
  

 

 

 

 

  

EXPERIMENTS ON VIRTUAL PRIVATE 

NETWORK DESIGN WITH CONCAVE 

CAPACITY COSTS  

 

Andrea Lodi  

Ahmad Moradi   
 

December 2016  

 

DS4DM-2016-004 

 

 

 

 

 

 

POLYTECHNIQUE MONTRÉAL  

DÉPARTEMENT DE MATHÉMATIQUES ET GÉNIE INDUSTRIEL  

Pavillon André-Aisenstadt  
Succursale Centre-Ville C.P. 6079 
Montréal  - Québec 
H3C 3A7 - Canada 
Téléphone: 514-340-5121 # 3314  

 



Experiments on Virtual Private Network Design
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Abstract

For the first time in the literature, the paper considers computational aspects of concave cost
virtual private network design problems. It introduces careful bound tightening mechanisms and
computationally demonstrate how such bound tightening could impressively improve convex relax-
ations of the problem. It turns out that, incorporating such bound tightening with a general solution
approach could significantly enhance the behavior of the solution approach over the problem.

1 Introduction

In the basic (asymmetric) Virtual Private Network (VPN) design problem (see, e.g., [6]) we are

Given: a communication network represented as an undirected graph G = (V,E) within which there is
a set of terminal nodes, T ⊂ V , needing to communicate with each other. In this network, each
edge, e ∈ E, has an associated per-unit capacity reservation cost ce ≥ 0 and each terminal s has
associated hose thresholds (upper bounds), b+s and b−s , specifying the amount of traffic the terminal
can send to or receive from the network, respectively.

Let S = {(s, t) : s, t ∈ T, s 6= t} be the set of all ordered pairs of distinct terminal nodes. Also let dst
denote a nonnegative expected demand assigned to a terminal pair (s, t) ∈ S and define d = {dst ≥ 0 :
∀(s, t) ∈ S} as to be a traffic assignment over the underlying network. Such a traffic assignment is called
valid (see, e.g., [6]) if it respects hose thresholds, i.e.,∑

(s,t)∈S

dst ≤ b+s ,
∑

(t,s)∈S

dts ≤ b−s , ∀s ∈ T. (1)

Constraint (1) together with demand non-negativity constraints define a polytope usually referred to as
hose polytope. Indeed, a valid traffic assignment is nothing but a point feasible to the hose polytope.
For every (s, t) ∈ S, the traffic dst is allowed to be routed only on a simple path from s to t, say Pst.
The set of such paths, P = {Pst : ∀(s, t) ∈ S}, is called a path assignment over the network. Also let
x = {xij ≥ 0 : ∀{i, j} ∈ E} be a capacity reservation over the underlying network. With the above
setting, the goal of the VPN design problem is to accomplish the following

Task: find a proper capacity reservation x, and a proper path assignment P in such a way that any valid
traffic assignment could be routed along the corresponding paths specified by P without exceeding
the capacities reserved by x and the total reservation cost is minimized.

The problem, as defined above, comes also with a restricting assumption as each link has an associated
cost proportional to the amount of capacity reserved on the link. Such simplification usually comes at a
price as it could not address an essential feature of link capacity pricing in telecommunication networks,
the so-called economy of scale phenomenon [9]: on each link, the larger the amount of reserved capacity,
the smaller the cost per unit capacity reserved. It then announces a natural extension of the VPN design
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problem with a more realistic cost model to allow for economies of scales. In the extended problem,
called concave cost VPN (ccVPN) design problem, the contribution of an edge e ∈ E to the total cost is
equal to some arbitrary fixed concave, non-decreasing function f of the capacity xe reserved on e. The
ccVPN design problem was first considered in [12] where complexity status of the problem is investigated
and an approximation algorithm is designed. The result is then extended and elaborated in [5].

The Model. As an adaptation to the linear case (see [1]), the problem could be represented by
a compact formulation. Having the network graph G = (V,E), terminal set T ⊂ V and the hose
nonnegative threshold vectors b+ = (b+i )i∈T , b− = (b−i )i∈T , one could express the (ccVPN) problem
through the following mixed-integer nonlinear programming (MINLP) model:

(ccVPN) min
∑
{i,j}∈E

f(xij) (2)

∑
(i,j)∈A

ystij −
∑

(j,i)∈A

ystji =

 +1 i = s
−1 i = t
0 otheriwse

∀i ∈ V,∀(s, t) ∈ S (3)

