
ar
X

iv
:1

51
2.

09
36

3v
1 

 [
cs

.C
C

] 
 3

1 
D

ec
 2

01
5

Counting Independent Terms in Big-Oh Notation

Fabiano de S. Oliveira1∗

Valmir C. Barbosa2

1Instituto de Matemática e Estat́ıstica
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Abstract

The field of computational complexity is concerned both with the in-

trinsic hardness of computational problems and with the efficiency of al-

gorithms to solve them. Given such a problem, normally one designs

an algorithm to solve it and sets about establishing bounds on its perfor-

mance as functions of the algorithm’s variables, particularly upper bounds

expressed via the big-oh notation. But if we were given some inscrutable

code and were asked to figure out its big-oh profile from performance data

on a given set of inputs, how hard would we have to grapple with the vari-

ous possibilities before zooming in on a reasonably small set of candidates?

Here we show that, even if we restricted our search to upper bounds given

by polynomials, the number of possibilities could be arbitrarily large for

two or more variables. This is unexpected, given the available body of ex-

amples on algorithmic efficiency, and serves to illustrate the many facets

of the big-oh notation, as well as its counter-intuitive twists.

Keywords: Analysis of algorithms, Asymptotics, Big-oh notation, Com-

putational complexity.
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1 Introduction

Computer algorithms require resources in order to run, most notably, time (the
number of steps they must go through before termination) and space (the num-
ber of memory cells where their input and intermediate results are to be stored).
In general, any given run of an algorithm may require a different amount of such
resources even if the algorithm is fully deterministic, since both time and space
usage depend heavily on the input to the algorithm.

This dependence on the input is quantified by means of what here we call an
algorithm’s variables, that is, numbers that explicitly or implicitly are part of
any input to the algorithm and can affect its resource requirements for comput-
ing on that particular input. For instance, while the number of steps required by
some algorithms for sorting an array of integers depends on the size of the array
(this being a piece of information that probably is an explicit part of the input
but in any case could easily be derived from it), the greatest integer in the array
does not affect the number of steps. The latter holds under the assumption
that each individual integer can be stored in a single processor register, which
seems reasonable given that it is true of any modern processor for integers up
to 4 billion.

The amount of time or space required by an algorithm is expressed as a
function of its variables. In the sorting example, both time and space are non-
decreasing functions of the single variable representing the number of integers
in the input. As it happens, though, in most cases determining an algorithm’s
exact time or space function is a rather difficult task. To circumvent some of this
difficulty while still allowing for meaningful statements about the algorithm’s
performance to be made, the commonly accepted practice has been to express
such functions, through the so-called big-oh notation, in asymptotic terms.

Definition (big oh, one variable). Let f(n) and g(n) be real functions. We

say that f(n) = O(g(n)) if there exist positive constants c and n0 such that

f(n) ≤ cg(n) for all n ≥ n0.

The big-oh notation is in fact more than simply a notation, since the elements
that go in its definition allow for a cleaner view of an algorithm’s inner workings
as far as its resource requirements are concerned. Thus, instead of seeking to
determine, say, the time function f(n) of an algorithm, what one does is to
look for some g(n) that, for sufficiently large n, is proportional to an upper
bound on f(n). If such an upper bound is “tight” (i.e., if it does reflect the time
requirement of the worst-case inputs to the algorithm), then several conclusions
can be drawn with the help of g(n). For example, if algorithms A and B admit
tight upper bounds on their time functions, respectively O(n2) and O(n log n),
then the worst-case performance of algorithm B is preferable to that of A for
sufficiently large n.

