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Abstract. It is known that complementarity functions play an important role in dealing

with complementarity problems. The most well known complementarity problem is the

symmetric cone complementarity problem (SCCP) which includes nonlinear complemen-

tarity problem (NCP), semidefinite complementarity problem (SDCP), and second-order

cone complementarity problem (SOCCP) as special cases. Moreover, there is also so-

called generalized complementarity problem (GCP) in infinite dimensional space. Among

the existing NCP-functions, it was observed that there are no differentiable and convex
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NCP-functions. In particular, Miri and Effati [20] show that convexity and differentiabil-

ity cannot hold simultaneously for an NCP-function. In this paper, we further establish

that such result also holds for general complementarity functions associated with the

GCP.

Keywords: Complementarity functions, NCP-functions, second-order cone, closed con-

vex cone.

1 Introduction

The complementarity problem arises from the KKT conditions of an optimization prob-

lem. Formally, it seeks to find an element x such that

x �K 0, F (x) �K 0, 〈x, F (x)〉 = 0, (1)

where K is usually a symmetric cone [11], �K is the partial order associated with K, and

〈·, ·〉 is an appropriate inner product. When K is the nonnegative orthant, the above

problem (1) reduces to the well known nonlinear complementarity problem (NCP for

short) which consists in finding a point x ∈ IRn such that

x ≥ 0, F (x) ≥ 0, 〈x, F (x)〉 = 0,

where 〈·, ·〉 is the Euclidean inner product and F = (F1, . . . , Fn)T is a map from IRn to

IRn. NCPs have wide applicability in the fields of economics, engineering, and opera-

tions research, see [9, 10, 13, 20] and references therein. When K represents a positive

semidefinite cone Sn+, the complementarity problem (1) reduces to a semidefinite com-

plementarity problem (SDCP for short). When K is the second-order cone (SOC) whose

definition will be introduced later, the complementarity problem (1) is the second-order

cone complementarity problem (SOCCP for short). All the above special cases can be

unified as symmetric cone complementarity problem (SCCP) under Euclidean Jordan

algebra.

Besides the symmetric cone complementarity problem which is endowed in a finite

dimensional space, we further consider the generalized complementarity problem (GCP

for short) in infinite dimensional space. More specifically, let (X, ‖ · ‖) denote a real

Banach space, X∗ represent its dual space, we consider a cone K which is solid (i.e.,

intK 6= ∅) closed convex in X. Note that its dual cone K+ is defined as

K+ = {x∗ ∈ X∗ : 〈x, x∗〉 ≥ 0, ∀x ∈ K} .

In contrast to the aforementioned symmetric cone, K is not self-dual in general. Let

〈·, ·〉 : X ×X∗ → IR be the canonical bilinear pairing and F : X → X∗. The generalized

complementarity problem (GCP) is to find an element x ∈ X such that

x ∈ K, F (x) ∈ K+, 〈x, F (x)〉 = 0. (2)
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The GCP was originally proposed by Karmardian in 1971, see [17]. For more details

regarding GCP including solution methods, properties, and applications, please refer to

the textbook [15].

To deal with various complementarity problems, the so-called complementarity func-

tions (C-functions) play crucial roles in designing solution methods. In the setting of

NCP, the complementarity function is abbreviated as NCP-function, which is denoted

by φ : IR2 → IR and defined as

φ(a, b) = 0 ⇐⇒ a, b ≥ 0, ab = 0.

During the past four decades, approximately thirty NCP-functions have been proposed,

see [12] for a survey. Among the existing NCP-functions, it is observed that none of

them is both convex and differentiable. In fact, Miri and Effati [21] show that there is

no pseudoconvex NCP-function, which implies that the convexity and differentiability

cannot hold simultaneously for a NCP function. The proof is based on the following

lemmas.

Lemma 1.1. ([12, Corollary 2]) Let φ : IR2 → IR be a convex NCP-function. Then, for

any a, b > 0, φ(a, b) < 0.

Lemma 1.2. ([1, Theorem 3.2, Chapter 3]) Let f : IRn → IR be a differentiable function.

Then, f is convex if and only if for any x, y ∈ IRn,

f(y) ≥ f(x) + 〈∇f(x), y − x〉.

Lemma 1.3. ([21, Lemma 3.1]) Let φ : IR2 → IR be an NCP-function. If the first order

partial derivatives of φ exist at the origin, then ∇φ(0, 0) = (0, 0)T .

With Lemmas 1.1-1.3, it can be shown that an NCP-function is never convex and

differentiable simultaneously. We state this result in Theorem 1.1.

Theorem 1.1. ([21, Corollary 3.1]) Every convex NCP-function is non-differentiable.