∑
s∈T

(b+s ω
s+
ij + b−s ω

s−
ij ) ≤ xij ∀{i, j} ∈ E (4)

ystij + ystji − ωs+
ij − ωt−

ij ≤ 0 ∀{i, j} ∈ E, ∀(s, t) ∈ S (5)

ystij ∈ {0, 1} ∀(i, j) ∈ A, ∀(s, t) ∈ S (6)

ωs+
ij , ωs−

ij ≥ 0 ∀{i, j} ∈ E, ∀s ∈ T (7)

x{i,j} ≥ 0 ∀{i, j} ∈ E. (8)

where A = {(i, j), (j, i)|{i, j} ∈ E} and f is a concave non-decreasing real function with f(0) = 0. For
each arc (i, j) ∈ A and each (s, t) ∈ S, the binary variable ystij takes value 1 if the arc (i, j) is used to
route traffic demand from s to t, Otherwise, it takes value 0.

In the above formulation, constraints (3) and (6) define the set of all possible path assignments.
Then, having fixed a path assignment, one could dualize hose polytope via omega variables to obtain
the amount of capacity needed to support any valid traffic demand over the path assignment. This will
simply be translated into constraints (4), (5) and (7). We say that non-negative ω variables in (ccVPN)
could be reduced to be binary. This is an immediate consequence of our previous results for the linear
case (see, Theorem 3.2 of [11]) and the fact that f is non decreasing. Thus, constraints (7) in the model
are replaced with

ωs+
ij , ωs−

ij ∈ {0, 1} ∀{i, j} ∈ E, ∀s ∈ T. (9)

(ccVPN) is a non-convex MINLP, thus much more difficult to solve than its linear-cost counterpart
because its continuous relaxation is in general NP-hard (see, e.g., [3]).

To the best of our knowledge, the problem has not received any computational attention yet. In this
short paper, we give a first attempt to that. In Section 2, we initially take a straightforward step and we
solve the (ccVPN) MINLP formulation presented in this section through the SCIP solver [14] as it is, by
quickly realizing that bound tightening is a necessary condition to succeed (Section 2.1). Such a bound
tightening is presented in Section 2.2 and the final set of experiments is reported in Section 2.3. Finally,
in Section 3 we draw some conclusions and we outline some possible avenues for further improvement.

2 Computational Experiments

In this section, we use the SCIP optimizer to solve the (ccVPN) MINLP formulation by more and more
sophisticated attempts.

Test instances considered in this section are the challenging instances studied in [10, 11] and the
instances derived from SNDlib networks [15] used in [13] for a related network design problem. For each
problem instance, capacity reservation cost on an edge is modeled by the following concave function:

f(x) = (ax + b)r + c, a > 0, r ∈ (0, 1). (10)

Using this popular class of concave functions [9], one could easily adjust degree of economy of scale on
an edge by simply tuning parameter r. The two sets of instances are denoted by I1 and I2, respectively.
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We performed all experiments on a single core of an Intel Core i5 with 2.53 GHz processor, under
Linux with 4 GB of RAM. We coded cut-and-branch algorithms in C++ by using the SCIP framework,
where Cplex 12.5 [7] has been used for solving linear programming (LP) relaxations. We set a time limit
of 3,600 CPU seconds for solving each benchmark instance. For all instances that cannot be solved to
optimality within the time limit, we report the gap between the best known upper bound and the lower
bound obtained.

2.1 Solving the (ccVPN) MINLP formulation

Directly solving (ccVPN) within a branch-and-bound framework intrinsically encounters some difficulties.
Recall that the continuous relaxation of the model is a non-convex (nonlinear) programming problem for
which one can only, currently, aim at finding in polynomial time local optima. As a result, one could not
find a valid lower bound just by relaxing integrality constraints. To obtain a lower bound, we have to
first build a convex relaxation of (ccVPN). Such a convex relaxation could be either linear or nonlinear.
However, for computational reasons, most of the existing solvers use linear ones [17].

In order to build a convex relaxation of (ccVPN), one should replace cost function (10) with a convex
function, say f c, underestimating f and at the same time close enough to it. Let us again draw our
attention to a fixed edge. More precisely, a convex under-estimator, f c, of f over an interval [a, b]
(⊆ [0, UB]) is a convex function over [a, b], for which f c(x) ≤ f(x) for every x ∈ [a, b]. The tightest
possible convex under-estimator of f is its convex envelope denoted by f ce. Building the convex envelope
of a general function is hard (see, e.g., [16, 8]). However, because (10) is concave, its convex envelope
exists and is given by the linear secant connecting the points (a, f(a)) and (b, f(b))

f ce(t) = f(a) +
f(b)− f(a)

b− a
(x− a) ∀t ∈ [a, b]. (11)

Computing the above secant is precisely what the non-convex MINLP solver SCIP does to construct
the first convex continous relaxation of (ccVPN) and such a relaxation is iteratively strengthened by
branching in the so-called spatial branch and bound (see, e.g., [2] for details).