It often happens for an algorithm’s time and space functions to depend on
more than one variable, each representing a different aspect of the inputs to
the algorithm. This occurs routinely in the case of algorithms on graphs, since
very commonly such algorithms’ resource requirements are influenced by both
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the graph’s number of vertices and its number of edges, but it may also occur
more indirectly. As an example, consider an algorithm A for sorting a set of n
integers in O(n2) time. Suppose further that an input to A comes in the form
of two disjoint sets, say X and Y , respectively of sizes x and y, and that for
reasons that have to do with differentiating elements in X from those in Y in
some application, the natural way to express the running time of A is by making
explicit use of x and y, as in f(x + y), rather than coalescing them as a sum
into the variable n and using f(n) instead. Proceeding in this way would lead
to f(x+ y) = O((x+ y)2) = O(x2 +2xy+ y2), but clearly these expressions are
clamoring for the big-oh notation to be extended to the two-variable case.

Definition (big oh, two variables). Let f(n1, n2) and g(n1, n2) be real func-

tions. We say that f(n1, n2) = O(g(n1, n2)) if there exist positive constants

c, n1,0, and n2,0 such that f(n1, n2) ≤ cg(n1, n2) for all n1, n2 ≥ 0 satisfying

n1 ≥ n1,0 or n2 ≥ n2,0.

With the extended definition in hand, we can express the algorithm’s time
function as f(x, y) = O(x2 +2xy+ y2) and finally see that, in reality, f(x, y) =
O(x2 + y2). This is so because 2xy = O(x2) for all valuations of x and y in
which y ≤ x and 2xy = O(y2) for those in which x ≤ y.

This example is interesting also in that it highlights the advantage of being
concise when using the big-oh notation: saying that f(x, y) = O(x2 + y2) is no
less informative than saying that f(x, y) = O(x2 +2xy+ y2), but is more useful
to a potential user of the algorithm in question. Motivated by this observation,
we equate conciseness with irreducibility, the latter defined as follows. First, let
a term be the product of single-variable functions; e.g., x2, 2xy, and y2 are all
terms. Given the k terms T1, . . . , Tk, we say that term Ti is independent with
respect to the sum S = T1 + · · · + Tk if it is not asymptotically bounded from
above in proportion to S − Ti, that is, if Ti = O(S − Ti) does not hold. We say
that S is irreducible if all of T1, . . . , Tk are independent. In the example, x2+y2

is irreducible but x2 + 2xy + y2 is not.
In this article we concern ourselves with functions that, like S, can be written

as a sum of terms. Our goal is to answer a specific question motivated by the
following practical application. Suppose we are given the executable code for
some program, along with the list of variables affecting its performance, but no
further information (no source code, no time or space function, not even their
big-oh forms). Suppose further that, before putting such code to use, we are
tasked with estimating a bound on its time (or space) function as concisely as
possible, via the big-oh notation, over a given range of the variables. If we were
allowed to restrict our search to those time functions that can be expressed
as a sum of terms, then knowing beforehand how many terms there can be
in a concise representation thereof would be of great help. The question that
interests us is then, how many terms can an irreducible sum-of-terms function
have?
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2 One variable, and beyond

Answering this question becomes easier if we make further assumptions, now
regarding the nature of the single-variable factors that make up a term. If the
sum-of-terms function in question is itself a function of a single variable, then
the further assumption is quite reasonable and refers to restricting those factors
to be one of the functions that commonly appear in algorithmic analysis: poly-
nomial, polylogarithmic, logarithmic, and exponential. This given, the question
is answered quite simply in the single-variable case, in which no sum of at least
two terms constitutes an irreducible function.

We see this more clearly by following Hardy [1], who defined the class L

of logarithmico-exponential functions to be the one comprising the following
functions:

• f(n) = a, for any real constant a;

• f(n) = n;

• f(n)− g(n), if f(n), g(n) ∈ L;

• ef(n), if f(n) ∈ L;

• ln f(n), if f(n) ∈ L and, for some constant n0, f(n) > 0 for all n ≥ n0.

As it turns out, any function arising naturally when analyzing an algorithm
belongs to L [2]. For example, 4n3 + (logn)5 + 2n

2

can be seen to be in L by
using the defining conditions for L as follows:

• f(n) + g(n) = f(n)− (0− g(n)) ∈ L if f(n), g(n) ∈ L;

• f(n)g(n) = eln f(n)+ln g(n) ∈ L if f(n), g(n) ∈ L;

• f(n)k =
∏k

i=1 f(n) ∈ L if f(n) ∈ L;

• kf(n) =
∑k

i=1 f(n) ∈ L if f(n) ∈ L;

• 2f(n) = eln 2f(n) ∈ L if f(n) ∈ L.