Proof. Assume that there exists a differentiable convex NCP-function φ : IR2 → IR. By

Lemma 1.2 and Lemma 1.3, for any a, b > 0, we have φ(a, b) ≥ φ(0, 0)+〈∇φ(0, 0), (a, b)〉 =

0, which contradicts Lemma 1.1. 2

In the setting of SCCP, let A = (V, 〈·, ·〉, ◦) denote an n-dimensional Euclidean Jordan

algebra and K be the symmetric cone in V. We call φ : V × V→ V a complementarity

function (C-function) associated with SCCP if

φ(x, y) = 0 ⇐⇒ x ∈ K, y ∈ K, x ◦ y = 0.
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Scholars in the field of optimization are interested in this class of functions and the

induced merit functions in the sense that these functions help develop algorithms for

the symmetric cone complementarity problem and the symmetric cone programming, see

[18, 22, 24] and references therein. As for the GCP setting, a function Φ : X ×X∗ → Y

is called a complementarity function associated with the GCP if

Φ(x, x∗) = 0 ⇐⇒ x ∈ K, x∗ ∈ K+, 〈x, x∗〉 = 0 (3)

where X, Y are Banach spaces.

In this paper, we extend the fact that NCP-functions cannot be simultaneously convex

and differentiable to general complementarity functions associated with the general GCP.

The key idea is exploiting the concept of cone convexity. In addition, the concept about

cone pseudoconvexity is needed, too. To close this section, we recall the definition of cone

convexity, which will be used in the main result. Let X, Y be two real Banach spaces

and L be a pointed (i.e., L ∩ (−L) = {0}) closed convex cone in Y .

(a) For x, y ∈ Y such that x− y ∈ L, we say x ≥L y (or y ≤L x).

(b) For x, y ∈ Y such that x − y ∈ L \ {0}, we say x >L y (or y <L x). By x 6>L y

(y 6<L x) we denote the negation of x >L y (respectively, y <L x).

(c) A mapping f : X → Y is said to be L-convex if for any v, w ∈ X and λ ∈ (0, 1), one

has

f((1− λ)v + λw) ≤L (1− λ)f (v) + λf (w) .

In particular, if X = Y = IRn, L = Kn is the second-order cone in IRn (also known as

the Lorentz cone), which is defined by

Kn =
{
x = (x1, x2) ∈ IR× IRn−1 | ‖x2‖ ≤ x1

}
,

where ‖ · ‖ is the Euclidean norm, then the L-convexity reduces to the Kn-convexity

(SOC-convexity), see [2, 5, 6] for more details.

2 The main result

In this section, we show that the differentiability and convexity cannot be held simul-

taneously for complementarity functions associated with the GCP. Recall that the GCP

given as in (2) is to find an element in X such that

x ∈ K, F (x) ∈ K+, 〈x, F (x)〉 = 0.

Here, we require K solid (i.e., intK 6= ∅) closed convex cone in X, and K+ is defined as

K+ = {x∗ : 〈x, x∗〉 ≥ 0, ∀x ∈ K} .
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To achieve the main result for GCP case, we also need some technical lemmas and the

concepts about cone-convexity and cone-pseudoconvexity.

Lemma 2.1. Let (X, ‖ · ‖) be a real Banach space and K be a solid closed convex cone

in X. Then, we have K −K = X.

Proof. Let x ∈ X, and pick k ∈ intK. Then, there exists t > 0 such that k + tx ∈ K,

which yields

x =
1

t
(k + tx)− 1

t
k ∈ K −K.

Thus, the proof is complete. 2

We assume thatK+ is solid, too. (In connection with this assumption, see [8, Theorem

3.6 and Corollary 3.8-3.9].) Hence, by Lemma 2.1, one has

K+ −K+ = X∗.

Lemma 2.2. Let f : X → Y be a Fréchet differentiable mapping and Df(x) denote the

derivative of f at x. Then, f is L-convex if and only if for any v, v ∈ X one has

f(v) ≥L f(v) +Df(v)(v − v).

Proof. For any v, w ∈ X and λ ∈ (0, 1), denote vλ = (1− λ)v + λw.

“⇐=” Note that from the assumption, we know

f(v) ≥L f(vλ) +Df(vλ)(v − vλ) = f(vλ) + λDf(vλ)(v − w)

and

f(w) ≥L f(vλ) +Df(vλ)(w − vλ) = f(vλ) + (1− λ)Df(vλ)(w − v).

Adding these two inequalities after multiplying them by 1 − λ and λ, respectively, we

obtain

(1− λ) f(v) + λf(w) ≥L f(vλ),

which says f is L-convex.

“=⇒” Suppose that f is L-convex, then for every v, v ∈ V and λ ∈ (0, 1), one has

f((1− λ)v + λv) ≤L (1− λ)f (v) + λf (v). Thus,

f(v)− f(v)− f(v + λ(v − v))− f(v)

λ
=

(1− λ)f(v) + λf(v)− f((1− λ)v + λv)

λ
∈ L.

Letting λ → 0, we obtain that f(v) − f(v) − Df(v)(v − v) ∈ L. Then, the proof is

complete. 2
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A Fréchet differentiable mapping f : X → Y is said to be L-pseudoconvex if the

following implications hold true:

Df(v)(v − v) ≥L 0 =⇒ f(v) ≥L f(v),

f(v) <L f(v) =⇒ Df(v)(v − v) <L 0.