In the following, we first, we investigate MINLPs given in I1 and I2 by applying SCIP as a global
optimization solver. Here, any instance is evaluated before imposing an upper bound on capacity vari-
ables, i.e., by using UB = +∞. The results are reported in the left-most part of Table 1. Note that,
when no bound on capacity variables is imposed, SCIP finds such bound with the aim of presolving. For
each instance in this case, the upper bound on capacity variables (averaged over all capacity variables)
by presolving is reported (presolve bound) together with the percentage gap of the initial continuous
relaxation computed using the presolved bounds (gapi).

It is easy to see that relying only on such presolving bounds generally leaves a big gap on the MINLP
instances and no instance can be solved to optimality with a time limit of 3,600 CPU seconds (no detailed
results on the SCIP spatial branch and bound are reported because of the lack of practical significance).
Thus, the first order of business is to improve the formulation by computing and installing better upper
bounds on the capacity variables and a simple bound can be obtained by observing that, for the edge
{i, j}, (ccVPN) could only increase xij through constraint (4). As a result, xij could not take a value
more that

∑
s∈T (b+s + b−s ). This defines an upper bound, say ub0, on xij .

2.2 Improving by Bound tightening

As noted in the previous section, tightening the bound on the capacity variables xij is crucial for solving
the (ccVPN) MINLP formulation, and, in the following, we carefully consider problem structure and
install some tight bounds on capacity variables.

Let us consider again an edge {i, j} ∈ E and suppose that the traffic dst is going to be routed through
{i, j}. The amount of capacity on the edge needed to support this communication is min(b+s , b

−
t ). The

first idea to bound the amount of capacity, xij , needed on the edge is to see the edge in the extreme
situation where all ordered terminal pairs in S use {i, j} in their routing. Then, we have

xij ≤
∑

(s,t)∈S

min(b+s , b
−
t ) ∀{i, j} ∈ E. (12)
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Let us define ub1 =
∑

(s,t)∈S min(b+s , b
−
t ). As we will see, ub1 is not the best possible bound on capacity

variables. In fact, while computing ub1 on an edge, traffic associated with terminal pairs are considered
separately. In this way, demand relation through the hose polytope is ignored, and the computed
maximum capacity on the edge is highly overestimated.

Using ub1 significantly improves initial dual bound of the (ccVPN) and in general the overal compu-
tation. However, this is not the best possible bound on capacity variables. Consider a feasible solution of
(ccVPN) and let ẏ be its path assignment given by (3) and (6). Knowing ẏ, one could compute maximum
capacity needed on the edge {i, j} by means of the following:

xij = max{
∑

(s,t)∈S

dst(ẏ
st
ij + ẏstji) : (1) and dst ≥ 0 ∀(s, t) ∈ S}, (13)

where the term dst(ẏ
st
ij + ẏstji) in the objective function is the amount of capacity needed on the edge

{i, j} (in both directions) imposed by the terminal pair (s, t). Furthermore, since ẏ is a binary vector
representing a collection of simple paths, then ∀{i, j} ∈ E, ∀(s, t) ∈ S we have ẏstij + ẏstji ≤ 1. As a result,

xij ≤ max{
∑

(s,t)∈S

dst : (1) and dst ≥ 0 ∀(s, t) ∈ S}. (14)

Now define ub2 as the value of the the right hand side linear program in (14). We have,

Lemma 2.1 Upper bound ub2 dominates upper bound ub0 i.e. ub2 ≤ ub0.

Proof Taking the dual of the right hand side LP in (14), we have

ub2 = min{
∑
s∈T

(b+s ω
s+
ij + b−s ω

s−
ij ) : ωs+

ij + ωt−
ij ≥ 1, ∀(s, t) ∈ S and ωs+

ij , ωs−
ij ≥ 0, ∀s ∈ T}

≤
∑
s∈T

(b+s + b−s ) = ub0

Lemma 2.2 Upper bound ub2 dominates upper bound ub1 i.e. ub2 ≤ ub1.