An important consequence of Hardy’s work is that, given any two functions
f(n) and g(n) in L, we have f(n) = O(g(n)) or g(n) = O(f(n)). Therefore, if
f(n) is the sum of at least two terms, each one in L, then f(n) is not irreducible.

And how about sum-of-terms functions having more than one variable? As
noted above, multiple variables are a common occurrence in graph algorithms,
whose time and space functions often depend on both n and m, the graph’s
numbers of vertices and edges, respectively. In fact, some of the best algorithms
for numerous graph problems have time functions bounded by sums of two or
three terms, often depending on more variables than simply n and m, as shown
in Table 1. What we see in the table are counts of how many algorithms, as
reported in a portion of [3], have time-function bounds with a certain number of
terms on a certain number of variables. For example, 65 of the reported bounds
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Table 1: Number of time-function bounds reported in the “Complexity survey”
subsections of [3], considering the books’ Parts I and II only.

Number Number of terms
of variables 1 2 3

1 52 0 0
2 65 14 0
3 48 33 2
4 5 14 0
5 3 2 0

Total 173 63 2

on two variables have one single term and 14 have two, but none has three or
more terms.

One might then wonder if two is the maximum number of terms whose sum
is irreducible in the case of two variables. That, however, is not the case. To
see this, consider the function f(x, y) = x2 + y2 + (xy)3/2. The first term in
this function is independent, since it does not hold that x2 = O(y2 + (xy)3/2),
as seen by simply fixing y = c for any positive constant c. The case of the
second term is entirely analogous. As for the third term, set x = y to conclude
that (xy)3/2 = O(x2 + y2) does not hold either. So f(x, y) is irreducible despite
having more than two terms.

We may loosen the conjecture a little, and set about testing whether three,
not two, is the maximum number of terms in an irreducible sum of terms. But
once again, we are in no luck: the four-term sum f(x, y) = x485y + x477y4 +
x459y8+x243y32, for example, is irreducible. This can be seen by setting, for each
term in order, x = y0.7, x = y0.31, x = y0.21, and x = y0.05. So conjecturing
further seems to have become a little too daunting and perhaps we should
back off and consider the possibility that a function may in fact comprise an
arbitrarily large number of terms and still be irreducible. Next we prove that
this is the case when all the single-variable factors that go in a term are rising
power laws, even if the exponents in these laws are all positive integers (i.e., the
sum-of-terms function is a polynomial).

3 An arbitrarily large number of terms

Let f(x, y) be such that

f(x, y) =

k
∑

i=1

xaiybi .

If f(x, y) is to be an irreducible function, then clearly no two of the ai’s may
equal each other, and similarly no two of the bi’s, since in either case one of
the two terms involved would not be independent. Thus, it must be possible
to arrange the ai’s into an increasing or decreasing sequence, and similarly the
bi’s, but once again for the sake of irreducibility one of the sequences must be
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increasing while the other is decreasing. We assume 0 < a1 < · · · < ak and
b1 > · · · > bk > 0.

For each i, we concentrate on valuations of x and y such that x = yzi for some
zi > 0, so the ith term of f(x, y) is independent if and only if aizi+bi > ajzi+bj
for all j 6= i. So arguing for the irreducibility of f(x, y) requires that we find
a1, . . . , ak, b1, . . . , bk, and z1, . . . , zk such that

aizi + bi > ajzi + bj

for all i and all j 6= i. Our approach will be to determine the ai’s and the bi’s
in such a way as to automatically establish an interval within which to choose
the value of each zi. For 1 ≤ i, j ≤ k, the constraints on this choice are

zi < (bi − bj)/(aj − ai) for i < j,

zi > (bi − bj)/(aj − ai) for j < i.