By Lemma 2.2, every differentiable L-convex function is L-pseudoconvex. Moreover, for

real valued functions, L-pseudoconvexity reduces to the classical notion of pseudocon-

vexity.

Lemma 2.3. Let Φ : X ×X∗ → Y be L-pseudoconvex and a C-function associated with

the GCP. Then, Φ (x, x∗) 6>L 0 for any x ∈ K and x∗ ∈ K+.

Proof. If we had Φ (x, x∗) >L 0, since Φ (2x, 0) = 0 the second implication in the

definition of L-pseudoconvexity would yield DΦ(x, x∗)(x,−x∗) <L 0. Similarly, from the

equality Φ (0, 2x∗) = 0 we would obtain DΦ(x, x∗)(−x, x∗) <L 0, which is a contradiction,

since DΦ(x, x∗)(−x, x∗) = −DΦ(x, x∗)(x,−x∗). 2

Lemma 2.4. Let Φ : X ×X∗ → Y be a C-function for the GCP. If Φ is differentiable

at the origin, then DΦ(0, 0) = 0.

Proof. First, we recall that the linear map DΦ(0, 0) : X ×X∗ → Y satisfies

lim
(x,x∗)→(0,0)

‖Φ (x, x∗)− Φ(0, 0)−DΦ(0, 0) (x, x∗) ‖
‖ (x, x∗) ‖

= 0. (4)

Then, we claim that DΦ(0, 0)(x, 0) = 0 for any x ∈ K. To see this, applying (4), we see

that for x ∈ K \ {0} there holds

0 = lim
t→0+

‖Φ(tx, 0)− Φ(0, 0)−DΦ(0, 0)(tx, 0)‖
‖tx‖

=
‖DΦ(0, 0)(x, 0)‖

‖x‖
,

which yields DΦ(0, 0)(x, 0) = 0. Similarly, we can also obtain DΦ(0, 0)(0, x∗) = 0 for

any x∗ ∈ K+.

Since K and K+ are solid, by Lemma 2.1, for every x ∈ X and x∗ ∈ X∗ there exist

x1, x2 ∈ K and x∗1, x
∗
2 ∈ K+ such that x = x1 − x2 and x∗ = x∗1 − x∗2. Hence

DΦ(0, 0) (x, x∗)

= DΦ(0, 0)(x1, 0)−DΦ(0, 0)(x2, 0) +DΦ(0, 0)(0, x∗1)−DΦ(0, 0)(0, x∗2)

= 0,

which says DΦ(0, 0) = 0. 2
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Theorem 2.1. There is no L-pseudoconvex C-function for the GCP.

Proof. Assume that there exists an L-pseudoconvex C-function Φ : X × X∗ −→ Y

for the GCP. Taking x ∈ intK and x∗ ∈ K+ \ {0}, applying Lemma 2.4 and the first

implication in the definition of L-pseudoconvexity, we have Φ (x, x∗) ≥L Φ (0, 0) = 0;

which, by Lemma 2.3, implies that Φ (x, x∗) = 0. Therefore, in view of (3) we must have

〈x, x∗〉 = 0, which is a contradiction, since from x ∈ intK and x∗ ∈ K+ \ {0} it follows

that 〈x, x∗〉 > 0. Hence, the proof is complete. 2

3 Final Remark

In this paper, we establish that the result done by Miri and Effati’s in [21] also holds

for general complementarity functions associated with the GCP. Since the GCP includes

NCP, SDCP, SOCCP, and SCCP as special cases, this is indeed a nice property for a

wide range of complementarity problems.

With this, we point out something in the setting of SOCCP. In such setting, a function

Φ : IRn × IRn → IRn is called a complementarity function (C-function) associated with

SOCCP if

Φ(x, y) = 0 ⇐⇒ 〈x, y〉 = 0, x ∈ Kn, y ∈ Kn.

Here are some C-functions associated with SOCCP which are extended from some well-

known and popular NCP-functions via Jordan algebra:

(1) Φ1(x, y) = x+ y − (x2 + y2)1/2 (see [7])

(2) Φ3(x, y) = x− (x− y)+, (see [14])

(3) Φ2(x, y) = x+ y − (|x|p + |y|p)1/p, for p > 1 (see [23])

(4) Φ4(x, y) = xp − [(x− y)+]p, for p > 1 being an odd integer (see [19])

(5) Φ5(x, y) =
(√

x2 + y2
)p
− (x+ y)p, for p > 1 being an odd integer (see [19])

For more other C-functions associated with SOCCP, please refer to [3, 6]. Note that

the second-order cone Kn is self-dual, and it is also a solid closed convex cone. From

the main result, we also conclude every Kn-convex complementarity function associated

with SOCCP is non-differentiable as well. Therefore, several new C-functions like Φ4, Φ5

which are recently proved continuously differentiable in [19], must not be Kn-convex.
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