Proof For any valid traffic vector d and any terminal pair (s, t) ∈ S, we always have dst ≤ b+s , dst ≤ b−t .
Then, dst ≤ min(b+s , b

−
t ) and

ub2 ≤
∑

(s,t)∈S

dst ≤
∑

(s,t)∈S

min(b+s , b
−
t ) = ub1

We have to note that, ub0 and ub1 are not in general comparable, as it is clarified by Example 1 below.
Lemma 2.2 shows that exploiting demand relations through hose polytope always provide a better bound
on capacity variables. Our experiments below also show that ub2 is far superior to ub0 and ub1 in practice.
However, in theory, the inequality in Lemma 2.2 holds with equality as shown by simple computations
for an instance of the ccVPN problem with only two distinct terminal nodes. Then, a natural question
is if a further improvement on ub2 can be achieved. In fact, Example 2.3 below shows that it is not
possible.

Example 2.3 Consider a ccVPN instance over a three-node complete graph in which any node is a
terminal one and hose thresholds are given by b− = (4, 5, 5) and b+ = (1, 2, 2). Also let the capacity
installation cost function be defined by the identity function. Then, an optimal solution to the ccVPN
instance will install capacities ub2 = x12 = x13 = 5, x23 = 0. Then further improvement on ub2 is not
possible. For the instance, simple computations also show that ub0 > ub1. However, for most of the
instances given in I1 or I2, ub0 < ub1 (see Tables 1).

The results reported in the central part of Table 1 evaluates the above mentioned upper bounds.
Namely, for each instance, columns four to seven report the min{ub0, ub1} value, its percentage gap, the
ub2 value and its percentage gap, respectively. A “*” appears to the right of a bound value in the forth
column to indicate that min{ub0, ub1} = ub1.

It is not hard to see that installing a better and better upper bound on capacity variables significantly
improves the percentage gap of the initial dual bound and in the next section we will evaluate the impact
of such an improvement in the capacity of SCIP to compute optimal solutions.
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2.3 Computing optimal (ccVPN) solutions by using ub2

Before going into the details of the computation on the MINLP model by using ub2 as a bound for the
capacity variables, one needs to observe that another straightforward strategy for solving (ccVPN) is to
apply a piecewise linear approximation to the concave cost function (10), see Figure 1. (For a complete

Figure 1: For an x located in the i-th consecutive interval, f(x) is approximated by fa(x); value of x
on the linear secant connecting (xi, f(xi)) and (xi+1, f(xi+1)).

discussion on how to efficiently build the associated Mixed-Integer Linear Programming (MILP), which
requires a binary variable for each of the intervals, the reader is referred to [4].) It is not hard to see that
installing the same upper bound ub2 on capacity variables makes the valid lower bound computed by
the resulting MILP approximation identical to the one obtained by solving the secant convex relaxation
of the MINLP model: essentially, the first and last samples of the piecewise approximation/relaxation
are used precisely as in the secant approach. In other words, solving the MILP provides a static a
priori convexification, although the actual objective value of the optimal solution to the MILP has
to be recomputed on the original concave curve f , thus potentially being only an approximation, i.e.,
heuristic. Such a static approximation requires to decide the number of breakpoints the concave function
is sampled (the higher this number the better the approximation but the larger the resulting MILP) and
in the experiments described below we used 21 breakpoints, i.e., 20 equal length intervals.

Thus, the right-most part of Table 1 evaluates the use of bound ub2 in both the MILP and MINLP
formulations to solve (ccVPN). More precisely, the last six columns are devoted to compare the two
solution approaches when ub2 is installed on capacity variables in terms of final gap at the time limit
(gapf ), computing time (tf ) and number of branch-and-bound nodes (nBB).

The results clearly reveal that having installed ub2 as the best possible bound on capacity variables
in (ccVPN), both of the solution methods are able to close a large fraction of initial integrality gap and
a non-negligible number of instances, especially in the I2 set can be solved within the time limit. In
addition, solving (ccVPN) instances as a MILP often provides slightly better dual bound (on average)
within the given time limit and solves more instances to optimality.

3 Conclusions

The paper studied how bound tightening could improve convex relaxations of VPN design problem in
the presence of concave capacity reservation costs. It introduced the best possible upper bound on
the capacity of an edge in a solution and clarified that such an upper bound could only be obtained
when demand relations through the hose polytope are carefully considered. It also computationally
demonstrated that imposing such a bound could impressively improve quality of the relaxations in terms
of the initial dual bound. The computational results showed that the SCIP solver either by using the
piecewise linear approximation model or the MINLP one both enhanced by those tight variable bounds
is a viable way of computing (ccVPN) optimal solutions, although further improvements either on the
formulations or on the algorithmic techniques are required to tackle the hardest instances.
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