ε0).

Then taking into account Lemma 2 one obtains that the penalty function
Fλ[φ,w, γ] is globally exact.

Corollary 3. Let there exist the right-hand side derivative of β at 0 such
that β′

+(0) > 0. Suppose also that there exists λ0 ≥ 0 such that the functions
Fλ0

[φ,w, β] and Fλ0
[φ,w] are bounded below on A × R+. Then for the penalty

function Fλ[φ,w, β] to be globally exact it is necessary and sufficient that the
penalty function Fλ[φ,w] is globally exact.

Let us illustrate Theorem 11 with a simple example.

Example 4. Let φ(t) ≡ t, w = 0 and β(ε) = 2
√
ε. Then for any ε > 0 the

penalty function Fλ[φ,w, β] takes the form

Fλ[φ,w, β](x, ε) = f(x) +
1

ε
d(0,Φ(x))2 + 2λ

√
ε. (16)

From Theorems 2 and 11 it follows that if the standard penalty function Gσ(x) =
f(x)+σd(0,Φ(x)) is exact, and the penalty function Fλ[φ,w, β] is bounded below
on A×R+ for some λ ≥ 0, then the penalty function Fλ[φ,w, β] is globally exact
as well.

Note also that one can easily obtain a direct characterization of the exactness
of the penalty function Fλ[φ,w, β]. Minimizing the right-hand side of (16) with
respect to ε > 0 one gets that

min
ε>0

Fλ[φ,w, β](x, ε) = f(x) + 3λ
2
3 d(0,Φ(x)

2
3 .

Therefore the penalty function Fλ[φ,w, β] is globally exact iff the penalty func-
tion Hθ(x) = f(x) + θd(0,Φ(x))2/3 is exact, and λ∗(φ,w, β) = (θ∗/3)3/2, where
θ∗ is the ex.p.p. of the penalty function Hθ.
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