A convenient, alternative way to view this condition is to define the ratio

r(i, j) =
bi − bj
aj − ai

,

for which it holds that r(i, j) = r(j, i). Using this equivalence whenever j < i
allows the condition to be written as

max
1≤j<i

r(j, i) < zi < min
i<j≤k

r(i, j) for 1 < i < k,

in addition to z1 < min1<j≤k r(1, j) and zk > max1≤j<k r(j, k). So in order for
f(x, y) to be irreducible, we must ensure that

max
1≤j<i

r(j, i) < min
i<j≤k

r(i, j) for 1 < i < k.

Theorem 1. Given any positive integer k, f(x, y) is irreducible with ai =
a1(2 − αi−1) and bi = b1β

i−1, where α and β are constants such that 0 < α <
β < 1− α < 1.

Proof. We first write r(i, j) as

r(i, j) =
b1
a1

(

β

α

)i−1
1− βj−i

1− αj−i

and note that

r(i, j + 1) = r(i, j)
hi,j(β)

hi,j(α)
,

where

hi,j(t) =
1− tj−i+1

1− tj−i
,
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with first derivative given by

h′
i,j(t) =

tj−i−1((j − i)(1− t)− t(1− tj−i))

(1 − tj−i)2
.

For i < j < k, we have h′
i,j(t) > 0 for t ∈ (0, 1), since using

ui,j(t) = (j − i)(1− t)− t(1− tj−i),

we have u′
i,j(t) = (j − i+ 1)(tj−i − 1) < 0 and ui,j(1) = 0, hence ui,j(t) > 0. It

follows that hi,j(β)/hi,j(α) > 1, and therefore, r(i, j) < r(i, j + 1).
Moreover, we also have r(i − 1, k) < r(i, i + 1) for 1 < i < k, which can be

seen by noting that

r(i − 1, k) < lim
j→∞

r(i − 1, j) < r(i, i + 1),

where

lim
j→∞

r(i − 1, j) =
b1
a1

(

β

α

)i−2

and

r(i, i+ 1) =
b1
a1

(

β

α

)i−1
1− β

1− α
,

since β(1 − β)/α(1 − α) > 1 for α < β < 1− α.
The desired inequality follows, since max1≤j<i r(j, i) = r(i − 1, i) < r(i −

1, k) < r(i, i + 1) = mini<j≤k r(i, j).

For the ai’s and bi’s of Theorem 1, following the proof reveals a clear recipe
to determine the zi’s: choose z1 < r(1, 2), zk > r(k − 1, k), and the remaining
ones to satisfy

r(i − 1, k) < zi < r(i, i+ 1) for 1 < i < k.

4 Integral exponents and constrained valuations

Our argument in the previous section for the irreducibility of the function
f(x, y) =

∑k
i=1 x

aiyyi relied on the particular valuation for x and y that sets
x = yzi . All we have required of the exponents ai, bi, and zi is that they be
positive, which leaves plenty of room for them to be nonintegers. This is not a
problem in itself, and in fact there exist landmark algorithms that run in time
bounded by the input size raised to an irrational power.1 However, when it
comes to the analysis of practical computer algorithms, in most cases we expect
the exponents ai and bi to be positive integers.

Additionally, depending on the domain at hand, it is often the case that the
valuation tying the x and y variables together should only employ values for

1One of the well-known examples of this in the single-variable case is Strassen’s algorithm
for multiplying two n× n matrices, whose running time is O(nlog2 7) [4].
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Table 2: For f(x, y) as in Theorem 2, with k = 6, pα = 1, qα = 3, pβ = 1, and
qβ = 2, the cell at position j, i gives the value of ajzi + bj. These values are
highlighted in a bold typeface whenever j = i, indicating the maximum on each
column (i.e., for fixed i and all j).

i: zi
j aj bj 1: 0.05 2: 0.14 3: 0.21 4: 0.31 5: 0.47 6: 0.70
1 243 32 44.15 66.02 83.03 107.33 146.21 202.10
2 405 16 36.25 72.70 101.05 141.55 206.35 299.50
3 459 8 30.95 72.26 104.39 150.29 223.73 329.30
4 477 4 27.85 70.78 104.17 151.87 228.19 337.90
5 483 2 26.15 69.62 103.43 151.73 229.01 340.10
6 485 1 25.25 68.90 102.85 151.35 228.95 340.50

zi that are bounded from above by a constant. This is the case of the already
noted domain of graph algorithms, in which a graph’s numbers n of vertices
and m of edges are such that m = O(n2). In this section we show that there
continue to exist exponents for which f(x, y) is irreducible even if we constrain
ai and bi to be positive integers (hence f(x, y) to be a polynomial), and likewise
if zi is constrained to be no greater than a constant.

Theorem 2. Given any positive integer k, f(x, y) is an irreducible polynomial

with ai = a1(2 − αi−1) and bi = b1β
i−1, where α = pα/qα and β = pβ/qβ are

rational constants such that 0 < α < β < 1− α < 1, a1 = qk−1
α , and b1 = qk−1

β .

Proof. Proceed exactly as in the proof of Theorem 1, then observe that all ai’s
and bi’s are positive integers.

A detailed example illustrating Theorem 2 is given in Table 2 and Figure 1
for k = 6. Table and figure provide different takes on the exact same setting,
the former highlighting the integral nature of the exponents in f(x, y) as well
as each ajzi + bj as a maximum over all j, the latter highlighting each zi and
r(i, j) for j > i.

Theorem 3. Given any positive integer k and a constant c > 0, there exist

constants α and β such that 0 < α < β < 1 − α < 1 for which f(x, y) is

irreducible with zi < c, ai = a1(2− αi−1), and bi = b1β
i−1, where b1/a1 < c.

Proof. Proceed exactly as in the proof of Theorem 1, then impose r(k−1, k) < c
to obtain an upper bound on the allowable values of k:

k < 2 + logβ/α
a1
b1

(

1− α

1− β

)

c.

The result follows from noting that, for b1 < ca1,

lim
β/α→1+

logβ/α
a1
b1

(

1− α

1− β

)

c = ∞.
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Figure 1: r(i, j) and zi values for 1 ≤ i < j ≤ k, in the same setting as in
Table 2.

Therefore, choosing α and β to be arbitrarily close to each other accommodates
any desired k.

5 Concluding remarks

The analysis of computer algorithms via the big-oh notation is an essential part
of most activities within computer science, including both theoretical studies
and the myriad of applications to which people working in the field devote
themselves. In the great majority of situations the algorithm that is being
considered is known at some level of detail, so that obtaining big-oh expressions
for how much time or space it consumes, though far from being a simple task,
is at least a well-defined one. In this article, by contrast, we started out with a
“black-box” version of an algorithm, that is, a version that we can only analyze
by running it on a given set of inputs to make measurements of how much of
the necessary resources the algorithm spends.

Faced with the task of discovering big-oh expressions bounding such resource
usage, and limiting our search to polynomial-like functions of the relevant vari-
ables, we found that, in principle, an automated procedure to carry out the task
might have to consider functions comprising an unbounded number of terms.
This is surprising, given all the accumulated knowledge on so many algorithms
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to solve so many different problems, but we feel that it sheds additional light on
the big-oh notation itself, especially when we consider the subtle pitfalls that
sometimes motivate a deeper examination of its use [5].

We close with two final remarks. The first is that our conclusions can be eas-
ily extended to the case of more variables, recursively by simply fusing together
all current variables through appropriate valuations whenever a new variable is
added to the pool. The second remark is that, even though for this work we
found motivation in the analysis of computer algorithms, the big-oh notation is
in fact of much wider interest and applicability, providing a crucial tool when-
ever it is “asymptotics,” not exact figures, that matter. This occurs in several
other fields within mathematics, as well as in science and engineering.
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